首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical modification of purified d-glucosaminate dehydratase (GADH) apoenzyme by N-ethyl-maleimide (NEM) and by 7-chloro-4-aminobenzo-2-oxa-1,3-diazole (NBDC1) resulted in the time- and concentration-dependent inactivation of the enzyme in each case. The inactivation followed pseudo-first-order kinetics and a double-logarithmic plot of the observed pseudo-first-order rate constant against reagent concentration proved evidence for an approximately first-order reaction, suggesting that the modification of a single cysteine residue per mole of enzyme resulted in inactivation. Amino acid analysis of the NEM-inactivated enzyme showed that three moles of cysteine residues among six moles per mole of subunit were modified under these conditions, therefore one of the three cysteine residues modified by NEM may be essential for activity. Pyridoxal 5′-phosphate (PLP) and D-glucosaminate (GlcNA) protected the enzyme against inactivation by NEM and NBDCI. The apoenzyme was inactivated by EDTA and activity of enzyme was restored by incubation with Mn2+ in the presence of PLP. Incubation of the EDTA-treated enzyme with NEM inhibited the restoration of activity. These results suggest that one of the cysteine residues of GADH may be chelated to a Mn2+ at or near the active site of GADH, contributing to formation of the active enzyme.  相似文献   

2.
The reaction of the phosphate residue transfer catalysed by histone kinase dependent on adenosine 3':5'-monophosphate (cyclic AMP) was studied. The phosphotransferase reaction was shown to obey the mechanism of ping-pong bi-bi type. After incubation of the catalytic subunit of histone kinase with [gamma-32P]ATP the incorporation of one mole of [32P]phosphage per mole of protein was observed. The tryptic [32P]phosphohistidine-containing peptide was isolated and its N-terminus and amino acid composition were determined. The 2',3'-dialdehyde derivative of ATP (oATP) was used as the affinity label for the catalytic subunit of cyclic-AMP-dependent histone kinase. The inhibitor formed an alidmine bond with epsilon-amino group of the lysine residue of the active site and was irreversibly bound to the enzyme after reduction by sodium borohydride with concurrent irreversible inactivation of the enzyme. After inactivation, about one mole of 14C-labelled inhibitor was incorporated per mole of the enzyme. ATP effectively protected the catalytic subunit of histone kinase against inactivation by oATP. Tryptic digestion of the enzyme-inhibitor complex led to the isolation of the 14C-labelled peptide of the active site of histone kinase. Basing on these results, the role of histidine and lysine residues in the active site of the catalytic subunit of histone kinase was suggested.  相似文献   

3.
Porcine pancreatic alpha-amylase I, a single 496 residue long polypeptide chain, contains 5 disulfide bridges and 2 free -SH groups. The conditions for specific blocking of native amylase either with radioactive N-ethyl maleimide or with labeled iodoacetic acid were determined. Under these conditions 2 moles of blocking reagent are incorporated per mole of amylase. [14C]-S-succinimido amylase was cleaved by CNBr and the resulting peptides were purified. Only one of them the CNBr 2 + 3 peptide (178 residues) was found labeled. Ts1 a 33-residue peptide containing the whole radioactivity was purified from the tryptic digest of this large fragment. After reduction and carboxymethylation Ts1A, (22 residues) was obtained which contains 2 moles of succinyl-Cys and one mole of CM-Cys per mole of peptide. Chymotryptic digestion of Ts1A yielded 2 equally labeled peptides: C1 (16 residues) and C2 (6 residues). Automated sequencing of both peptides and counting of the PTH-amino acids shows that the free cysteines are only 15 residues apart in the sequence.  相似文献   

4.
B Wolf  F Kalousek  L E Rosenberg 《Enzyme》1979,24(5):302-306
At least one arginine residue is essential for substrate binding in or near the active sites of propionyl CoA carboxylase (PCC) and beta-methylcrotonyl CoA carboxylase (beta MCC) in cultured human fibroblasts. This conclusion is based on studies of enzyme inhibition by phenylglyoxal, a reagent which specifically modifies arginine residues. Human fibroblast PCC both in extracts and in a 20-fold purified preparation was nearly completely protected from phenylglyoxal inhibition following incubation with propionyl CoA or ATP. It appears that a phosphate group from either ATP or the CoA moiety of propionyl CoA reacts with the essential arginine residue(s). beta MCC which was similarly inhibited by phenylglyoxal was protected by beta-methylcrotonyl CoA and ATP. Thus phenylglyoxal may be used to label specific arginine residues within the active sites of previously sequenced carboxylases.  相似文献   

5.
The rates of the ATPase [EC 3.6.1.3] reaction of the H-meromyosin-F-actin-relaxing protein system were measured in 2 mM MgCl2, 50mM KC1, and 10mM Tris-HC1 at pH 7.8 and 20 degrees in the presence and absence of 0.05-0.1 mM Ca2+ ions. The concentrations of H-meromyosin (HMM) and the F-actin-relaxing protein (F-A-PR) complex were 3.4 and 3 mg/ml, respectively, and the ATPase reaction was coupled with 4 mg/ml of pyruvate kinase [EC 2.7.1.40] and 1 or 20 mM phosphoenolpyruvate to regenerate ATP. The amount of ADP bound to HMM during the ATPase reaction was determined by measuring the amount of ADP remaining in the reaction mixture. The amount of ATP bound to HMM was determined by subtracting the amount of bound ADP from the total amount of nucleotides bound to HMM, which was measured by a rapid flow-dialysis method. The following results were obtained. 1. The ATPase activity of the HMM-F-A-RP system increased linearly with increase in the amount of ATP added, and was independent of the presence of 0.05 mM Ca2+, when the amount of ATP added was less than 1 mole/mole of HMM. In the presence of 0.05 mM Ca2+, the ATPase activity reached a maximal level when 1.2-1.5 mole of ATP was added per mole of HMM, and maintained this level even at 3 moles of added ATP/mole of HMM. In the presence of 3mM EGTA, the ATPase activity decreased with increase in the amount of ATP added, from 1.5 to 3 moles of ATP/mole of HMM, and reached the level of the HMM ATPase reaction at 3 moles of added ATP/mole of HMM. Similar results were observed when the concentration of HMM was maintained at 3.4 mg/ml and the concentration of the F-A-RP complex was decreased from 3 to 1 or 0.5 mg/ml.  相似文献   

6.
Tammam SD  Rochet JC  Fraser ME 《Biochemistry》2007,46(38):10852-10863
Succinyl-CoA:3-ketoacid CoA transferase (SCOT) transfers CoA from succinyl-CoA to acetoacetate via a thioester intermediate with its active site glutamate residue, Glu 305. When CoA is linked to the enzyme, a cysteine residue can now be rapidly modified by 5,5'-dithiobis(2-nitrobenzoic acid), reflecting a conformational change of SCOT upon formation of the thioester. Since either Cys 28 or Cys 196 could be the target, each was mutated to Ser to distinguish between them. Like wild-type SCOT, the C196S mutant protein was modified rapidly in the presence of acyl-CoA substrates. In contrast, the C28S mutant protein was modified much more slowly under identical conditions, indicating that Cys 28 is the residue exposed on binding CoA. The specific activity of the C28S mutant protein was unexpectedly lower than that of wild-type SCOT. X-ray crystallography revealed that Ser adopts a different conformation than the native Cys. A chloride ion is bound to one of four active sites in the crystal structure of the C28S mutant protein, mimicking substrate, interacting with Lys 329, Asn 51, and Asn 52. On the basis of these results and the studies of the structurally similar CoA transferase from Escherichia coli, YdiF, bound to CoA, the conformational change in SCOT was deduced to be a domain rotation of 17 degrees coupled with movement of two loops: residues 321-329 that bury Cys 28 and interact with succinate or acetoacetate and residues 374-386 that interact with CoA. Modeling this conformational change has led to the proposal of a new mechanism for catalysis by SCOT.  相似文献   

7.
Reaction of pigeon and rat liver fatty acid synthetases with phenylmethylsulphonyl fluoride at pH 7.0 results in rapid and complete loss of activity for fatty acid synthesis. Acetyl and malonyl transacylation, two reductions, dehydration and condensation-CO2 exchange reactions are not appreciably altered in the modified enzyme. However, the deacylation of palmityl CoA is completely inhibited. Complete inactivation results in the incorporation of about 1.9 moles of 14C-phenylmethylsulphonyl groups/mole of the enzyme complex. These results suggest that either two moles of a fatty acyl deacylase or two deacylases with different fatty acyl chain length specificities may be functional in the enzyme complex.  相似文献   

8.
In a complex medium with the energy source as the limiting nutrient factor and under anaerobic growth conditions, Streptococcus agalactiae fermented 75% of the glucose to lactic acid and the remainder to acetic and formic acids and ethanol. By using the adenosine triphosphate (ATP) yield constant of 10.5, the molar growth yield suggested 2 moles of ATP per mole of glucose from substrate level phosphorylation. Under similar growth conditions, pyruvate was fermented 25% to lactic acid, and the remainder was fermented to acetic and formic acids. The molar growth yield suggested 0.75 mole of ATP per mole of pyruvate from substrate level phosphorylation. Under aerobic growth conditions about 1 mole of oxygen was consumed per mole of glucose; about one-third of the glucose was converted to lactic acid and the remainder to acetic acid, acetoin, and carbon dioxide. Molar growth yields indicated 5 moles of ATP per mole of glucose. Estimates based on products of glucose degradation suggested that about one-half of the ATP was derived from substrate level phosphorylation and one-half from oxidative phosphorylation. Addition of 0.5 m 2,4-dinitrophenol reduced the growth yield to that occurring in the absence of oxygen. Aerobic pyruvate degradation resulted in 30% of the substrate becoming reduced to lactic acid and the remainder being converted to acetic acid and carbon dioxide, with small amounts of formic acid and acetoin. The molar growth yields and products found suggested that 0.70 mole of ATP per mole of pyruvate resulted from substrate level phosphorylation and 0.4 mole per mole of pyruvate resulted from oxidative phosphorylation.  相似文献   

9.
Using the isopiestic vapour pressure technique, the magnitudes of excess binding of water and NaCl per mole of twenty different poly-L-amino acid residues, respectively in the presence of different bulk molefractions (X2) of NaCl have been evaluated from the mathematical expressions for the Gibbs surface excesses. At certain high ranges of NaCl concentration, the plot of -Gamma1 (2) versus X1/X2 becomes linear, so that moles of water and NaCl, respectively bound per mole of amino acid residue can be evaluated. -Gamma(2)1 is the excess moles of H20 per mole of amino acid residue and X1 and X2 stand for mole fractions of the water and NaCl, respectively in the sample system. Also, using the integrated form of the Gibbs absorption equation, the values of standard free energy change (deltaG(0)) for the excess adsorption of NaCl per kg of poly-L-amino acids have been evaluated. These values are all positive as a result of positive excess hydration of polyamino acids. The standard free energy of excess hydration deltaG(0)hy (equal to -deltaG(0)) is negative due to spontaneous excess hydration of polyamino acid in the presence of a salt.  相似文献   

10.
Incubation of rabbit muscle lactate dehydrogenase in the presence of Mg[alpha-32p]ATP results in the incorporation of the label into the protein. The autophosphorylation reaction is strongly pH-dependent. The maximal phosphorylation is observed at pH 6.8 with 3-4 moles of phosphate bound per mole of tetrameric enzyme. The enzyme-phosphate complex is readily hydrolyzed by hydroxylamine.  相似文献   

11.
Transaldolase (Type III) from Candida utilis was found to be inactivated by tetranitromethane only in the presence of the substrates fructose 6-phosphate and sedoheptulose 7-phosphate. This reaction was prevented by the addition of erythrose 4-phosphate or glyceraldehyde 3-phosphate, which are known to accept dihydroxyacetone from the transaldolase-dihydroxyacetone complex, releasing free transaldolase. These results strongly suggest that tetranitromethane does not react with free transaldolase but only with the Schiff-base intermediate. After 1 min of incubation with the reagent at pH 6.0, 4 moles of nitroformate were produced per mole of inactivated enzyme. The modification, probably a nitration or an oxidation of certain amino acid residues of the complex by tetranitromethane, caused a dissociation of the dihydroxyacetone moiety from the complex without any recovery of the enzymatic activity. The fact that the reaction with tetranitromethane takes place only in the presence of substrates indicates that a substrate-mediated change of conformation occurs in transaldolase. Chemical and spectrophotometric evidence is presented showing that tetranitromethane did not modify tyrosine, cysteine, and tryptophan residues in the inactivated enzyme. From amino acid analyses it appears that histidine, serine, proline, methionine, tyrosine, and phenylalanine residues were not altered by this reagent. The possible mechanisms of modification of the transaldolasedihydroxyacetone complex and the chemical nature of the modification by tetranitromethane are discussed.  相似文献   

12.
The enzymic degradation of ovalbumin and its glycopeptides   总被引:2,自引:1,他引:1       下载免费PDF全文
1. Ovalbumin glycopeptides, freed from all amino acids other than aspartic acid and a small proportion of leucine by repeated digestion with Pronase, were hydrolysed by 1-aspartamido-beta-N-acetylglucosamine amidohydrolase (glycoaspartamidase) to the corresponding oligosaccharides. The glycoaspartamidase did not attack ovalbumin itself. 2. Ovalbumin, with mannose/hexosamine ratio 5:4, lost 1.5moles of N-acetylglucosamine and more than 2moles of mannose after incubation with alpha-mannosidase and beta-N-acetylglucosaminidase respectively. 3. In ovalbumin glycopeptides with approximate mannose/hexosamine ratios 5:3 and 5:4, one and two N-acetylglucosamine residues respectively were accessible to the action of beta-N-acetylglucosaminidase. 4. A mixture of alpha-mannosidase and beta-N-acetylglucosaminidase, acting on an ovalbumin glycopeptide with mannose/hexosamine ratio 5:3.7, removed nearly 4moles of mannose and 1.5moles of N-acetylglucosamine. 5. alpha-Mannosidase removed about 1.5moles of mannose from the ovalbumin oligosaccharide with mannose/hexosamine ratio approx. 5:3. The subsequent action of beta-N-acetylglucosaminidase liberated less than 1mole of N-acetylglucosamine and made at least 1mole further of mannose accessible to alpha-mannosidase action. 6. It is concluded that the carbohydrate moiety of ovalbumin is linked through a glycosyl group to asparagine. In a molecule with mannose/hexosamine ratio 5:4, there are two beta-N-acetylglucosamine residues linked together in a terminal position, followed by alpha-mannose. There is also present a side chain containing two alpha-mannose units.  相似文献   

13.
After the inactivation of yeast hexokinase with (R,S)2′,3′-epoxypropyl β-d-[U-14C]glucopyranoside (50 mM), four moles of this inhibitor were found to be bound per mole of hexokinase monomer (mol.wt., 50 000). The hexokinase inactivated in this way did not show any reaction with 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) in 8 M urea; this is consistent with the alkylation of four cysteine residues per monomer by (R,S)2′,3′-epoxypropyl β-d-glucopyranoside.Amino acid analyses of hexokinase which had been alkylated with (R,S)2′,3′-epoxypropyl β-d-glucopyranoside and then oxidised with performic acid gave evidence for the alkylation of two types of cysteine residue, one type reactive towards DTNB and not essential for enzyme activity, the other type less reactive towards DTNB and essential for enzyme activity.The presence of a cysteine residue in the binding site of d-glucose is proposed and a mechanism for the binding of d-glucose involving an intermediate covalent, d-glucose enzyme complex is suggested.  相似文献   

14.
A simple method was developed for assessing the intramolecular coupling of active sites in the lipoate acetyltransferase (E2) component of the pyruvate dehydrogenase multienzyme complexes from Escherichia coli, Bacillus stearothermophilus and ox heart and pig heart mitochondria. Samples of enzyme complex were prepared in which the pyruvate decarboxylase (E1) component was selectively and partly inhibited by treatment with increasing amounts of a transition-state analogue, thiamin thio-thiazolone pyrophosphate. The fraction of the E2 component acetylated by incubation with [2-14C] pyruvate, in the absence of CoA, was determined for each sample of partly inhibited enzyme and was found in all cases to exceed the fraction of overall complex activity remaining. This indicated the potential for transacetylation reactions among the lipoic acid residues within the E2 core. A graphic presentation of the data allowed comparison of the active-site coupling in the various enzymes, which may differ in their lipoic acid content (one or two residues per E2 chain). It is clear that active-site coupling is a general property of pyruvate dehydrogenase complexes of octahedral and icosahedral symmetries, the large numbers of subunits in each E2 core enhancing the effect.  相似文献   

15.
Periodate-oxidized ADP and ATP (oADP and oATP) are substrates and affinity reagents for creatine kinase from rabbit skeletal muscle. oADP and oATP modified a lysine epsilon-amino group in the nucleotide-binding site of the enzyme. Complete inactivation is observed upon binding 2 moles oADP per 1 mole of the enzyme dimer. Modification with oADP is described by a liner dependence of the log of enzyme activity on time, testifying to a pseudo-first-order of the reaction. The reaction rate constant (ki = 8.10(3) min-1) and dissociation constant for the reversible enzyme-oADP complex (Kd = 62 microM) were determined. ADP protected the enzyme from inactivation and covalent binding of the analog, whereas oADP covalently bound to the enzyme was phosphorylated by phosphocreatine. The data obtained allow to suggest that the epsilon-amino group of a lysine residue of the active site is located in close proximity to ribose of ATP and ADP forming a complex with the enzyme. This group seems essential for correct orientation of the nucleotide polyphosphate chain in the enzyme active center, but take no immediate part in the transphosphorylation process.  相似文献   

16.
A derivative of human blood clotting factor IXa beta lacking gamma-carboxyglutamic acid (Gla) residues was prepared by limited proteolysis with chymotrypsin, and subsequently examined for its ability to bind calcium ions. By amino acid analysis, Gla-domainless human factor IXa beta contained 0.3-0.4 moles of beta-hydroxyaspartic acid per mole of protein. Equilibrium dialysis experiments demonstrated that Gla-domainless human factor IXa beta retained two high-affinity calcium binding sites (Kd=52 microM), a finding essentially identical to that observed for Gla-domainless bovine factor IX that contains 0.8-0.9 moles of beta-hydroxyaspartic acid per mole of protein. These data strongly suggest that the beta-hydroxyaspartic acid residue in these proteins does not participate in their high affinity calcium sites.  相似文献   

17.
18.
J L Wyatt  R F Colman 《Biochemistry》1977,16(7):1333-1342
Rabbit muscle pyruvate kinase is irreversibly inactivated upon incubation with the adenine nucleotide analogue, 5'-p-fluorosulfonylbenzoyladenosine. A plot of the time dependence of the logarithm of the enzymatic activity at a given time divided by the initial enzymatic activity(logE/Eo) reveals a biphasic rate of inactivation, which is consistent with a rapid reaction to form partially active enzyme having 54% of the original activity, followed by a slower reaction to yield totally inert enzyme. In addition to the pyruvate kinase activity of the enzyme, modification with 5'-p-fluorosulfonylbenzoyladenosine also disrupts its ability to catalyze the decarboxylation of oxaloacetate and the ATP-dependent enolization of pyruvate. In correspondence with the time dependence of inactivation, the rate of incorporation of 5'-p-[14C]fluorosulfonylbenzoyladenosine is also biphasic. Two moles of reagent per mole of enzyme subunit are bound when the enzyme is completely inactive. The pseudo-first-order rate constant for the rapid rate is linearly dependent on reagent concentration, whereas the constant for the slow rate exhibits saturation kinetics, suggesting that the reagent binds reversibly to the second site prior to modification. The adenosine moiety is essential for the effectiveness of 5'-p-fluorosulfonylbenzoyladenosine, since p-fluorosulfonylbenzoic acid does not inactivate pyruvate kinase at a significant rate. Thus, the reaction of 5'-p-fluorosulfonylbenzoyladenosine with pyruvate kinase exhibits several of the characteristics of affinity labeling of the enzyme. Protection against inactivation by 5'-p-fluorosulfonylbenzoyladenosine is provided by the addition to the incubation mixture of phosphoenolpyruvate. Mg-ADP or Mg2+. In contrast, the addition of pyruvate, Mg-ATP, or ADP and ATP alone has no effect on the rate of inactivation. These observations are consistent with the postulate that the 5'-p-fluorosulfonylbenzoyladenosine specifically labels amino acid residues in the binding region of Mg2+ and the phosphoryl group of phosphoenolpyruvate which is transferred during the catalytic reaction. The rate of inactivation increases with increasing pH, and k1 depends on the unprotonated form of an amino acid residue with pK = 8.5. On the basis of the pH dependence of the reaction of pyruvate kinase with 5'-p-fluorosulfonylbenzoyladenosine and the elimination of cysteine residues as possible sites of reaction, it is postulated that lysyl or tyrosyl residues are the most probably candidates for the critical amino acids.  相似文献   

19.
Photoaffinity labeling of E. coli ribosomes within the 70S initiation complex was studied by using photoreactive derivatives of fMet-tRNAfMet bearing arylazidogroups scattered statistically over guanosine residues. It is shown that fMet-azido-tRNAfMet-II bearing 2 moles of the reagent residues per mole of tRNA (modified in the conditions of stability of tRNA tertiary structure) is fully active in aminoacylation and in the factor-dependent binding with ribosomes to form the 70S initiation complex. Functional activity of fMet-azido-tRNAfMet-I bearing also 2 moles of the reagent residues per mole of tRNA (but modified in conditions of lability of tRNA tertiary structure) decreases up to approximately 45% in aminoacylation and up to 70% in IF-2 X GTP-dependent binding to the ribosomes. Irradiation of complexes 70S ribosome-MS2-RNA-fMet-azido-tRNAfMet results in covalent linking of the tRNA derivative to the ribosomes. Both subunits are labeled, the 30S to a larger extent than 50S. It is shown that fMet-azido-tRNAfMet-II labels proteins S1, S7, S9, L27 whereas fMet-azido-tRNAfMet-1--proteins S1, S3, S5, S9, S14, L1, L2, L7/L12.  相似文献   

20.
Dihydropteridine reductase [EC 1.6.99.7] was purified from bovine liver in 50% yield and crystallized. The physicochemical properties of the purified enzyme were quite similar to those of sheep liver dihydropteridine reductase. During the course of purification, however, the enzyme was found to be separated into 2 major peaks together with minor peaks by column chromatography on CM-Sephadex, and one of the major peaks was identified as a binary complex of the enzyme with NADH. The reductase-NADH complex was also prepared in vitro and crystallized. Upon addition of quinonoid-dihydropterin to the complex, NADH was oxidized and released from the enzyme. The amount of bound NADH was calculated to be 2 moles per mole of the reductase. The occurrence of the reductase-NADH was calculated to be 2 moles per mole of the reductase. The occurrence of the reductase-NADH complex in bovine liver extract as a predominant form was in accord with the pyridine nucleotide specificity for NADH as a coenzyme. The results further support the view that NADH is the natural coenzyme of this reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号