首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type I-trimer collagen, isolated from biopsy fragments of ductal infiltrating carcinomas, was used as a substrate for human breast carcinoma cells in long-term culture to monitor growth rate, morphological appearance and actin organization in comparison with normal type I collagen and plain plastic. After 11 days of culture, type I-trimer collagen exerts a more pronounced effect on cell proliferation, leading to a final increment of cell population of 35% versus regular type I substrate. Furthermore, type I-trimer collagen induces cell motility, as testified by morphological appearance and actin immunofluorescence test. On the basis of the in vitro results, it is postulated that in vivo the stromal areas containing trimer collagen, rather than repressing invasive growth, may provide a more suitable environment for tumor proliferation and spreading-out with respect to regular type I.  相似文献   

2.
It has been suggested that dermal collagen fibrils with 67-nm periodicity consist of hybrids of type I and type III collagens. This is based on the assumption that all these banded fibrils are coated with type III collagen regardless of their diameter. However, conclusive evidence for this form of hybridization is lacking. In order to clarify this problem dermal collagen fibrils were disrupted into microfibrils using 8 M urea. Single and double indirect immunoelectron microscopy showed type III collagen at the periphery of intact collagen fibrils but no labeling with type I collagen antibodies, suggesting that the epitopes for this collagen were masked. Disrupted collagen fibrils revealed type I collagen throughout the fibril except for the periphery which was coated with type III collagen. Almost no type III collagen was noted in the interior of the collagen fibrils. Since type III collagen is present only at the periphery it suggests that this collagen has a different role than type I collagen and may have a regulatory function in fibrillogenesis.  相似文献   

3.
Elongational flow techniques have been used to investigate the birefringent response of monodisperse type IV collagen in dilute solution and the results compared with type I. collagen. A four-roll mill apparatus was used to characterize the solutions at low strain rates, $\dot{\varepsilon}$ ? 300 s?1. The birefringence is nonlocalized and rises gradually to a plateau value, in accordance with rigid-rod behavior. The gradients of the tangent to the curves at zero strain rate are estimated for types IV and I collagen. The concentrations of the solutions used were in the dilute to semidilute regimes. Using a value of 300 nm for the length of type I collagen, values of 364–408 nm were calculated for the length of the type IV collagen molecule, depending on the concentration regime chosen, which is consistent with biochemical predictions based on a rigid molecule. The results imply that the behavior of type IV collagen molecules in solution is similar to type I collagen, despite the presence of several sequence interruptions in the type IV helix. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
Collagen biosynthesis was assayed in tissue fragments and in cultured neoplastic cells derived from primary ductal infiltrating carcinoma of the human breast. Neoplastic cells "in vitro" produce 3-4% of collagen with respect to the high molecular weight protein fraction. The neosynthesized collagen is mainly composed of alpha 1 (I) chains, which may be assembled as homotrimer molecules, as indicated by their resistance to pepsin digestion. In tissue fragments, (where neoplastic and host stromal cells coexist), the collagen percentage increases up to 15-20% and more than one polypeptide chain is produced. Present data suggest that neoplastic cells "in vivo" contribute to the deposition of collagen components, actively synthesizing a certain amount of the type I-trimer, which is a significant component of the "scirrhous" stroma (Minafra et al.1984; Pucci Minafra et al, 1985). This phenomenon is interpreted as one of the numerous interrelationships occurring at the cell-matrix interface during the malignant growth.  相似文献   

5.
The FBJ osteosarcoma (a virus-induced osteosarcoma named after its discoverers, Finkel, Biskis, and Jinkins) contains an extensive extracellular matrix. Collagens were extracted by digestion with pepsin in dilute acetic acid from tumors grown in lathyritic mice and fractionated by differential salt precipitation, yielding five fractions. Fraction 1 (precipitated at acidic 0.7 M and neutral 2.0 M NaCl) gave rise mainly to alpha 1(III) chain on phosphocellulose column chromatography. The alpha 1(III) chain was identified by its typical behavior on interrupted electrophoresis and analysis of the CNBr-cleaved peptides. The alpha 1(III) chain of the FBJ tumor had a high content of hydroxylysine and neutral saccharide. Fraction 2 (precipitated at acidic 0.7 M and neutral 4.5 M NaCl) yielded alpha 1(I) and alpha 2(I) chains on the phosphocellulose column from which alpha 1(I) was eluted as a broad peak, conceivably reflecting a high content of hydroxylysine and neutral saccharide. Fraction 4 (precipitated at acidic 1.2 M and neutral 4.5 M NaCl) yielded type V collagen, which also featured an exceptionally high content of neutral saccharide (Yamagata, S., et al. (1982) Biochem. Biophys. Res. Commun. 105, 1208-1214). The proportions of type I, type I trimer, type III, and type V collagens extracted by pepsin digestion from FBJ tumor were calculated to be 33, 29, 26, and 12%, respectively. The FBJ tumor is free from invasion by blood vessels, shows no deposition of calcium, and thus has the appearance of cartilage. But type II collagen, a specific gene product of cartilage, could not be identified in any of the fractions analyzed. Contrary to its appearance, collagen type analyses indicate that FBJ osteosarcoma is literally induced from osteogenic cells.  相似文献   

6.
A study was carried out on collagen chains of FBJ virus-induced osteosarcoma. Collagens were extracted from pepsin-digested tissues and fractionated by differential salt precipitation. An acidic 0.7 M NaCl precipitate contained type I, type I trimer and/or type III collagens. Collagen fractions precipitated at acidic 1.2 M NaCl showed features characteristic of type V collagen consisting of three chains (mol. weights of which were 120K, 110K and 100K daltons). None of these chains, however, was identical to any of the B, C or A chains reported by Sage et al. in 1979 (1), judging from amino acid composition, cyanogen bromide cleavage and phosphocellulose chromatography data.  相似文献   

7.
The binding of collagens and fragments of type I collagen to heparin was studied by gel electrophoresis and affinity chromatography. Samples bound in 150 mM NaCl/10 mM Hepes (pH6.5) were eluted with 2 M NaCl, 6 M urea, or a linear gradient of 0.15–1.0 M NaCl. The triple-helical conformation was shown to be essential for binding. The vertebrate collagenase-generated C-terminal fragment, TCB was shown to have greater binding affinity for heparin than the N-terminal TCA fragment. Both type II collagen and the NC1 domain of type IV collagen bound to heparin, whereas pepsin-solubilized tetrameric type IV failed to bind.  相似文献   

8.
A study has been done of the effect of neutral salts (NaCl and CaCl2) on the mechanism of type I collagen triple helix folding and unfolding in concentrated acetic acid solutions (2-8.8 M). It is shown that in these conditions, thermoabsorption and secondary structure change in heated solutions proceed in two consecutive stages. Salts exert a different destabilizing effect on different sites of the macromolecule, promoting the detection of a thermostable domain. The presence of a thermostable domain permits one to carry out reversible denaturation of collagen and to study the mechanism of the triple helix folding. Proceeding from the mechanism of the triple helix folding, an assumption has been made on the localization of the thermostable domain and its biological role.  相似文献   

9.
Type I collagen is a fibril‐forming protein largely responsible for the mechanical stability of body tissues. The tissue level properties of collagen have been studied for decades, and an increasing number of studies have been performed at the fibril scale. However, the mechanical properties of collagen at the molecular scale are not well established. In the study presented herein, the persistence length of pepsin digested bovine type I collagen is extracted from the conformations assumed when deposited from solution onto two‐dimensional surfaces. This persistence length is a measure of the flexibility of the molecule. Comparison of the results for molecules deposited from different solvents allows for the study of the effect of the solutions on the flexibility of the molecule and provides insight into the molecule's behavior in situ. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 329–335, 2014.  相似文献   

10.
Classical Ehlers-Danlos syndrome (EDS) is characterized by skin hyperelasticity, joint hypermobility, increased tendency to bruise, and abnormal scarring. Mutations in type V collagen, a regulator of type I collagen fibrillogenesis, have been shown to underlie this type of EDS. However, to date, mutations have been found in only a limited number of patients, which suggests genetic heterogeneity. In this article, we report two unrelated patients with typical features of classical EDS, including excessive skin fragility, in whom we found an identical arginine-->cysteine substitution in type I collagen, localized at position 134 of the alpha1(I) collagen chain. The arginine residue is highly conserved and localized in the X position of the Gly-X-Y triplet. As a consequence, intermolecular disulfide bridges are formed, resulting in type I collagen aggregates, which are retained in the cells. Whereas substitutions of glycine residues in type I collagen invariably result in osteogenesis imperfecta, substitutions of nonglycine residues in type I collagen have not yet been associated with a human disease. In contrast, arginine-->cysteine substitutions in type II collagen have been identified in a variety of chondrodysplasias. Our findings show that mutations in other fibrillar collagens can be causally involved in classical EDS and point to genetic heterogeneity of this disorder.  相似文献   

11.
Binding of human monomeric type I collagen to platelets   总被引:1,自引:0,他引:1  
Interaction of platelets with subendothelial collagen is important in primary hemostasis and thrombosis. Although activation of platelets by collagen polymers has been widely investigated, only insufficient data are available concerning the binding of genetically distinct collagen types in their triple helical (monomeric) form to platelets. We report on the binding of 125I-labeled human type I collagen to platelets. The binding assay was performed at 20 degrees C in the presence of arginine in order to prevent polymerization of the collagen monomers. The binding of monomeric 125I-labeled human type I collagen is dose- and time-dependent, saturable and specific, since it is competitively inhibited by unlabeled type I collagen, but not by unlabeled human type V collagen. Scatchard analysis reveals a class of specific high affinity binding sites with a Kd of 2.5 X 10(-8) M. These results suggest that platelets interact with type I collagen through specific binding sites, and that there are various different binding sites on the platelet membrane for the genetically distinct collagen types.  相似文献   

12.
Intact monomeric type I collagen was purified from fetal bovine skin by a simple and time saving procedure. Saline precipitates of mixed skin collagens, in 4 M NaCl, were extracted with a limited volume of dilute acetic acid, taken in the proportion of 1 ml per g of original wet skin; NaCl in the precipitate was not removed by dialysis. The salt concentration in the extraction medium in the above conditions, selectively solubilized type I collagen.  相似文献   

13.
Osteogenin, an extracellular matrix component of bone, is a heparin binding differentiation factor that initiates endochondral bone formation in rats when implanted subcutaneously with an insoluble collagenous matrix. We have examined the interaction of osteogenin with various extracellular matrix components including basement membranes. Osteogenin, purified from bovine bone, binds avidly to type IV collagen and to a lesser extent to both type I and IX collagens. Osteogenin binds equally well to both native and denatured type IV collagen. Both alpha 1 and alpha 2 chains of type IV collagen are recognized by osteogenin. Osteogenin binds to a collagen IV affinity column, and is eluted by 6.0 M urea with 1 M NaCl, pH 7.4, and the eluate contained the osteogenic activity as demonstrated in vivo. Binding of osteogenin to collagen IV is not influenced by either laminin or fibronectin. These results imply that osteogenin binding to extracellular matrix components including collagens I and IV and heparin may have physiological relevance, and such interactions may modulate its local action.  相似文献   

14.
Human skin has previously been shown to contain at least two genetically distinct types of collagen, type I and III. Here the presence of an additional form of collagen, α1(I)-trimer, is demonstrated. Skin collagen was solubilized by limited pepsin digestion and then fractionated by sequential precipitation with 1.5, 2.5, and 4.0 m NaCl at pH 7.4. The α-chain subunits of collagen were isolated by gel filtration and carboxymethylcellulose chromatography under denaturing conditions. The 1.5 and 2.5 m NaCl precipitates contained predominantly type I collagen with a chain composition of [α1(I)]2α2. In the 1.5 m precipitate a small amount of type III collagen was also recovered. In contrast, the 4.0 m NaCl fraction consisted almost exclusively of α-chains which on the basis of cyanogen bromide peptide mapping were shown to be identical with α1(I). The amino acid composition of these chains was also similar to that of α1(I), except that hydroxylysine was increased and lysine was correspondingly decreased. The content of 3-hydroxyproline was also increased. These results suggest that the α-chains in α1(I)-trimer are the same gene products as α1 in type I collagen, but that the co-translational or post-translational hydroxylation of lysyl residues is more extensive in α1(I)-trimer. Estimation of the quantitative amounts of α1(I)-trimer indicated that this collagen accounts for less than 5% of the total collagen in adult human skin. It is speculated, however, that α1(I)-trimer collagen may play a role in the stability and tensile strength of normal human skin and other tissues, and defects in its biochemistry might be associated with diseases of connective tissue.  相似文献   

15.
Suspensions of collagen fibrils of different size were prepared from solutions of radioactive tropocollagen type I by either differential centrifugation or differential incubation at elevated temperature. The fractions were compared with respect to their ability to stimulate human blood platelet aggregation in plasma, their binding to human platelets, and their morphology, as seen in the electron microscope. Although small particles with a sedimentation coefficient as low as 4.5 S bound to platelets, aggregation was not observed in the presence of collagen multimers and protofibrils without visible cross-bands in stained specimens. The onset of platelet-aggregating activity before the appearance of turbidity in collagen solutions incubated at elevated temperature is due to the formation of a few banded fibrils; this early onset and the fibrils do not appear in collagen solutions that have been ulctracentrifuged before incubation.  相似文献   

16.
The collagens are recognized by the alphaI domains of the collagen receptor integrins. A common structural feature in the collagen-binding alphaI domains is the presence of an extra helix, named helix alphaC. However, its participation in collagen binding has not been shown. Here, we have deleted the helix alphaC in the alpha(2)I domain and tested the function of the resultant recombinant protein (DeltaalphaCalpha(2)I) by using a real-time biosensor. The DeltaalphaCalpha(2)I domain had reduced affinity for type I collagen (430 +/- 90 nM) when compared with wild-type alpha(2)I domain (90 +/- 30 nM), indicating both the importance of helix alphaC in type I collagen binding and that the collagen binding surface in alpha(2)I domain is located near the metal ion-dependent adhesion site. Previous studies have suggested that the charged amino acid residues, surrounding the metal ion-dependent adhesion site but not interacting with Mg(2+), may play an important role in the recognition of type I collagen. Direct evidence indicating the participation of these residues in collagen recognition has been missing. To test this idea, we produced a set of recombinant alpha(2)I domains with mutations, namely D219A, D219N, D219R, E256Q, D259N, D292N, and E299Q. Mutations in amino acids Asp(219), Asp(259), Asp(292), and Glu(299) resulted in weakened affinity for type I collagen. When alpha(2) D219N and D292N mutations were introduced separately into alpha(2)beta(1) integrin expressed on Chinese hamster ovary cells, no alterations in the cell spreading on type I collagen were detected. However, Chinese hamster ovary cells expressing double mutated alpha(2) D219N/D292N integrin showed remarkably slower spreading on type I collagen, while spreading on type IV collagen was not affected. The data indicate that alpha(2)I domain binds to type I collagen with a different mechanism than to type IV collagen.  相似文献   

17.
Collagens of either soft connective or mineralized tissues are subject to continuous remodeling and turnover. Undesired cleavage can be the result of an imbalance between proteases and their inhibitors. Owing to their superhelical structure, collagens are resistant to many proteases and matrix metalloproteinases (MMPs) are required to initiate further degradation by other enzymes. Several MMPs are known to degrade collagens, but the action of MMP-12 has not yet been studied in detail. In this work, the potential of MMP-12 in recognizing sites in human skin collagen types I and III has been investigated. The catalytic domain of MMP-12 binds to the triple helix and cleaves the typical sites -Gly775-Leu776- in α-2 type I collagen and -Gly775-Ile776- in α-1 type I and type III collagens and at multiple other sites in both collagen types. Moreover, it was observed that the region around these typical sites contains comparatively less prolines, of which some have been proven to be only partially hydroxylated. This is of relevance since partial hydroxylation in the vicinity of a potential scissile bond may have a local effect on the conformational thermodynamics with probable consequences on the collagenolysis process. Taken together, the results of the present work confirm that the catalytic domain of MMP-12 alone binds and degrades collagens I and III.  相似文献   

18.
Type X collagen was extracted with 1 M NaCl and 10 mM dithiothreitol at neutral pH from fetal human growth plate cartilage and purified to homogeneity by gel filtration and anion-exchange chromatography. The purified protein migrates in SDS/polyacrylamide gels with an apparent Mr of 66,000 under reducing conditions, and as a high-Mr oligomer under non-reducing conditions. Purified collagenase digests most of the molecule; pepsin digestion at 4 degrees C decreases the Mr of the monomer to 53,000. A rabbit antiserum was raised against purified human type X collagen; the IgG fraction was specific for this collagen by criteria of ELISA and immunoblotting after absorption with collagen types I, II, VI, IX and XI. Immunohistological studies localized type X collagen exclusively in the zone of hypertrophic and calcifying cartilage.  相似文献   

19.
The distribution and synthesis of type I and type III collagens in the mouse molar tooth root have been investigated by correlating light and electron immunohistochemical data. Purified rabbit antibodies were raised against mouse type I and type III collagens and indirect immunoperoxidase procedures were used. In these conditions, predentin, pre-bone, and pre-acellular cementum were intensely immunostained for type I collagen. Both optic and ultrastructural data confirmed the presence of type I collagen at the epithelio-mesenchymal junction, but Hertwig's basement membranes remained unlabelled. The odontoblasts including the short polarized ones, osteoblasts, some cells of pulp mesenchyme and the perifollicular cells possessed type I collagen immunoreactivity in the rough endoplasmic reticulum (RER), Golgi complex and the secretory vesicles. Type III collagen immunoreactivity was strong in the perifollicular mesenchyme, light in the pulp mesenchyme and absent from the epithelio-mesenchymal junction, the predentin, pre-bone and pre-acellular cementum. Intracellular immunolabelling was detected at the ultrastructural level in the perifollicular cells by a faint homogeneous peroxidase deposit in the RER cisternae. Finally, these results, compared with previous biochemical and morphological data, represent the first dynamic aspect of collagens distribution and synthesis in the mouse molar root development. In terms of cell differentiation, our data also suggest that type III collagen synthesis does not occur during the odontoblast process of differentiation.  相似文献   

20.
The mRNA for type II collagen was purified from embryonic chick sternum or from purified sternal chondrocytes with guanidine thiocyanate as the extractant. Double-stranded cDNAs to procollagen mRNAs from sternum were synthesized and dC-tailed. After annealing with PstI-cleaved, dG-tailed pBR322, this DNA was used to transform Escherichia coli X1776. Transformed colonies were screened by colony hybridization to type I and II collagen cDNAs. Clones that preferentially hybridized to type II cDNA were characterized further. Four such cDNA clones, pCgII-2, 3, 10 and 12, with inserts of 400, 320, 260 and 750 bp, have been identified as type II collagen cDNA clones by several criteria, including their preference for hybridizing with type II rather than type I collagen mRNAs in hybrid-selected translation experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号