首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CCR7 directs the migration of thymocytes into the thymic medulla   总被引:9,自引:0,他引:9  
Developing thymocytes migrate from the cortex to the medulla of the thymus as a consequence of positive selection. This migration is likely to be essential for tolerance because it allows the developing cells to move into an environment that is optimal for negative selection. Guidance mechanisms that draw positively selected thymocytes into the medulla have not been clarified, but several studies have implicated chemokines in the process. CCR7, the receptor for the medullary chemokines CCL19 and CCL21, is induced on thymocytes during their positive selection. In this study we show that premature expression of CCR7 repositions CD4(+)CD8(+) double-positive cells into the medulla of transgenic mice. This repositioning of the thymocytes is accompanied by impairment of their development. The data show the involvement of CCR7 in medullary migration and emphasize the importance of proper thymocyte positioning for efficient T cell development.  相似文献   

2.
3.
4.
T lymphocytes arise in the thymus and seed to peripheral lymphoid organs as fully functional cells at the time of exit. In humans, the thymus begins to function very early in ontogeny and releases large numbers of T cells before the time of birth. However, the vast majority of developing thymocytes (>95%) die within the thymus as a result of stringent selection processes. Positive selection imposes self-MHC-restriction on thymocytes and dictates the MHC-restricted repertoire of post-thymic T cells. Negative selection results in deletion of autoreactive cells. Both types of selection depend on cell to cell contracts and on the presence of appropriate growth factors which are still largely undetermined. Cell to cell contacts occur between developing thymocytes and cells of the thymic microenvironment (accessory cells), and are mediated by several receptor/ligand interactions which subserve the function of establishing and stabilizing these contacts. Besides MHC-TCR interactions, adhesion molecules are important for thymocyte maturation, selection and activation, and for the export and peripheral homing of mature T cells produced in the thymus. Here we describe a novel integrin involved in thymocyte-thymic epithelial cell interactions.  相似文献   

5.
After entry into thymus, T cell progenitors migrate in the cortex and the medulla while completing their education. Recent reports have documented the dynamic and tortuous behavior of thymocytes. However, other than chemokines and/or segregated thymic substrates, the factors contributing to the dynamic patterns of thymocyte movement are poorly characterized. By combining confocal and dynamic two-photon microscopy, we demonstrate that thymocytes continuously migrate on thymic stromal cell networks. In addition to constituting "roads" for thymocytes, we observed that these networks also provide a scaffold on which dendritic cells attach themselves. These results highlight the central role of stromal microanatomy in orchestrating the multiple cellular interactions necessary for T cell migration/development within the thymus.  相似文献   

6.
The thymus is the site of T cell development and selection. In addition to lymphocytes, the thymus is composed of several types of stromal cells that are exquisitely organized to create the appropriate environment and microenvironment to support the development and selection of maturing T cells. Thymic epithelial cells (TECs) are one of the more important cell types in the thymic stroma, and they play a critical role in selecting functional T cell clones and supporting their development. In this study, we used a mouse genetics approach to investigate the consequences of deleting the Pten tumor suppressor gene in the TEC compartment of the developing thymus. We found that PTEN deficiency in TECs results in a smaller thymus with significantly disordered architecture and histology. Accordingly, loss of PTEN function also results in decreased T cells with a shift in the distribution of T cell subtypes towards CD8+ T cells. These experiments demonstrate that PTEN is critically required for the development of a functional thymic epithelium in mice. This work may help better understand the effects that certain medical conditions or clinical interventions have upon the thymus and immune function.  相似文献   

7.
T lymphocytes are generated throughout life, arising from bone marrow-derived progenitors that complete an essential developmental process in the thymus. Thymic T cell education leads to the generation of a self-restricted and largely self-tolerant peripheral T-cell pool and is facilitated by interactions with thymic stromal cells residing in distinct supportive niches. The signals governing thymocyte precursor migration into the thymus, directing thymocyte navigation through thymic microenvironments and mature T-cell egress into circulation were, until recently, largely unknown, but presumed to be mediated to a large extent by chemokine signalling. Recent studies have now uncovered various specific functions for members of the chemokine superfamily in the thymus. These studies have not only revealed distinct but also in some cases overlapping roles for several chemokine family members in various thymocyte migration events and have also shown that homing and positioning of other cells in the thymus, such as dendritic cells and natural killer T cells is also chemokine-dependent. Here, we discuss current understanding of the role of chemokines in the thymus and highlight key future avenues for investigation in this field.  相似文献   

8.
The thymus plays a crucial role in the development of T lymphocytes by providing an inductive microenvironment in which committed progenitors undergo proliferation, T-cell receptor gene rearrangements and thymocyte differentiate into mature T cells. The thymus microenvironment forms a complex network of interaction that comprises non lymphoid cells (e.g., thymic epithelial cells, TEC), cytokines, chemokines, extracellular matrix elements (ECM), matrix metalloproteinases and other soluble proteins. The thymic epithelial meshwork is the major component of the thymic microenvironment, both morphologically and phenotypically limiting heterogeneous regions in thymic lobules and fulfilling an important role during specific stages of T-cell maturation. The process starts when bone marrow-derived lymphocyte precursors arrive at the outer cortical region of the thymic gland and begin to mature into functional T lymphocytes that will finally exit the thymus and populate the peripheral lymphoid organs. During their journey inside the thymus, thymocytes must interact with stromal cells (and their soluble products) and extracellular matrix proteins to receive appropriate signals for survival, proliferation and differentiation. The crucial components of the thymus microenvironment, and their complex interactions during the T-cell maturation process are summarized here with the objective of contributing to a better understanding of the function of the thymus, as well as assisting in the search for new therapeutic approaches to improve the immune response in various pathological conditions.Key words: thymus, T-cell maturation, thymic microenvironment, thymocyte differantiation, chemokines, extracellular matrix, thymic nurse cells, metalloproteinases  相似文献   

9.
Factors regulating stem cell recruitment to the fetal thymus   总被引:15,自引:0,他引:15  
Colonization of the thymic rudiment during development is initiated before vascularization so that hemopoietic precursors must leave the pharyngeal vessels and migrate through the perithymic mesenchyme to reach the thymus, suggesting that they may be responding to a gradient of chemoattractant factors. We report that diffusible chemoattractants are produced by MHC class II+ epithelial cells of the fetal thymus, and that the response of precursors to these factors is mediated via a G protein-coupled receptor, consistent with factors being members of the chemokine family. Indeed, a number of chemokine receptors are expressed by thymic precursors, and several chemokines are also expressed by thymic epithelial cells. However, these chemokines are also expressed in a tissue that is unable to attract precursors, although the thymus expressed chemokine, TECK, is expressed at higher levels in thymic epithelial cells and we show that it has chemotactic activity for isolated thymic precursors. Neutralizing Ab to TECK, however, did not prevent thymus recolonization by T cell precursors, suggesting that other novel chemokines might be involved in this process. In addition, we provide evidence for the involvement of matrix metalloproteinases in chemoattractant-mediated T cell precursor recruitment to the thymus during embryogenesis.  相似文献   

10.
《ImmunoMethods》1993,2(2):145-158
The techniques of fetal thymus organ culture have been widely utilized for the study of thymocyte differentiation under carefully controlled conditions. Recent results suggesting a role for dendritic cells (DC) in selection of a competent T-cell repertoire have prompted attempts to construct chimeric thymus rudiments in vitro. Here, we describe a novel approach based on the migratory properties of mature lymphoid DC. Purified DC from adult thymus or spleen were found to migrate into fetal thymus rudiments in culture and localize specifically within the medulla. This distribution closely mirrors the situation in vivo, underlining the physiological relevance of the resulting microenvironment. Recolonization was shown to be selective, excluding cell types not normally represented in the thymus. To assess the extent of repertoire selection in recolonized fetal thymi, chimeric rudiments in which I-E determinants were expressed exclusively on the surface of immigrant DC were constructed. The failure of such rudiments to recruit a population of CD4+8Vβ6+ thymocytes, restricted to antigen recognition in the context of I-E, argued against a role for DC in positive selection, in contrast, the widespread deletion of potentially autoreactive CD4+8Vβ17a+ cells suggested an active role for DC in negative selection of the T-cell repertoire. These conclusions are consistent with the findings of various in vivo studies, endorsing the suitability of such a model for the study of tolerance induction in vitro.  相似文献   

11.
The immune system must avoid aggressive T-cell responses against self-antigens. But, paradoxically, exposure to self-peptides seems to have an important role in positive selection in the thymus and the maintenance of a broad T-cell repertoire in the periphery. Recent experiments have highlighted situations that allow high-avidity self-reactive T cells to avoid negative selection in the thymus. Accumulating evidence indicates that other, non-deleting mechanisms control the avidity with which T cells recognize self-antigens--a phenomenon that is known as 'tuning'. This might maximize the peripheral T-cell repertoire by allowing the survival of T cells that can respond to self, but only at concentrations that are not normally reached in vivo.  相似文献   

12.
Exosomes are nanosized membrane-bound vesicles that are released by various cell types and are capable of carrying proteins, lipids and RNAs which can be delivered to recipient cells. Exosomes play a role in intercellular communication and have been described to mediate immunologic information. In this article we report the first isolation and characterization of exosomes from human thymic tissue. Using electron microscopy, particle size determination, density gradient measurement, flow cytometry, proteomic analysis and microRNA profiling we describe the morphology, size, density, protein composition and microRNA content of human thymic exosomes. The thymic exosomes share characteristics with previously described exosomes such as antigen presentation molecules, but they also exhibit thymus specific features regarding surface markers, protein content and microRNA profile. Interestingly, thymic exosomes carry proteins that have a tissue restricted expression in the periphery which may suggest a role in T cell selection and the induction of central tolerance. We speculate that thymic exosomes may provide the means for intercellular information exchange necessary for negative selection and regulatory T cell formation of the developing thymocytes within the human thymic medulla.  相似文献   

13.
The thymus provides a specialised microenvironment for the development of T-cell precursors. This developmental programme depends upon interactions with stromal cells such as thymic epithelial cells, which provide signals for proliferation, survival and differentiation. In turn, it has been proposed that development of thymic epithelial cells themselves is regulated by signals produced by developing thymocytes. Evidence in support of this symbiotic relationship, termed thymic crosstalk, comes from studies analysing the thymus of adult mice harbouring blocks at specific stages of thymocyte development, where it is difficult to separate mechanisms regulating the initial development of thymic epithelial cells from those regulating their maintenance. To distinguish between these processes, we have analysed the initial developmental programme of thymic epithelial cells within the embryonic thymus, in either the presence or absence of normal T-cell development. We show that keratin 5+8+ precursor epithelial cells present in the early thymic rudiment differentiate into discrete cortical and medullary epithelial subsets displaying normal gene expression profiles, and acquire functional competence, independently of signals from T-cell precursors. Thus, our findings redefine current models of thymus development and argue against a role for thymocyte-epithelial cell crosstalk in the development of thymic epithelial progenitors.  相似文献   

14.
The thymus mainly contains developing thymocytes that undergo thymic selection. In addition, some mature activated peripheral T cells can re-enter the thymus. We demonstrated in this study that adoptively transferred syngeneic Ag-specific T cells can enter the thymus of lymphopenic mice, where they delete thymic dendritic cells and medullary thymic epithelial cells in an Ag-specific fashion, without altering general thymic functions. This induced sustained thymic release of autoreactive self-Ag-specific T cells suggested that adoptively transferred activated T cells can specifically alter the endogenous T cell repertoire by erasing negative selection of their own specificities. Especially in clinical settings in which adoptively transferred T cells cause graft-versus-host disease or graft-versus-leukemia, as well as in adoptive tumor therapies, these findings might be of importance, because the endogenous T cell repertoire might be skewed to contribute to both manifestations.  相似文献   

15.
16.
The thymus plays a crucial role in the development of T lymphocytes providing an inductive microenvironment in which committed progenitors undergo proliferation, T-cell receptor gene rearrangements and thymocyte differentiation into mature T-cells. The thymus microenvironment forms a complex network of interaction that comprises non lymphoid cells (e.g., thymic epithelial cells, TEC), cytokines, chemokines, extracellular matrix elements (ECM), matrix metalloproteinases and other soluble proteins. The thymic epithelial meshwork is the major component of thymic microenvironment, both morphologically and phenotypically limiting heterogeneous regions in thymic lobules and fulfilling an important role during specific stages of T-cell maturation. The process starts when bone marrow–derived lymphocyte precursors arrive at the outer cortical region of the thymic gland and begin to mature into functional T lymphocytes that will finally exit the thymus and populate the peripheral lymphoid organs. During their journey inside the thymus, thymocytes must interact with stromal cells (and their soluble products) and extracellular matrix proteins to receive appropriate signals for survival, proliferation and differentiation. The crucial components of the thymus microenvironment and their complex interactions during the T-cell maturation process with the objective of contributing to a better understanding of the function of the thymus as well as assist in the search for new therapeutic approaches to improve the immune response in various pathological conditions are summarized here.  相似文献   

17.
The thymus produces self-tolerant functionally competent T cells. This process involves the import of multipotent haematopoietic progenitors that are then signalled to adopt the T cell fate. Expression of T cell-specific genes, including those encoding the T cell receptor (TCR), is followed by positive and negative selection and the eventual export of mature T cells. Significant progress has been made in elucidating the signals that direct progenitor cell trafficking to, within and out of the thymus. These advances are the subject of this Review, with a particular focus on the role of reciprocal cooperative and regulatory interactions between TCR- and chemokine receptor-mediated signalling.  相似文献   

18.
Nedjic J  Aichinger M  Klein L 《Autophagy》2008,4(8):1090-1092
During T cell development in the thymus, scanning of peptide/major histocompatibility (MHC) molecule complexes on the surface of thymic epithelial cells ensures that only useful (self-MHC restricted) and harmless (self-tolerant) thymocytes survive. In recent years, a number of distinct cell-biological features of thymic epithelial cells have been unraveled that may have evolved to render these cells particularly suited for T cell selection, e.g., cortical epithelial cells use unique proteolytic enzymes for the generation of MHC/peptide complexes, whereas medullary epithelial cells "promiscuously" express otherwise tissue-restricted self-antigens. We recently showed that macroautophagy in thymic epithelial cells contributes to CD4 T cell selection and is essential for the generation of a self-tolerant T cell repertoire. We propose that the unusually high constitutive levels of autophagy in thymic epithelial cells deliver endogenous proteins to MHC class II molecules for both positive and negative selection of developing thymocytes.  相似文献   

19.
20.
Developing thymocytes undergo a rigorous selection process to ensure that the mature T cell population expresses a T cell receptor (TCR) repertoire that can functionally interact with major histocompatibility complexes (MHC). Over 90% of thymocytes fail this selection process and die. A small number of macrophages within the thymus are responsible for clearing the large number of dying thymocytes that must be continuously cleared. We studied the capacity of thymic macrophages to clear apoptotic cells under acute circumstances. This was done by synchronously inducing cell death in the thymus and then monitoring the clearance of apoptotic thymocytes. Interestingly, acute cell death was shown to recruit large numbers of CD11b+ cells into the thymus. In the absence of a minor CSF-1 dependent population of macrophages, the recruitment of these CD11b+ cells into the thymus was greatly reduced and the clearance of apoptotic cells was disrupted. To assess a possible role for the CD11b+ cells in the clearance of apoptotic cells, we analyzed mice deficient for eosinophils and mice with defective trafficking of neutrophils. Failure to attract either eosinophils or neutrophils to the thymus resulted in the impaired clearance of apoptotic cells. These results suggested that there is crosstalk between cells of the innate immune system that is necessary for maximizing the efficiency of apoptotic cell removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号