首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biogenesis of chlorophyll-binding proteins under iron stress has been investigated in vivo in a chlN deletion mutant of Synechocystis sp. PCC 6803. The chlN gene encodes one subunit of the light-independent protochlorophyllide reductase. The mutant is unable to synthesize chlorophyll in darkness, causing chlorophyll biosynthesis to become light dependent. When the mutant was propagated in darkness, essentially no chlorophyll and photosystems were detected. Upon return of the chlN deletion mutant to light, 77 K fluorescence emission spectra and oxygen evolution of greening cells under iron-sufficient or-deficient conditions were measured. The gradual blue shift of the photosystem I (PS I) peak upon greening under iron stress suggested the structural alteration of newly synthesized PS I. Furthermore, the rate of biogenesis of PS II was delayed under iron stress, which might be due to the presence of IsiA.  相似文献   

2.
3.
4.
Functional features of Scenedesmus obliquus: wild type 276–6 strain (WT) and its two mutants reported as photosystem I‐deficient (mutant 56.80) and photosystem II‐deficient (mutant 57.80) were characterized. Algae were cultured aseptically under continuous light or in darkness on mineral bold basal medium (BBM), yeast extract‐enriched BBM and yeast extract to evaluate the physiology of algal cells under photoautotrophic, mixotrophic and heterotrophic conditions. Growth, superoxide dismutase activity and photosynthetic parameters, including polyphasic fluorescence rise during the first seconds of chlorophyll a illumination (OJIP), were analyzed to find relationships between the photosynthetic/respiratory activity of the cells, occurrence of oxidative stress and trophic conditions applied to PSs‐deficient algae. Despite the highest superoxide dismutase activity, indicating the presence of oxidative stress, mixotrophic conditions appeared to be optimal for S. obliquus WT and mutant strains kept in non‐aerated cultures. OJIP analysis indicated that in mutant 56.80 part of photosystem (PS) I was functional and in mutant 57.80 residual PS II activity was found.  相似文献   

5.
Water stress retards accumulation of chlorophyll and chlorophylla/b protein complex during greening of barley seedlings in light.The rate of 2,6-dichlorophenol indophenol (DCPIP) photoreductionin isolated chloroplast which decreases under water stress isenhanced significantly in the presence of electron donors, diphenylcarbazide (DPQ) and Mn2+. Under water stress, the decrease ofthe rate of oxygen evolution measured in continuous white lightwas 40–73% and that of oxygen uptake (as a measure ofelectron transport through PS I from reduced DCPIP) was onlyabout 20%. During greening, under water stress, (i) a differentialinhibition of PS II biosynthesis as compared to PS I occurs,(ii) the site of electron donation by DPC seems to be closerto the reaction center ofPS II, (iii) the oxidizing side ofPS II near the oxygen-evolving system is affected maximallyby water stress. (Received March 11, 1980; Accepted November 13, 1980)  相似文献   

6.
The light-independent pathway of chlorophyll synthesis which occurs in some lower plants and algae is still largely unknown. We have characterized a chloroplast mutant, H13, of Chlamydomonas reinhardtii which is unable to synthesize chlorophyll in the dark and is also photosystem I deficient. The mutant has a 2.8 kb deletion as well as other rearrangements of its chloroplast genome. By performing particle gun mediated chloroplast transformation of H13 with defined wild-type chloroplast DNA fragments, we have identified a new chloroplast gene, chlN, coding for a 545 amino acid protein which is involved in the light-independent accumulation of chlorophyll, probably at the step of reduction of protochlorophyllide to chlorophyllide. The chlN gene is also found in the chloroplast genomes of liverwort and pine, but is absent from the chloroplast genomes of tobacco and rice.  相似文献   

7.
The formation of chlorophyll, cytochrome f, P-700, ribulose bisphosphate carboxylase as well as photosynthesis and Hill reaction activities were tested during the light-dependent greening process of the Chlorella fusca mutant G 10. Neither chlorophyll nor protochlorophyllide was detected in the darkgrown cells. When transferred to light the mutant cells developed chlorophyll and established its photosynthetic capacity after a short lag phase. In the in vivo absorption spectra a spectral shift of the red absorption peak position from 674 to 680 nm was indicated during the first 3 h of greening. Cytochrome f was already present in the dark-grown cells, but during the greening phase a threefold increase in the cytochrome f content could be seen. At the early stages of greening a characteristic primary oscillation in the content of cytochrome f was observed. P-700 was lacking in the dark and during the first 30 min of illumination. From the first to the second h of light a forced synthesis of P-700 took place and the time-course curve for the ratios of P-700/chlorophyll rose to a sharp maximum. The synthesis of P-700 started together with photosystem I activity and showed similar kinetics. We found the simultaneous appearance of photosystem II, photosystem I, and photosynthetic activities 30 min after the beginning of the illumination. Based on chlorophyll content they attained maximum activity after 2 h of light, but at this time photosystem I capacity proved to be remarkably higher than photosynthetic and photosystem II activities. Highest carboxylase activity existed in darkgrown cells. During the greening process the activity of the enzyme decreased continuously. After 2 h of illumination chlorophyll synthesis partially served to increase the size of the photosynthetic unit, which consequently led to a decrease in the light energy needed to saturate photosynthesis and also to a decrease of photosynthetic rate based on chlorophyll content.Abbreviations Chl chlorophyll - Cyt f cytochrome f - DPIP 2,6-dichlorophenolindophenol - EDTA ethylenediaminetetraacetic acid - GSH glutathione - LH light-harvesting - PS photosystem - RuBP ribulose bisphosphate  相似文献   

8.
Liu XG  Zhao JJ  Wu QY 《FEBS letters》2005,579(21):4571-4576
Inactivation of the chlN gene in Synechocystis sp. PCC 6803 resulted in no chlorophyll and photosystems when the mutant was grown in darkness, providing an in vivo system to study the structure and function of phycobilisomes (PBSs). The effects of hydrogen peroxide (H2O2) and metal ions on the mutant PBSs in vivo were investigated by low temperature fluorescence emission measurement. H2O2 induced an obvious disassembly of the cores of PBSs and interruption of energy transfer from allophycocyanin to the terminal emitter. Among many metal ions only silver induced disassembly of the cores of PBSs. Our results demonstrated for the first time that the cores of PBSs act as targets in vivo for oxidative stress or silver induced damage.  相似文献   

9.
In this study the photoinhibition of photosystems (PS) I and II caused by exposure to high intensity light in oat (Avena sativa, var Prevision) is measured by the emission of chlorophyll fluorescence in intact leaves adapted to darkness. The maximal quantum yield of PS II was lower in plants grown under high light intensity than in plants grown under low intensity, which indicates that PS II is photoinhibited by such conditions. PS I was more stable than PS II in plants exposed to strong light for a moderate time (five photoperiods) since the oxidised plastoquinone pool size under far-red (FR) light was similar in plants grown under high light intensity to plants grown under low intensity, probably as a result of the cyclic electron flow around PS I being stimulated in response to high light intensity. However, over longer times (10 photoperiods) the PS I was photoinhibited, since the oxidised plastoquinone pool size under FR light increased as a consequence of the decrease in PS I activity caused by high light intensity. This practical is intended for advanced students of plant biochemistry and plant physiology.  相似文献   

10.
L B Smart  S L Anderson    L McIntosh 《The EMBO journal》1991,10(11):3289-3296
We describe the first complete segregation of a targeted inactivation of psaA encoding one of the P700-chlorophyll a apoproteins of photosystem (PS) I. A kanamycin resistance gene was used to interrupt the psaA gene in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Selection of a fully segregated mutant, ADK9, was performed under light-activated heterotrophic growth (LAHG) conditions; complete darkness except for 5 min of light every 24 h and 5 mM glucose. Under these conditions, wild-type cells showed a 4-fold decrease in chlorophyll (chl) per cell, primarily due to a decrease of PS I reaction centers. Evidence for the absence of PS I in ADK9 includes: the lack of EPR (electron paramagnetic resonance) signal I, from P700+; undetectable P700-apoprotein; greatly reduced whole-chain photosynthesis rates; and greatly reduced chl per cell, resulting in a turquoise blue phenotype. The PS I peripheral proteins PSA-C and PSA-D were not detected in this mutant. ADK9 does assemble near wild-type levels of functional PS II per cell, evidenced by: EPR signal II from YD+; high rates of oxygen evolution with 2,6-dichloro-p-benzoquinone (DCBQ), an electron acceptor from PS II; and accumulation of D1, a PS II core polypeptide. The success of this transformation indicates that this cyanobacterium may be utilized for site-directed mutagenesis of the PS I core.  相似文献   

11.
The light harvesting and photosynthetic characteristics of a chlorophyll-deficient mutant of cowpea (Vigna unguilata), resulting from a single nuclear gene mutation, are examined. The 40% reduction in total chlorophyll content per leaf area in the mutant is associated with a 55% reduction in pigment-proteins of the light harvesting complex associated with Photosystem II (LHC II), and to a lesser extent (35%) in the light harvesting complex associated with Photosystem I (LHC I). No significant differences were found in the Photosystem I (PS I) and Photosystem II (PS II) contents per leaf area of the mutant compared to the wildtype parent. The decreases in the PS I and PS II antennae sizes in the mutant were not accompanied by any major changes in quantum efficiencies of PS I and PS II in leaves at non-saturating light levels for CO2 assimilation. Although the chlorophyll deficiency resulted in an 11% decrease in light absorption by mutant leaves, their maximum quantum yield and light saturated rate of CO2 assimilation were similar to those of wildtype leaves. Consequently, the large and different decreases in the antennae of PS II and PS I in the mutant are not associated with any loss of light use efficiency in photosynthesis.Abbreviations LHC I, LHC II light harvesting chlorophyll a/b protein complexes associated with PS I and PS II - A820 light-induced absorbance change at 820 nm - øPS I, øPS II relative quantum efficiencies of PS I and PS II photochemistry  相似文献   

12.
13.
A brief pulse of red light accelerates chlorophyll accumulation upon subsequent transfer of dark-grown tomato (Lycopersicon esculentum) seedlings to continuous white light. Such potentiation of greening was compared in wild type and an aurea mutant W616. This mutant has been the subject of recent studies of phytochrome phototransduction; its dark-grown seedlings are deficient in phytochrome, and light-grown plants have yellow-green leaves. The rate of greening was slower in the mutant, but the extent (relative to the dark control) of potentiation by the red pulse was similar to that in the wild type. In the wild type, the fluence-response curve for potentiation of greening indicates substantial components in the VLF (very low fluence) and LF (low fluence) ranges. Far-red light could only partially reverse the effect of red. In the aurea mutant, only red light in the LF range was effective, and the effect of red was completely reversed by far-red light. When grown in total darkness, aurea seedlings are also deficient in photoconvertible PChl(ide). Upon transfer to white light, the aurea mutant was defective in both the abundance and light regulation of the light-harvesting chlorophyll a/b binding polypeptide(s) [LHC(II)]. The results are consistent with the VLF response in greening being mediated by phytochrome. Furthermore, the data support the hypothesis that light modulates LHC(II) levels through its control of the synthesis of both chlorophyll and its LHC(II) apoproteins. Some, but not all, aspects of the aurea phenotype can be accounted for by the deficiency in photoreception by phytochrome.  相似文献   

14.
Although mitochondrial alternative oxidase(AOX)has been proposed to play essential roles in high light stress tolerance,the effects of AOX on chlorophyll synthesis are unclear.Previous studies indicated that during greening,chlorophyll accumulation was largely delayed in plants whose mitochondrial cyanide-resistant respiration was inhibited by knocking out nuclear encoded AOX gene.Here we show that this delay of chlorophyll accumulation was more significant under high light condition.Inhibition of cyanide-resistant respiration was also accompanied by the increase of plastid NADPH/NADP~+ratio,especially under high light treatment which subsequently blocked the import of multiple plastidial proteins,such as some components of the photosynthetic electron transport chain,the Calvin-Benson cycle enzymes and malate/oxaloacetate shuttle components.Over expression of AOXla rescued the aoxla mutant phenotype,including the chlorophyll accumulation during greening and plastidial protein import.It thus suggests that light intensity affects chlorophyll synthesis during greening process by a metabolic signal,the AOX-derived plastidial NADPH/NADP~+ratio change.And our results thus revealed a molecular mechanism of chloroplast-mitochondria interactions.  相似文献   

15.
Using 77 K chlorophyll a (Chl a) fluorescence spectra in vivo, the development was studied of Photosystems II (PS II) and I (PS I) during greening of barley under intermittent light followed by continuous light at low (LI, 50 μmol m−2 s−1) and high (HI, 1000 μmol m−2 s−1) irradiances. The greening at HI intermittent light was accompanied with significantly reduced fluorescence intensity from Chl b excitation for both PS II (F685) and PS I (F743), in comparison with LI plants, indicating that assembly of light-harvesting complexes (LHC) of both photosystems was affected to a similar degree. During greening at continuous HI, a slower increase of emission from Chl b excitation in PS II as compared with PS I was observed, indicating a preferred reduction in the accumulation of LHC II. The following characteristics of 77 K Chl a fluorescence spectra documented the photoprotective function of an elevated content of carotenoids in HI leaves: (1) a pronounced suppression of Soret region of excitation spectra (410–450 nm) in comparison with the red region (670–690 nm) during the early stage of greening indicated a strongly reduced excitation energy transfer from carotenoids to the Chl a fluorescing forms within PS I and PS II; (2) changes in the shape of the excitation band of Chl b and carotenoids (460–490 nm) during greening under continuous light confirmed that the energy transfer from carotenoids to Chl a within PS II remained lower as compared with the LI plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Transformation of protochlorophyllide forms in etiolated barley seedlings and biogenesis of photosynthetic apparatus in greening leaves of 7-day-old etiolated barley seedlings (Hordeum vulgare L.) were studied under the inhibition of energy processes during illumination. Repression of electron transport between photosystem 2 and 1 (PS2 and PS1, respectively) with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron) inhibited the photochemical activity of PS2 but did not affect chlorophyll biosynthesis and ATP content in leaves compared to the control. Inhibition of mitochondrial electron transport with sodium azide increased relative content of nonphotoactive protochlorophyllide in etiolated leaves, decreased the content of ATP, chlorophylls, and carotenoids and completely suppressed the functional activity of PS 2. The inhibitor of glycolysis sodium fluoride affected all the parameters even more strongly. We observed synchronism in the accumulation of chlorophylls and carotenoids during greening for all inhibitor variants other than fluoride (correlation coefficient, r, equal to 0.98, 0.97, 0.97, and 0.47 with the significance level of 0.01; 0.015; 0.015, and 0.27 for control, diuron, azide, and sodium fluoride, respectively). The change in chlorophyll content under the influence of inhibitors positively correlated with the amount of ATP in the leaf tissue (for 24 h greening, r = 0.97 with significance level of 0.015). We suggest that sources of ATP involved in the synthesis of chlorophyll during greening of etiolated barley seedlings are mostly of non-plastid origin.  相似文献   

17.
Thylakoid formation1 protein (Thf1) is a multifunctional protein that is conserved in all photosynthetic organisms. In this study, we used the model cyanobacterium Synechococcus sp. PCC7942 (hereafter Synechococcus) to show that the level of Thf1 is altered in response to various stress conditions. Although this protein has been reported to be involved in thylakoid formation, the thylakoid membrane in the thf1 deletion strain (ΔThf1) was not affected. Compared with the WT, ΔThf1 showed reduced PS II activity, with increased levels of D1 under high light (HL) conditions, which was resulted from blocked D1 degradation by the FtsH protease and thus inhibits PS II repair. PS I was found to be more seriously affected than PS II in ΔThf1, even under low light conditions, suggesting that PS I damage could be the primary effect of thf1 deletion in Synechococcus. Further analysis revealed that the ΔThf1 mutant had a lower PS I subunit content and lower PS I stability under HL conditions. Further sucrose gradient fractionation of the membrane protein complexes and crosslinking and immunoblot analysis indicated that Thf1 interacts with PS I. Together, our results reveal that Thf1 interacts with PS I and thereby stabilizes PS I in Synechococcus.  相似文献   

18.
The chlorophyll a antenna of photosystems I and II were each isolated after detergent treatment by gel electrophoresis or sucrose gradient centrifugation from a b-less mutant of barley grown in daylight and from wildtype barley developed in intermittent light. We identified each fraction by both its electrophoretic position and PS I activity (P700 content) in the case of the mutant, and by both PS I and PS II activity (DCIP reduction from DPC) in the light-limited plants. The proportion of Chl a in each photosystem was estimated from the amount in each gel or sucrose gradient band, and from addition of the areas under the absorption spectra (650–710 nm) of each fraction to match the spectrum of the solubilized thylakoids. The latter method was possible because the spectrum (77 K) of each fraction was unique; in the mutant about 70% of chlorophyll is associated with PS I and 30% with PS II. In the light-limited plants, the reverse is true with nearly 70% associated with PS II. RESOL analyses of both absorption and fluorescence emission spectra of all isolated fractions indicated an abnormal arrangement of antenna chlorophyll molecules in the light-limited, developing membranes even though their reaction centers are fully functional.Abbreviations DCIP dichlorophenolindophenol - DOC deoxycholate - DPC diphenylcarbazide - DL daylight - ImL intermittent light - LHC light-harvesting Chl a/b protein complex - PAGE polyacrylamide gel electrophoresis DPB-CIW No. 778  相似文献   

19.
Short-term responses of Photosystem I to heat stress   总被引:11,自引:0,他引:11  
When 23°C-grown potato leaves (Solanum tuberosum L.) were exposed for 15 min to elevated temperatures in weak light, a dramatic and preferential inactivation of Photosystem (PS) II was observed at temperatures higher than about 38°C. In vivo photoacoustic measurements indicated that, concomitantly with the loss of PS II activity, heat stress induced a marked gas-uptake activity both in far-red light (>715 nm) exciting only PS I and in broadband light (350–600 nm) exciting PS I and PS II. In view of its suppression by nitrogen gas and oxygen and its stimulation by high carbon-dioxide concentrations, the bulk of the photoacoustically measured gas uptake by heat-stressed leaves was ascribed to rapid carbon-dioxide solubilization in response to light-modulated stroma alkalization coupled to PS I-driven electron transport. Heat-induced gas uptake was observed to be insensitive to the PS II inhibitor diuron, sensitive to the plastocyanin inhibitor HgCl2 and saturated at a rather high photon flux density of around 1200 E m–2 s–1. Upon transition from far-red light to darkness, the oxidized reaction center P700+ of PS I was re-reduced very slowly in control leaves (with a half time t1/2 higher than 500 ms), as measured by leaf absorbance changes at around 820 nm. Heat stress caused a spectacular acceleration of the postillumination P700+ reduction, with t1/2 falling to a value lower than 50 ms (after leaf exposure to 48°C). The decreased t1/2 was sensitive to HgCl2 and insensitive to diuron, methyl viologen (an electron acceptor of PS I competing with the endogenous acceptor ferredoxin) and anaerobiosis. This acceleration of the P700+ reduction was very rapidly induced by heat treatment (within less than 5 min) and persisted even after prolonged irradiation of the leaves with far-red light. After heat stress, the plastoquinone pool exhibited reduction in darkness as indicated by the increase in the apparent Fo level of chlorophyll fluorescence which could be quenched by far-red light. Application (for 1 min) of far-red light to heat-pretreated leaves also induced a reversible quenching of the maximal fluorescence level Fm, suggesting formation of a pH gradient in far-red light. Taken together, the presented data indicate that PS I responded to the heat-induced loss of PS II photochemical activity by catalyzing an electron flow from stromal reductants. Heat-stress-induced PS I electron transport independent of PS II seems to constitute a protective mechanism since block of this electron pathway in anaerobiosis was observed to result in a dramatic photoinactivation of PS I.Abbreviations PFD photon flux density - PS Photosystem - Apt and Aox amplitude of the photothermal and photobaric components of the photoacoustic signal, respectively - P700 reaction center pigment of PS I - Fo and Fm initial and maximal levels of chlorophyll fluorescence, respectively - Fv=Fm Fo-variable chlorophyll fluorescence - QA primary (stable) electron acceptor of PS II - DCMU (diuron) 3-(3,4-dichlorophenyl)-1,1-dimethylurea - Cyt cytochrome  相似文献   

20.
Deletion of the genes for four or five small Cab-like proteins (SCPs) in photosystem (PS) I-less and PS I-less/PS II-less strains of Synechocystis sp. PCC 6803 caused a large decrease in the chlorophyll and carotenoid content of the cells without accumulation of early intermediates in the chlorophyll biosynthesis pathway, suggesting limited chlorophyll availability. The PS II/PS I ratio increased upon deletion of multiple SCPs in a wild type background, similar to what is observed in the presence of subsaturating concentrations of gabaculin, an inhibitor of an early step in the tetrapyrrole biosynthesis pathway. Upon deletion of multiple SCPs, neither 77 K fluorescence emission properties of phycobilisomeless thylakoids from the PS I-less/PS II-less strain nor the energy trapping efficiency of PS II were affected, indicating that under steady-state conditions SCPs do not bind much chlorophyll and do not serve as PS II antenna. Under conditions where protochlorophyllide reduction and thus chlorophyll synthesis were inhibited, chlorophyll disappeared quickly in a mutant lacking all five SCPs. This implies a role of SCPs in stabilization of chlorophyll-binding proteins and/or in reuse of chlorophylls. Under these conditions of inhibited reduction of protochlorophyllide, the accumulation kinetics of this intermediate were greatly altered in the absence of the five SCPs. This indicates an alteration of tetrapyrrole biosynthesis kinetics by SCPs. Based on this and other evidence, we propose that SCPs bind carotenoids and transiently bind chlorophyll, aiding in the supply of chlorophyll to nascent or reassembling photosynthetic complexes, and regulate the tetrapyrrole biosynthesis pathway as a function of the demand for chlorophyll.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号