首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A family of 10 competing, unstructured models has been developed to model cell growth, substrate consumption, and product formation of the pyruvate producing strain Escherichia coli YYC202 ldhA::Kan strain used in fed-batch processes. The strain is completely blocked in its ability to convert pyruvate into acetyl-CoA or acetate (using glucose as the carbon source) resulting in an acetate auxotrophy during growth in glucose minimal medium. Parameter estimation was carried out using data from fed-batch fermentation performed at constant glucose feed rates of qVG=10 mL h–1. Acetate was fed according to the previously developed feeding strategy. While the model identification was realized by least-square fit, the model discrimination was based on the model selection criterion (MSC). The validation of model parameters was performed applying data from two different fed-batch experiments with glucose feed rate qVG=20 and 30 mL h–1, respectively. Consequently, the most suitable model was identified that reflected the pyruvate and biomass curves adequately by considering a pyruvate inhibited growth (Jerusalimsky approach) and pyruvate inhibited product formation (described by modified Luedeking–Piret/Levenspiel term).List of symbols cA acetate concentration (g L–1) - cA,0 acetate concentration in the feed (g L–1) - cG glucose concentration (g L–1) - cG,0 glucose concentration in the feed (g L–1) - cP pyruvate concentration (g L–1) - cP,max critical pyruvate concentration above which reaction cannot proceed (g L–1) - cX biomass concentration (g L–1) - KI inhibition constant for pyruvate production (g L–1) - KIA inhibition constant for biomass growth on acetate (g L–1) - KP saturation constant for pyruvate production (g L–1) - KP inhibition constant of Jerusalimsky (g L–1) - KSA Monod growth constant for acetate (g L–1) - KSG Monod growth constant for glucose (g L–1) - mA maintenance coefficient for growth on acetate (g g–1 h–1) - mG maintenance coefficient for growth on glucose (g g–1 h–1) - n constant of extended Monod kinetics (Levenspiel) (–) - qV volumetric flow rate (L h–1) - qVA volumetric flow rate of acetate (L h–1) - qVG volumetric flow rate of glucose (L h–1) - rA specific rate of acetate consumption (g g–1 h–1) - rG specific rate of glucose consumption (g g–1 h–1) - rP specific rate of pyruvate production (g g–1 h–1) - rP,max maximum specific rate of pyruvate production (g g–1 h–1) - t time (h) - V reaction (broth) volume (L) - YP/G yield coefficient pyruvate from glucose (g g–1) - YX/A yield coefficient biomass from acetate (g g–1) - YX/A,max maximum yield coefficient biomass from acetate (g g–1) - YX/G yield coefficient biomass from glucose (g g–1) - YX/G,max maximum yield coefficient biomass from glucose (g g–1) - growth associated product formation coefficient (g g–1) - non-growth associated product formation coefficient (g g–1 h–1) - specific growth rate (h–1) - max maximum specific growth rate (h–1)  相似文献   

2.
The efficient conversion of xylose-containing biomass hydrolysate by the ethanologenic yeast Saccharomyces cerevisiae to useful chemicals such as ethanol still remains elusive, despite significant efforts in both strain and process development. This study focused on the recovery and characterization of xylose chemostat isolates of a S. cerevisiae strain that overexpresses xylose reductase- and xylitol dehydrogenase-encoding genes from Pichia stipitis and the gene encoding the endogenous xylulokinase. The isolates were recovered from aerobic chemostat cultivations on xylose as the sole or main carbon source. Under aerobic conditions, on minimal medium with 30 g l–1 xylose, the growth rate of the chemostat isolates was 3-fold higher than that of the original strain (0.15 h–1 vs 0.05 h–1). In a detailed characterization comparing the metabolism of the isolates with the metabolism of xylose, glucose, and ethanol in the original strain, the isolates showed improved properties in the assumed bottlenecks of xylose metabolism. The xylose uptake rate was increased almost 2-fold. Activities of the key enzymes in the pentose phosphate pathway (transketolase, transaldolase) increased 2-fold while the concentrations of their substrates (pentose 5-phosphates, sedoheptulose 7-phosphate) decreased correspondingly. Under anaerobic conditions, on minimal medium with 45 g l–1 xylose, the ethanol productivity (in terms of cell dry weight; CDW) of one of the isolates increased from 0.012 g g–1 CDW h–1 to 0.017 g g–1 CDW h–1 and the yield from 0.09 g g–1 xylose to 0.14 g g–1 xylose, respectively.  相似文献   

3.
A strain of Kluyveromyces marxianus was grown in batch culture in lactose-based media at varying initial lactose concentrations (10–60 g L–1) at 30°C, pH 5.0, dissolved oxygen concentrations greater than 20%. Increasing the concentration of mineral salts three-fold at 40 g L–1 and 60 g L–1 initial lactose concentration showed only a small increase in the yield of biomass, from 0.38 g g–1 to 0.41 g g–1, indicating that the initial batch cultures were not significantly nutrient- (mineral salts)-limited. A relatively high biomass concentration (105 g L–1) was obtained in fed-batch culture following extended lactose feeding. An average specific growth rate (0.27 h–1), biomass yield (0.38 g g–1) and overall productivity (2.9 g L–1 h–1) were obtained for these fed-batch conditions. This fed-batch protocol provides a strategy for achieving relatively high concentrations and productivities of K. marxianus on other lactose-based substrate streams (e.g., whey) from the dairy industry.  相似文献   

4.
Depending on the biomass yield on glucose and the cell morphology ofBacillus thuringiensis, three different metabolic states were observed in continuous culture. At dilution rates between 0.18 h–1 and 0.31 h–1 vegetative cells, sporulating bacteria and spores coexisted, while glucose and amino acids were consumed. Only vegetative cells were observed at dilution rates between 0.42 h–1 and 0.47 h–1 and glucose was used as the main carbon and energy source. AtD = 0.50 h–1 the biomass yield on glucose decreases sharply. To define better the specific growth rate range in which the microorganism uses mainly glucose, a dilution rate of 0.25–0.45 h–1 was studied. The experimental data could be adjusted to a Monod model and the following rate coefficients and growth yields were determined: maximum specific growth rate 0.54 h–1, saturation constant 0.56 mg glucose ml–1, biomass growth yields 0.43 g cells (g glucose)–1, and 0.76 g cells (g oxygen)–1, and maintenance coefficients 0.065 g glucose (g cells)–1 h–1 and 0.039 g oxygen (g cells)–1 h–1.  相似文献   

5.
Summary The influence of different operational parameters, such as the dilution rate (D) and the bleeding rate (B), in the production of a flocculent strain ofLactobacillus plantarum was studied. The effect of the dilution rate was demonstrated to be related to the lactic acid concentration inside the reactor. The effect of the bleeding rate was shown to be critical in the stabilization of the operation (due to a better pH control). It also allowed a continuous recovery of cells outside the reactor. Viability testing of the lactic starter cultures showed that operation with cell purge increased the viability of the starter cultures obtained.Nomenclature B Bleeding rate, h–1 - D Dilution rate, h–1 - F Feed flow rate, L h–1 - I Feed velocity, m h–1 - Specific growth rate, h–1 - v Lactic acid specific productivity, g g–1 h–1 - P Product concentration (lactic acid), g L–1 - P out Product concentration leaving the system, g L–1 - Q b Bleeding flow rate, L h–1 - R Recirculation velocity, m h–1 - S Substract concentration, g L–1 - t Time, h - T p Time of ascensional flow (length of the column/total ascensional velocity), h - T r Residence time (1/D), h - V Volume of the reactor, L - X Cell concentration, g L–1 - X out Cell concentration leaving the system, g L–1  相似文献   

6.
Summary Fed-batch cultures of Trichoderma reesei RUT-C30 attained quasi-steady state conditions, in respect of biomass concentration and enzyme production rate, commensurate with a specific cell maintenance coefficient of 0.029 g cellulose.g biomass.–1h–1 and specific cellulase production rate of between 9.6 and 11.9 IU (filter paper activity).g biomass.–1h–1. A maximum enzyme yield of 57 IU.m1–1 at an overall productivity of 201 IU.L.–1h–1 resulted from a cellulose feed rate of 1.0g.L.–1h–1.  相似文献   

7.
A fermentation medium based on millet (Pennisetum typhoides) flour hydrolysate and a four-phase feeding strategy for fed-batch production of baker's yeast,Saccharomyces cerevisiae, are presented. Millet flour was prepared by dry-milling and sieving of whole grain. A 25% (w/v) flour mash was liquefied with a thermostable 1,4--d-glucanohydrolase (EC 3.2.1.1) in the presence of 100 ppm Ca2+, at 80°C, pH 6.1–6.3, for 1 h. The liquefied mash was saccharified with 1,4--d-glucan glucohydrolase (EC 3.2.1.3) at 55°C, pH 5.5, for 2 h. An average of 75% of the flour was hydrolysed and about 82% of the hydrolysate was glucose. The feeding profile, which was based on a model with desired specific growth rate range of 0.18–0.23 h–1, biomass yield coefficient of 0.5 g g–1 and feed substrate concentration of 200 g L–1, was implemented manually using the millet flour hydrolysate in test experiments and glucose feed in control experiments. The fermentation off-gas was analyzed on-line by mass spectrometry for the calculation of carbon dioxide production rate, oxygen up-take rate and the respiratory quotient. Off-line determination of biomass, ethanol and glucose were done, respectively, by dry weight, gas chromatography and spectrophotometry. Cell mass concentrations of 49.9–51.9 g L–1 were achieved in all experiments within 27 h of which the last 15 h were in the fedbatch mode. The average biomass yields for the millet flour and glucose media were 0.48 and 0.49 g g–1, respectively. No significant differences were observed between the dough-leavening activities of the products of the test and the control media and a commercial preparation of instant active dry yeast. Millet flour hydrolysate was established to be a satisfactory low cost replacement for glucose in the production of baking quality yeast.Nomenclature C ox Dissolved oxygen concentration (mg L–1) - CPR Carbon dioxide production rate (mmol h–1) - C s0 Glucose concentration in the feed (g L–1) - C s Substrate concentration in the fermenter (g L–1) - C s.crit Critical substrate concentration (g L–1) - E Ethanol concentration (g L–1) - F s Substrate flow rate (g h–1) - i Sample number (–) - K e Constant in Equation 6 (g L–1) - K o Constant in Equation 7 (mg L–1) - K s Constant in Equation 5 (g L–1) - m Specific maintenance term (h–1) - OUR Oxygen up-take rate (mmol h–1) - q ox Specific oxygen up-take rate (h–1) - q ox.max Maximum specific oxygen up-take rate (h–1) - q p Specific product formation rate (h–1) - q s Specific substrate up-take rate (g g–1 h–1) - q s.max Maximum specific substrate up-take rate (g g–1 h–1) - RQ Respiratory quotient (–) - S Total substrate in the fermenter at timet (g) - S 0 Substrate mass fraction in the feed (g g–1) - t Fermentation time (h) - V Instantaneous volume of the broth in the fermenter (L) - V 0 Starting volume in the fermenter (L) - V si Volume of samplei (L) - x Biomass concentration in the fermenter (g L–1) - X 0 Total amount of initial biomass (g) - X t Total amount of biomass at timet (g) - Y p/s Product yield coefficient on substrate (–) - Y x/e Biomass yield coefficient on ethanol (–) - Y x/s Biomass yield coefficient on substrate (–) Greek letters Moles of carbon per mole of yeast (–) - Moles of hydrogen atom per mole of yeast (–) - Moles of oxygen atom per mole of yeast (–) - Moles of nitrogen atom per mole of yeast (–) - Specific growth rate (h–1) - crit Critical specific growth rate (h–1) - E Specific ethanol up-take rate (h–1) - max.E Maximum specific ethanol up-take rate (h–1)  相似文献   

8.
Summary This study highlights data about the production of a recombinant protein (glyceraldehyde-3-phosphate dehydrogenase) byE. coli HB 101 (GAPDH) during batch and fed-batch fermentations in a complex medium. From a small number of experiments, this strain has been characterized in terms of protein production performance and glucose and acetate influences on growth and recombinant protein production. The present results show that this strain is suitable for recombinant protein production, in fed-batch culture 55 g L–1 of biomass and 6 g L–1 of GAPDH are obtained. However this strain, and especially GAPDH overproduction is sensitive to glucose availability. During fermentations, maximum yields of GAPDH production have been obtained in batch experiments for glucose concentration of 10 g L–1, and in fed-batch experiments for glucose availability of 10 g h–1 (initial volume 1.5 L). The growth of the strain and GAPDH overproduction are also inhibited by acetate. Moreover acetate has been noted as an activator of its own formation.  相似文献   

9.
Summary The linear growth phase in cultures limited by intracellular (conservative) substrate is represented by a flat exponential curve. Within the range of experimental errors, the presented model fits well the data from both batch and continuous cultures ofEscherichia coli, whose growth is limited in that way.List of symbols D dilution rate, h–1 - KS saturation constant, g.L–1 - S concentration of the limiting substrate, g.L–1 - Si concentration of the limiting substrate accumulated in the cells, g.g–1 - So initial concentration of the limiting substrate, g.L–1 - t time of cultivation, h - t1 time of exhaustion of the limiting substrate from medium, h - to beginning of exponential phase, h - X biomass concentration, g.L–1 - X1 biomass concentration at the time of exhaustion of the limiting substrate from the medium, g.L–1 - Xo biomass concn. at the beginning of exponential phase, g.L–1 - biomass concn. at steady-state, g.L–1 - Y growth yield coefficient (biomass/substrate) - specific growth rate, h–1 - m maximum specific growth rate, h–1  相似文献   

10.
Summary The influence of temperature on the growth of the theromophilic Bacillus caldotenax was investigated using chemostat techniques and a chemically defined minimal medium. All determined growth constants, that is maximal specific growth rate, yield and maintenance, were temperature dependent. It was striking that the very large maintenance requirement was about 10 times higher than for mesophilic cells under equivalent conditions. A death rate, which was very substantial at optimal and supraoptimal growth temperatures, was estimated by comparing the maintenance for substrate and oxygen. There was no indication for a thermoadaptation as postulated by Haberstich and Zuber (1974).Symbols D Dilution rate (h–1) - Dc=max Critical dilution rate (h–1) - E Temperature characteristic (J mol–1) - k Organism constant - kd Death rate coefficient (h–1) - km Maintenance substrate coefficient estimated from MO (h–1) - MO Maintenance respiration, mmol O2 per g dry biomass and h (mmol g–1h–1) - MO Maintenance respiration, taking kd into account - mS Maintenance substrate coefficient, g glucose per g dry biomass and h (h–1) - OD Optical density at 546 nm - QO2 Specific O2-uptake rate (mmol g–1h–1) - Q O2 V Specific O2-uptake rate for viable portion of biomass (mmol g–1 h–1) - QS Specific glucose uptake rate (h–1) - Q S V Specific glucose uptake rate for viable portion of biomass (h–1) - R Gas constant 8.28 J mol–1K–1 - S Substrate concentration in reactor (g l–1) - SO Influent substrate concentration (g l–1) - Tmax Maximal growth temperature (°C) - Tmin Minimal growth temperature (°C) - X Dry biomass (g l–1) - XtOt=X Dry biomass containing dead and viable cells - Xv Viable portion of biomass - Y O m Potential yield for O2 corrected for maintenance respiration (g mol–1) - Y S m Potential yield for substrate corrected for maintenance requirement, g biomass per g glucose (–) - Specific growth rate (h–1) - max Maximal specific growth rate (h–1)  相似文献   

11.
Both conventional and genetic engineering techniques can significantly improve the performance of animal cell cultures for the large-scale production of pharmaceutical products. In this paper, the effect of such techniques on cell yield and antibody production of two NS0 cell lines is presented. On the one hand, the effect of fed-batch cultivation using dialysis is compared to cultivation without dialysis. Maximum cell density could be increased by a factor of ~5–7 by dialysis fed-batch cultivation. On the other hand, suppression of apoptosis in the NS0 cell line 6A1 bcl-2 resulted in a prolonged growth phase and a higher viability and maximum cell density in fed-batch cultivation in contrast to the control cell line 6A1 (100)3. These factors resulted in more product formation (by a factor ~2). Finally, the adaptive model-based OLFO controller, developed as a general tool for cell culture fed-batch processes, was able to control the fed-batch and dialysis fed-batch cultivations of both cell lines.Abbreviations A membrane area (dm2) - c Glc,F glucose concentration in nutrient feed (mmol L–1) - c Glc,FD glucose concentration in dialysis feed (mmol L–1) - c Glc,i glucose concentration in inner reactor chamber (mmol L–1) - c Glc,o glucose concentration in outer reactor chamber (dialysis chamber) (mmol L–1) - c Lac,FD lactate concentration in dialysis feed (mmol L–1) - c Lac,i lactate concentration in inner reactor chamber (mmol L–1) - c Lac,o lactate concentration in outer reactor chamber (dialysis chamber) (mmol L–1) - c LS,FD limiting substrate concentration in dialysis feed (mmol L–1) - c LS,i limiting substrate concentration in inner reactor chamber (mmol L–1) - c LS,o limiting substrate concentration in outer reactor chamber (dialysis chamber) (mmol L–1) - c Mab monoclonal antibody concentration (mg L–1) - F D feed rate of dialysis feed (L h–1) - F Glc feed rate of nutrient concentrate feed (L h–1) - K d maximum death constant (h–1) - k d,LS death rate constant for limiting substrate (mmol L–1) - k Glc monod kinetic constant for glucose uptake (mmol L–1) - k Lac monod kinetic constant for lactate uptake (mmol L–1) - k LS monod kinetic constant for limiting substrate uptake (mmol L–1) - K Lys cell lysis constant (h–1) - K S,Glc monod kinetic constant for glucose (mmol L–1) - K S,LS monod kinetic constant for limiting substrate (mmol L–1) - µ cell-specific growth rate (h–1) - µ d cell-specific death rate (h–1) - µ d,min minimum cell-specific death rate (h–1) - µ max maximum cell-specific growth rate (h–1) - P Glc membrane permeation coefficient for glucose (dm h–1) - P Lac membrane permeation coefficient for lactate (dm h–1) - P LS membrane permeation coefficient for limiting substrate (dm h–1) - q Glc cell-specific glucose uptake rate (mmol cell–1 h–1) - q Glc,max maximum cell-specific glucose uptake rate (mmol cell–1 h–1) - q Lac cell-specific lactate uptake/production rate (mmol cell–1 h–1) - q Lac,max maximum cell-specific lactate uptake rate (mmol cell–1 h–1) - q LS cell-specific limiting substrate uptake rate (mmol cell–1 h–1) - q LS,max maximum cell-specific limiting substrate uptake rate (mmol cell –1 h–1) - q Mab cell-specific antibody production rate (mg cell–1 h–1) - q MAb,max maximum cell-specific antibody production rate (mg cell–1 h–1) - t time (h) - V i volume of inner reactor chamber (culture chamber) (L) - V o volume of outer reactor chamber (dialysis chamber) (L) - X t total cell concentration (cells L–1) - X viable cell concentration (cells L–1) - Y Lac/Glc kinetic production constant (stoichiometric ratio of lactate production and glucose uptake) (–)  相似文献   

12.
Summary A new variant, Candida boidinii variant 60, which is less sensitive to methanol and formaldehyde shocks was grown in continuous cultures with methanol as sole carbon source. The substrate concentration in the feeding medium was either 1% methanol or 3% methanol. Biomass production, methanol consumption, the formation of formaldehyde and gas exchange were measured at different dilution rates. With low methanol feeding (10 g/l) maximal productivity of 0.44 g biomass/l·h is obtained at a dilution rate of 0.14 h–1. Maximal specific growth rate is 0.18 h–1. A yield of 0.32 g biomass/g methanol was obtained and the respiration quotient was determined as 0.55. Independently of initial substrate concentration, biomass decreases if methanol and formaldehyde are accumulating in the culture broth.In the culture with high methanol feeding (30 g/l) cell concentratioon increases up to 9 g/l at D=0.04 h–1. At higher dilution rates methanol and form-aldehyde appear in the medium. Formaldehyde is then preferably oxidized without energy advantages for the cells. It seems that this enables the cells to overcome toxic effects caused by methanol and formaldehyde.  相似文献   

13.
The kinetics of continuous l-sorbose fermentation using Acetobacter suboxydans with and without cell recycle (100%) were investigated at dilution rates (D) of 0.05, 0.10, 0.15 and 0.3 h–1. The biomass and sorbose concentrations for continuous fermentation without recycle increased as the dilution rate was increased from 0.05 to 0.10 h–1. A maximum biomass concentration of 8.44 g l–1 and sorbose concentration of 176.90 g l–1 were obtained at D=0.10 h–1. The specific rate of sorbose production and volumetric sorbose productivity at this dilution rate were 2.09 g g–1 h–1 and 17.69 g l–1 h–1. However, on further increasing the dilution rate to 0.3 h–1, both biomass and sorbose concentrations decreased to 2.93 and 73.20 g l–1 respectively, mainly due to washout of the reactor contents. However, the specific rate of sorbose formation and volumetric sorbose productivity at this dilution rate increased to 7.49 g g–1 h–1 and 21.96 g l–1 h–1 respectively. Continuous fermentation with 100% cell recycle served to further enhance the concentration of biomass and sorbose to 28.27 and 184.32 g l–1 respectively (in the reactor at a dilution rate of 0.05 h–1). Even though, there was a decline in the biomass and sorbose concentrations to 6.8 and 83.40 g l–1 at a dilution rate of 0.3 h–1, the specific rates of sorbose formation and volumetric sorbose productivity increased to 3.67 g g–1h–1 and 25.02 g l–1 h–1.  相似文献   

14.
Growth kinetics ofSaccharomyces cerevisiae in glucose syrup from cassava starch and sugarcane molasses were studied using batch and fed-batch cultivation. The optimum temperature and pH required for growth were 30°C and pH 5.5, respectively. In batch culture the productivity and overall cell yield were 0.31 g L–1 h–1 and 0.23 g cells g–1 sugar, respectively, on glucose syrup and 0.22 g L–1 h–1 and 0.18 g cells g–1 sugar, respectively, on molasses. In fed-batch cultivation, a productivity of 3.12 g L–1 h–1 and an overall cell yield of 0.52 g cells g–1 sugar in glucose syrup cultivation and a productivity of 2.33 g L–1 h–1 and an overall cell yield of 0.46 g cells g–1 sugar were achieved in molasses cultivation by controlling the reducing sugar concentration at its optimum level obtained from the fermentation model. By using an on-line ethanol sensor combined with a porous Teflon® tubing method in automating the feeding of substrate in the fed-batch culture, a productivity of 2.15 g L–1 h–1 with a yield of 0.47 g cells g–1 sugar was achieved using glucose syrup as substrate when ethanol concentration was kept at a constant level by automatic control.  相似文献   

15.
Lactic acid production from xylose by the fungus Rhizopus oryzae   总被引:1,自引:1,他引:0  
Lignocellulosic biomass is considered nowadays to be an economically attractive carbohydrate feedstock for large-scale fermentation of bulk chemicals such as lactic acid. The filamentous fungus Rhizopus oryzae is able to grow in mineral medium with glucose as sole carbon source and to produce optically pure l(+)-lactic acid. Less is known about the conversion by R. oryzae of pentose sugars such as xylose, which is abundantly present in lignocellulosic hydrolysates. This paper describes the conversion of xylose in synthetic media into lactic acid by ten R. oryzae strains resulting in yields between 0.41 and 0.71 g g−1. By-products were fungal biomass, xylitol, glycerol, ethanol and carbon dioxide. The growth of R. oryzae CBS 112.07 in media with initial xylose concentrations above 40 g l−1 showed inhibition of substrate consumption and lactic acid production rates. In case of mixed substrates, diauxic growth was observed where consumption of glucose and xylose occurred subsequently. Sugar consumption rate and lactic acid production rate were significantly higher during glucose consumption phase compared to xylose consumption phase. Available xylose (10.3 g l−1) and glucose (19.2 g l−1) present in a mild-temperature alkaline treated wheat straw hydrolysate was converted subsequently by R. oryzae with rates of 2.2 g glucose l−1 h−1 and 0.5 g xylose l−1 h−1. This resulted mainly into the product lactic acid (6.8 g l−1) and ethanol (5.7 g l−1).  相似文献   

16.
Culture conditions for growth and docosahexaenoic acid (DHA) production byThraustochytrium roseum ATCC 28210 were investigated with a view to increasing DHA titers. A medium was formulated (Medium 6) which produced a biomass and DHA content of 10.4 g L–1 and 1011 mg L–1, respectively, in a 5-day incubation. A fed-batch culture system was also developed which achieved biomass and DHA titers of 17.1 g L–1 and 2000 mg L–1, respectively, in 12 days.  相似文献   

17.
Summary The growth parameters ofPenicillium cyclopium have been evaluated in a continuous culture system for the production of fungal protein from whey. Dilution rates varied from 0.05 to 0.20 h–1 under constant conditions of temperature (28°C) and pH (3.5). The saturation coefficients in the Monod equation were 0.74 g l–1 for lactose and 0.14 mg l–1 for oxygen, respectively. For a wide range of dilution rates, the yield was 0.68 g g–1 biomass per lactose and the maintenance coefficient 0.005 g g–1 h–1 lactose per biomass, respectively. The maximum biomass productivity achieved was 2 g l–1 h–1 biomass at dilution rates of 0.16–0.17 h–1 with a lactose concentration of 20 g l–1 in the feed. The crude protein and total nucleic acid contents increased with a dilution rate, crude protein content varied from 43% to 54% and total nucleic acids from 6 to 9% in the range of dilution rates from 0.05 to 0.2 h–1, while the Lowry protein content was almost constant at approximately 37.5% of dry matter.Nomenclature (mg l–1) Co initial concentration of dissolved oxygen - (h–1) D dilution rate - (mg l–1) K02 saturation coefficient for oxygen - (g l–1) Ks saturation coefficient for substrate - (g g–1 h–1) lactose per biomass) m maintenance energy coefficient - (mM g–1 h–1O2 per biomass) Q02 specific oxygen uptake rate - (g l–1) S residual substrate concentration at steady state - (g l–1) So initial substrate concentration in feed - (min) t1/2 time when Co is equal to Co/2 - (g l–1) X biomass concentration - (g l–1) X biomass concentration at steady state - (g g–1 biomass per lactose) YG yield coefficient for cell growth - (g g–1 biomass per lactose) Yx/s overall yield coefficient - (h–1) specific growth rate  相似文献   

18.
Summary This paper presents a study of propionic acid and propionibacteria production from whey by usingPropionibacterium acidi-propionici in continuous fermentation with cell recycle. The highest propionic acid volumetric productivity achieved was 5 g.l–1.h–1 with no biomass bleeding. A maximal biomass concentration of 130 g.l–1 was achieved before initiating biomass bleeding to give a biomass volumetric productivity of 3.2 g.l–1.h–1 with a biomass of 75 g.l–1 and a propionic acid productivity of 3.6 g.l–1.h–1 (for about 100 hours i.e. more than 50 residence times).  相似文献   

19.
Summary Batch cultures of Medicago sativa cells have been carried out in the dark under aerobic conditions using lactose as the sole carbon source. The stoichiometric analysis has been correlated with both the oxygen demand and the cell productivity in an oxygen-limited cultivation. The minimum oxygen transfer has been estimated to be 12.5 h–1, i.e., 0.3 v.v.m; this initial aeration rate led to cell necrosis. Starting with a low oxygen transfer coefficient kL·a and increasing the air flow rate during the course of fermentation gave an exponential growth phase. The maximum specific growth rate was 0.012 h–1 and the growth yield was 0.43 g.d.w./g. of lactose. On the basis of the mass-balance relation the maintenance coefficient and the maximum growth yield have been calculated.  相似文献   

20.
Summary A caffeine-resistant strain of Pseudomonas putida was isolated from soil and was grown with caffeine as the sole source of carbon, energy and nitrogen. Cells were immobilized in agar gel particles which were continuously supplied with a caffeine solution (0.52 g · l–1, D=1.0 h–1) in a homogeneously mixed aerated reaction vessel. In the presence of the ATPase inhibitor arsenate the caffeine was removed by the immobilized cells at an average rate of 0.25 mg caffeine · h–1 · (mg cell carbon)–1 during 6 days. Thereafter a rapid decline of activity was observed. From a similar system without arsenate supplied with a growth medium containing a limiting amount of caffeine (0.13 g · l–1) the caffeine was almost completely oxidized by the immobilized cells. The concentration of the remaining caffeine was 1.4 mg · l–1, which is much lower than the substrate constant for caffeine (9.7 mg · l–1) observed with freshly harvested suspended resting cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号