首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eukaryotic organisms of the plant and animal kingdoms have developed evolutionarily conserved systems of defence against microbial pathogens. These systems depend on the specific recognition of microbial products or structures by molecules of the host innate immune system. The first mammalian molecules shown to be involved in innate immune recognition of, and defence against, microbial pathogens were the Toll-like receptors (TLRs). These proteins are predominantly but not exclusively located in the transmembrane region of host cells. Interestingly, mammalian hosts were subsequently found to also harbour cytosolic proteins with analogous structures and functions to plant defence molecules. The members of this protein family exhibit a tripartite domain structure and are characterized by a central nucleotide-binding oligomerization domain (NOD). Moreover, in common with TLRs, most NOD proteins possess a C-terminal leucine-rich repeat (LRR) domain, which is required for the sensing of microbial products and structures. Recently, the name 'nucleotide-binding domain and LRR' (NLR) was coined to describe this family of proteins. It is now clear that NLR proteins play key roles in the cytoplasmic recognition of whole bacteria or their products. Moreover, it has been demonstrated in animal studies that NLRs are important for host defence against bacterial infection. This review will particularly focus on two subfamilies of NLR proteins, the NODs and 'NALPs', which specifically recognize bacterial products, including cell wall peptidoglycan and flagellin. We will discuss the downstream signalling events and host cell responses to NLR recognition of such products, as well as the strategies that bacterial pathogens employ to trigger NLR signalling in host cells. Cytosolic recognition of microbial factors by NLR proteins appears to be one mechanism whereby the innate immune system is able to discriminate between pathogenic bacteria ('foe') and commensal ('friendly') members of the host microflora.  相似文献   

2.
Intracellular NOD-like receptors in innate immunity, infection and disease   总被引:3,自引:0,他引:3  
The innate immune system comprises several classes of pattern-recognition receptors, including Toll-like receptors (TLRs) and nucleotide binding and oligomerization domain-like receptors (NLRs). TLRs recognize microbes on the cell surface and in endosomes, whereas NLRs sense microbial molecules in the cytosol. In this review, we focus on the role of NLRs in host defence against bacterial pathogens. Nod1 and Nod2 sense the cytosolic presence of molecules containing meso-diaminopimelic acid and muramyl dipeptide respectively, and drive the activation of mitogen-activated protein kinase and NF-κB. In contrast, Ipaf, Nalp1b and Cryopyrin/Nalp3 promote the assembly of inflammasomes that are required for the activation of caspase-1. Mutation in several NLR members, including NOD2 and Cryopyrin, is associated with the development of inflammatory disorders. Further understanding of NLRs should provide new insights into the mechanisms of host defence and the pathogenesis of inflammatory diseases.  相似文献   

3.
NOD样受体在炎症反应中的调控作用   总被引:2,自引:0,他引:2  
席琼  胡巢凤 《生命科学》2010,(5):454-458
天然免疫(innate immunity)是机体免疫系统直接抵御病原体入侵的最初阶段,通过机体自身的特异性模式识别受体(pattern-recognition receptors,PRRs)来识别病原体特有的保守结构病原相关分子模式(pathogen-associated molecular patterns,PAMPs)。细胞内NOD样受体(NLRs)是胞浆型PRRs中的一个重要家族,病原体侵袭细胞可上调其表达,启动机体的免疫应答和炎症反应,在机体天然免疫应答中发挥独特的功能。最近有研究证明,NLRs的突变与一些人类免疫性疾病相关,并且在细菌感染和炎症反应的控制中起重要作用。该文将讨论NLRs在炎症疾病中的调控作用。  相似文献   

4.
Toll-like receptors are key participants in innate immune responses   总被引:5,自引:0,他引:5  
During an infection, one of the principal challenges for the host is to detect the pathogen and activate a rapid defensive response. The Toll-like family of receptors (TLRs), among other pattern recognition receptors (PRR), performs this detection process in vertebrate and invertebrate organisms. These type I transmembrane receptors identify microbial conserved structures or pathogen-associated molecular patterns (PAMPs). Recognition of microbial components by TLRs initiates signaling transduction pathways that induce gene expression. These gene products regulate innate immune responses and further develop an antigen-specific acquired immunity. TLR signaling pathways are regulated by intracellular adaptor molecules, such as MyD88, TIRAP/Mal, between others that provide specificity of individual TLR- mediated signaling pathways. TLR-mediated activation of innate immunity is involved not only in host defense against pathogens but also in immune disorders. The involvement of TLR-mediated pathways in auto-immune and inflammatory diseases is described in this review article.  相似文献   

5.
The innate immune system of mammals encodes several families of immune detector proteins that monitor the cytosol for signs of pathogen invasion. One important but poorly understood family of cytosolic immunosurveillance proteins is the NLR (nucleotide-binding domain, leucine-rich repeat containing) proteins. Recent work has demonstrated that one subfamily of NLRs, the NAIPs (NLR family, apoptosis inhibitory proteins), are activated by specific interaction with bacterial ligands, such as flagellin. NAIP activation leads to assembly of a large multiprotein complex called the inflammasome, which initiates innate immune responses by activation of the Caspase-1 protease. NAIPs therefore appear to detect pathogen molecules via a simple and direct receptor-ligand mechanism. Interestingly, other NLR family members appear to detect pathogens indirectly, perhaps by responding to host cell "stress" caused by the pathogen. Thus, the NLR family may have evolved surprisingly diverse mechanisms for detecting pathogens.  相似文献   

6.
Toll-like receptors (TLRs) were evolved to detect invading pathogens and to induce innate immune responses in order to mount host defense mechanisms. It becomes apparent that the activation of certain TLRs is also modulated by endogenous molecules including lipid components, fatty acids. Results from epidemiological and animal studies demonstrated that saturated and polyunsaturated dietary fatty acids can differentially modify the risk of development of many chronic diseases. Inflammation is now recognized as an important underlying etiologic condition for the pathogenesis of many chronic diseases. Therefore, if the activation of TLRs and consequent inflammatory and immune responses are differentially modulated by types of lipids in vivo, this would suggest that the risk of the development of chronic inflammatory diseases and the host defense against microbial infection may be modified by the types of dietary fat consumed.  相似文献   

7.
Toll-like receptors and innate immunity   总被引:5,自引:0,他引:5  
Toll-like receptors (TLRs) are evolutionarily conserved innate receptors expressed in various immune and non-immune cells of the mammalian host. TLRs play a crucial role in defending against pathogenic microbial infection through the induction of inflammatory cytokines and type I interferons. Furthermore, TLRs also play roles in shaping pathogen-specific humoral and cellular adaptive immune responses. In this review, we describe the recent advances in pathogen recognition by TLRs and TLR signaling.  相似文献   

8.
The innate immune system provides the first line of host defense against invading microorganisms before the development of adaptive immune responses. Innate immune responses are initiated by germline-encoded pattern recognition receptors (PRRs), which recognize specific structures of microorganisms. Toll-like receptors (TLRs) are pattern-recognition receptors that sense a wide range of microorganisms, including bacteria, fungi, protozoa and viruses. TLRs exist either on the cell surface or in the lysosome/endosome compartment and induce innate immune responses. Recently, cytoplasmic PRRs have been identified which detect pathogens that have invaded the cytosol. This review focuses on the pathogen recognition of PRRs in innate immunity.  相似文献   

9.
NOD-like receptors are cytosolic proteins that contain a central nucleotide-binding oligomerization domain (NACHT), an N-terminal effector-binding domain and C-terminal leucine-rich repeats (LRRs). NOD-like receptors have been implicated as ancient cellular sentinels mediating protective immune responses against intracellular pathogens. Recent studies have described the genetic association of polymorphisms in NOD-like receptor genes with complex chronic inflammatory barrier diseases, such as Crohn's disease and asthma and with rare auto-inflammatory syndromes including familial cold urticaria, Muckle-Wells syndrome and Blau syndrome. Whereas genetic variability in NLRs may have been an important element to provide plasticity to antigen recognition and host defense in the past, recent changes in the lifestyle of industrialized societies (e.g. hygiene ("cold-chain-hypothesis"), nutrition, or antibiotics) may have turned ancient genetic variability into disease-causing mutations. The review focuses on NLR function in the molecular pathophysiology of human inflammatory disorders.  相似文献   

10.
鱼类模式识别受体的研究进展   总被引:2,自引:0,他引:2  
敖敬群  陈新华 《生命科学》2012,(9):1049-1054
天然免疫(innate immunity)是基于对病原微生物成分的非克隆性识别而启动的快速防御反应。天然免疫系统可通过胚系编码的模式识别受体(pattern-recognition receptors,PRR)识别恒定不变的病原基元,即病原相关分子模式(pathogen-associated molecular patterns,PAMPs),启动信号级联转导,最终PRRs信号激活宿主免疫和前炎性基因的表达,引发针对所识别病原的免疫反应。目前PRRs主要分为5类,即C-型Lectins、Toll样受体(Toll-like receptors,TLRs)、视黄酸诱导基因I样受体(retinoic acid inducible gene I-like receptors,RLRs)、包含核苷酸结合区和亮氨酸富集区蛋白(the nucleotide-binding domain,leucine-rich repeatcontaining proteins,NLRs,也称NOD样受体)和最近发现的AIM样受体(absent in melanoma(AIM)-like receptors,ALRs)。近年来,随着5种鱼类基因组序列草图的完成,大量鱼类PRRs基因被发现,一些PRRs的配体特异性及其相关信号途径正在逐渐明晰。为此,将对鱼类Toll样受体(TLRs)、视黄酸诱导基因I样受体(RLRs)和NOD样受体(NLRs)的研究进展进行综述。  相似文献   

11.
Toll-like receptors are temporally involved in host defense   总被引:11,自引:0,他引:11  
Toll-like receptors (TLRs) are evolutionarily conserved proteins that recognize microbial molecules and initiate host defense. To investigate how TLRs work together to fight infections, we tested the role of TLRs in host defense against the Gram-negative bacterial pathogen, Salmonella. We show that TLR4 is critical for early cytokine production and killing of bacteria by murine macrophages. Interestingly, later on, TLR2, but not TLR4, is required for macrophage responses. Myeloid differentiation factor 88, an adaptor protein directly downstream of TLRs, is required for both early and late responses. TLR4, TLR2, and myeloid differentiation factor 88 are involved in murine host defense against Salmonella in vivo, which correlates with the defects in host defense observed in vitro. We propose a model where the sequential activation of TLRs tailors the immune response to different microbes.  相似文献   

12.
In Drosophila, the Toll family of proteins is responsible for the recognition of bacteria and fungi. In mammals, Toll-like receptors (TLRs) are able to recognize and respond to microbial pathogens. Recent findings have defined the relationship between many TLRs and their microbial ligands, as well as the effect of TLR ligation on host defense. These findings have also provided a framework for determining how TLRs may by used to therapeutically modulate immune responses to infection.  相似文献   

13.
Disifin has emerged as a unique and very effective agent used in disinfection of wounds, disinfection of surfaces, materials and water, and other substances contaminated with almost every type of pathogenic microorganism ranging from viruses, bacteria, fungi and yeast, and, very possibly, protozoan parasites, as well. The major active component of Disifin is tosylchloramide sodium (chloramine T). However, the mechanism by which Disifin suppresses the activities of pathogenic microbial agents remains enigmatic. The molecular mechanisms, and the receptors and the signal transducing pathways responsible for the biological effects of Disifin are largely unknown. Despite considerable advances, enormous investigative efforts and large resources invested in the research on infectious diseases, microbial infection still remains a public health problem in many parts of the world. The exact nature of the pathogenic agents responsible for many infectious diseases, and the nature of the receptors mediating the associated inflammatory events are incompletely understood. Recent advances in understanding the molecular basis for mammalian host immune responses to microbial invasion suggest that the first line of defense against microbes is the recognition of pathogen-associated molecular patterns (PAMPs) by a family of transmembrane pattern-recognizing and signal transducing receptor proteins called Toll-like receptors (TLRs). The TLR family plays an instructive role in innate immune responses against microbial pathogens, as well as the subsequent induction of adaptive immune responses. TLRs mediate recognition and inflammatory responses to a wide range of microbial products and are crucial for effective host defense by eradication of the invading pathogens. Now, recent updates demonstrated the ability of Disifin-derived products, Disifin-Animal and Disifin-Pressant to effectively suppress the progression and activities of Chikungunya fever and that of avian influenza A virus [A/cardialis/Germany/72, H7N1: the agent of a highly pathogenic avian influenza (HPAI)] infection, respectively. Overall, the above findings led me to suggest that Disifin and TLRs may mechanistically overlap in the processes of executing their functions against pathogenic microbial organisms. Thus, elucidating and better understanding of the molecular underpinnings responsible for the biochemical effects of Disifin-products, and the nature and mode of the interaction(s) of Disifin with TLRs in the process of exerting their biological effects may open a novel dimension in the research of infectious diseases, which may provide novel therapeutic targets for the prevention and treatment of a wide range of infectious diseases.  相似文献   

14.
The innate immune system is composed of a wide repertoire of conserved pattern recognition receptors (PRRs) able to trigger inflammation and host defense mechanisms in response to endogenous or exogenous pathogenic insults. Among these, nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are intracellular sentinels of cytosolic sanctity capable of orchestrating innate immunity and inflammatory responses following the perception of noxious signals within the cell. In this review, we elaborate on recent advances in the signaling mechanisms of NLRs, operating within inflammasomes or through alternative inflammatory pathways, and discuss the spectrum of their effector functions in innate immunity. We describe the progressive characterization of each NLR with associated controversies and cutting edge discoveries.  相似文献   

15.
NOD-like receptors (NLRs) are a family of intracellular proteins that play critical roles in innate immunity against microbial infection. NLRC5, the largest member of the NLR family, has recently attracted much attention. However, in vitro studies have reported inconsistent results about the roles of NLRC5 in host defense and in regulating immune signaling pathways. The in vivo function of NLRC5 remains unknown. Here, we report that NLRC5 is a critical regulator of host defense against intracellular pathogens in vivo. NLRC5 was specifically required for the expression of genes involved in MHC class I antigen presentation. NLRC5-deficient mice showed a profound defect in the expression of MHC class I genes and a concomitant failure to activate L. monocytogenes-specific CD8+ T cell responses, including activation, proliferation and cytotoxicity, and the mutant mice were more susceptible to the pathogen infection. NLRP3-mediated inflammasome activation was also partially impaired in NLRC5-deficient mice. However, NLRC5 was dispensable for pathogen-induced expression of NF-κB-dependent pro-inflammatory genes as well as type I interferon genes. Thus, NLRC5 critically regulates MHC class I antigen presentation to control intracellular pathogen infection.  相似文献   

16.
TLR signaling   总被引:13,自引:0,他引:13  
  相似文献   

17.
Preventive vaccination is the most successful approach against infectious diseases and has a great impact on world health. Vaccines operate through the activation of innate immunity that helps to stimulate antigen-specific T- and B-lymphocytes. These events are orchestrated by dendritic cells (DCs) that are able to sample foreign structures and concomitantly sense 'danger signals'. Thus, DCs provide a functional link between innate and acquired immunity, and due to their regulatory potential are referred to as natural adjuvants. Human conventional and plasmacytoid DCs express different sets of well-characterized Toll-like membrane receptors (TLRs) that recognize a broad range of conserved molecular patterns of pathogens. The recently discovered cytosolic Nod-like receptors (NLRs) and RIG-like helicases (RLHs) also turned out to participate in pathogen recognition and modulation of immune responses through interacting signaling pathways. As a result of their collaboration, the TLR, NLR and RLH recognition systems induce the secretion of different combinations of cytokines that play a fundamental role in T-cell activation and instruction. Ligands of the innate recognition systems emerge as new adjuvants for vaccine design, whereas manipulation of the signaling pathways mediated by these receptors offers new avenues for fine tuning immune responses and optimizing immunotherapies.  相似文献   

18.
19.
Negative regulation of toll-like receptor-mediated immune responses   总被引:1,自引:0,他引:1  
Toll-like receptors (TLRs) are involved in host defence against invading pathogens, functioning as primary sensors of microbial products and activating signalling pathways that induce the expression of immune and pro-inflammatory genes. However, TLRs have also been implicated in several immune-mediated and inflammatory diseases. As the immune system needs to constantly strike a balance between activation and inhibition to avoid detrimental and inappropriate inflammatory responses, TLR signalling must be tightly regulated. Here, we discuss the various negative regulatory mechanisms that have evolved to attenuate TLR signalling to maintain this immunological balance.  相似文献   

20.
Plant recognition and defence against pathogens employs a two‐tiered perception system. Surface‐localized pattern recognition receptors (PRRs) act to recognize microbial features, whereas intracellular nucleotide‐binding leucine‐rich repeat receptors (NLRs) directly or indirectly recognize pathogen effectors inside host cells. Employing the tomato PRR LeEIX2/EIX model system, we explored the molecular mechanism of signalling pathways. We identified an NLR that can associate with LeEIX2, termed SlNRC4a (NB‐LRR required for hypersensitive response‐associated cell death‐4). Co‐immunoprecipitation demonstrates that SlNRC4a is able to associate with different PRRs. Physiological assays with specific elicitors revealed that SlNRC4a generally alters PRR‐mediated responses. SlNRC4a overexpression enhances defence responses, whereas silencing SlNRC4 reduces plant immunity. Moreover, the coiled‐coil domain of SlNRC4a is able to associate with LeEIX2 and is sufficient to enhance responses upon EIX perception. On the basis of these findings, we propose that SlNRC4a acts as a noncanonical positive regulator of immunity mediated by diverse PRRs. Thus, SlNRC4a could link both intracellular and extracellular immune perceptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号