首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An almost entire skeleton of a male individual of Nacholapithecus kerioi (KNM-BG 35250) was discovered from Middle Miocene (approximately 15 Ma) sediments at Nachola, northern Kenya. N. kerioi exhibits a shared derived subnasal morphology with living apes. In many postcranial features, such as articular shape, as well as the number of the lumbar vertebrae, N. kerioi resembles Proconsul heseloni and/or P. nyanzae, and lacks suspensory specializations characteristic of living apes. Similarly, N. kerioi shares some postcranial characters with Kenyapithecus spp. However, despite the resemblance, N. kerioi and Proconsul spp. are quite different in their body proportions and some joint morphologies. N. kerioi has proportionally large forelimb bones and long pedal digits compared to its hindlimb bones and lumbar vertebrae. Its distinctive body proportions suggest that N. kerioi was more derived for forelimb dominated arboreal activities than P. nyanzae and P. heseloni. On the other hand, it exhibits a mixture of derived and primitive cranio-dental and postcranial features relative to the contemporaneous Kenyapithecus and Early MioceneMorotopithecus. While the phylogenetic position of N. kerioi is unsettled, it seems necessary to posit parallel evolution of cranio-dental and/or postcranial features in fossil and living apes.  相似文献   

3.
This paper describes the morphology of cervical vertebrae in Nacholapithecus kerioi, a middle Miocene primate species excavated from Nachola, Kenya in 1999-2002. The cervical vertebrae in Nacholapithecus are larger than those of Papio cynocephalus. They are more robust relative to more caudal vertebral bones. Since Nacholapithecus had large forelimbs, it is assumed that strong cervical vertebrae would have been required to resist muscle reaction forces during locomotion. On the other hand, the vertebral foramen of the lower cervical vertebrae in Nacholapithecus is almost the same size as or smaller than that of P. cynocephalus. Atlas specimens of Nacholapithecus resemble those of extant great apes with regard to the superior articular facet, and they have an anterior tubercle trait intermediate between that of extant apes and other primate species. Nacholapithecus has a relatively short and thick dens on the axis, similar to those of extant great apes and the axis body shape is intermediate between that of extant apes and other primates. Moreover, an intermediate trait between extant great apes and other primate species has been indicated with regard to the angle between the prezygapophyseal articular facets of the axis in Nacholapithecus. Although the atlas of Nacholapithecus is inferred as having a primitive morphology (i.e., possessing a lateral bridge), the shape of the atlas and axis leads to speculation that locomotion or posture in Nacholapithecus involved more orthograde behavior similar to that of extant apes, and, in so far as cervical vertebral morphology is concerned, it is thought that Nacholapithecus was incipiently specialized toward the characteristics of extant hominoids.  相似文献   

4.
The Muruyur Beds are a substantial sedimentary deposit within a middle Miocene sequence of mafic volcanic flows associated with early stages of rifting in the central Kenyan Rift Valley. They are best represented in the Muruyur region, near Bartabwa, north of Kipsaramon, where dates range from 16.0 to 13.4 Ma. At Kipsaramon, located about 10 km south of Muruyur along the crest of the Tugen Hills, the upper Muruyur Beds are absent and the lower part can be divided into three members. Important fossil sites within Member 1 are dated between 15.8 and 15.6 Ma, and within Member 3 between 15.6 and 15.4 Ma. BPRP#89, in Member 1, is a bonebed at least 2500 m(2)in areal extent and up to 30 cm thick, which constitutes one of the richest concentrations of in situ fossil vertebrate bones in eastern Africa. BPRP#91, at approximately the same level at BPRP#89, is the source of a hominoid talus and other mammal and bird fossils. In Member 3, BPRP#122 has produced specimens of at least five individuals of the hominoid Equatorius, including a partial skeleton. The Muyuyur Beds were deposited near the western margin of a lake that was formed during the early stages of faulting and volcanism in the African Rift system. The bonebed in Member 1 appears to represent the influx of fluvially transported vertebrate and plant remains into a shallow portion of the lake. Elements of the fauna as well as stable isotopes that indicate both forest and more open environments occurred in proximity to the lake during the time of deposition of Member 1.  相似文献   

5.
《Comptes Rendus Palevol》2008,7(8):487-497
The Middle Miocene Muruyur Formation (ca 14.5 Ma), Tugen Hills, Kenya, has yielded a huge creodont and a variety of carnivores ranging in size from mongoose-sized viverrids and herpestids to lion-sized amphicyonids. The fauna partly fills what used to be a major gap in our knowledge of Neogene African carnivores, spanning the period between the better known Early Miocene assemblages of western Kenya and eastern Uganda, and the Late Miocene and Plio–Pleistocene faunas of East Africa. Present in the deposits are Megistotherium, two species of Hecubides, one species of Agnotherium, Herpestes, Vishnuictis, and one or two undetermined felids.  相似文献   

6.
7.
In addition to the new fragments of the Omo I skeleton, renewed fieldwork in the Kibish Formation along the lower reaches of the Omo River in southwestern Ethiopia has yielded new hominin finds from the Kibish Formation. The new finds include four heavily mineralized specimens: a partial left tibia and a fragment of a distal fibular diaphysis from Awoke's Hominid Site (AHS), a parietal fragment, and a portion of a juvenile occipital bone. The AHS tibia and fibula derive from Member I and are contemporaneous with Omo I and II. The other specimens derive from Chad's Hominid Site (CHS), and derive from either Member III or IV, which constrains their age between approximately 8.6 and approximately 104ka.  相似文献   

8.
9.
10.
Two new fossil charophyte species from middle Miocene lacustrine deposits of Moneva (Ebro Basin, NE Spain) are described and illustrated. Sphaerochara miocenica nov. sp. is represented by medium sized gyrogonites with a characteristic spheroidal shape and ornamented with numerous small and regularly spaced tubercles arranged along the spiral cells. Several specimens show an unusual carbonate encrusted layer that covers completely or partially the gyrogonite. Psilochara monevaensis nov. sp. is characterized by large gyrogonites, with typical prolate shape and protruding apical poles. A second population of S. miocenica nov. sp. from a distant early upper Miocene lacustrine basin located in the Middle East (Bekaa Valley, Lebanon), identified in a previous study as Sphaerochara sp., is described and illustrated here, allowing the comparison of these distant populations. Ecologically, the associated fauna and facies from both localities suggest that these taxa grew in very shallow athalassic lakes. Interestingly, S. miocenica nov. sp. having a wide geographic distribution in peri-Mediterranean lakes with variable salinity, may become a fossil guide for the Miocene, providing at the same time important palaeoecological information.  相似文献   

11.
We describe phalanges of the KNM-BG 35250 Nacholapithecus kerioi skeleton from the Middle Miocene of Kenya. Phalanges of N. kerioi display similarities to those of Proconsul heseloni despite their enhanced robusticity. They do not show highly specialized features as in living suspensory primates. However, N. kerioi manifests several distinctive features that are observed in neither living arboreal quadrupeds nor P. heseloni or P. nyanzae. The most remarkable of them is its phalangeal elongation. N. kerioi phalanges (particularly pedal) are as long as those of Pan despite its much smaller body size. While lengthened digits enable a secure grip of supports and are especially adaptive for grasping large vertical trunks, the skeletal and soft tissues are subjected to greater stress. Probably, strong selective pressures favored powerful hallucal/pollical assisted grips. Although this functional adaptation does not exclude the possible use of the terrestrial environment, arboreal behavioral modes must have been crucial in its positional repertoire. N. kerioi is distinguished from P. heseloni in the greater size of its manual phalanges over its pedal phalanges. These derived features of N. kerioi suggest positional modes supporting more weight on the forelimb, and which occur more frequently on vertical supports. If Proconsul is referred to as an "above-branch arboreal quadruped" with a deliberate and effective climbing capability, N. kerioi may be thought of as an "orthograde climber". While living apes are powerful orthograde climbers, they are also more or less suspensory specialists. Suspensory behavior (plus climbing) and pronograde quadrupedalism (plus climbing) are the two main arboreal behavioral adaptations in living anthropoids. Thus, N. kerioi is an unusual fossil primate in that it cannot be incorporated into this dichotomy. It is plausible that a N. kerioi-like orthograde climber with large forelimbs and cheiridia was a precursor of suspensory living apes, and N. kerioi may demonstrate what an initial hominoid of this grade might have looked like.  相似文献   

12.
A proximal humerus, recently recovered from the middle Miocene of Maboko Island, Kenya, provides the earliest evidence of postcranial structure and adaptation of Oreopithecidae. Provisionally attributed toNyanzapithecus pickfordi (Harrison, 1986), the specimen manifests a globose head, subequally large tuberosities, and a board, shallow bicipital groove. Although readily distinguished from the fundamentally cercopithecoid proximal humeral morphology ofVictoriapithecus (Senut, 1986), the Maboko Island oreopithecid, shows none of the derived features that are characteristic of the proximal humeri of extant hominoids. It is inferred from proximal humeral anatomy that the Maboko Island oreopithecid was an active arboreal scansor with moderate mobility at the shoulder but lacking adaptations for circumduction of the arm. In combination with craniodental evidence, proximal humeral morphology indicates that Oreopithecidae was a clade of hominoids which originated before the last common ancestor of extant apes and went extinct, without issue, in the later Miocene.  相似文献   

13.
Miocene primates from southern Africa are extremely rare. For this reason we wish to place on record several interesting new fossil primate specimens recently recovered from the Miocene sites of Berg Aukas and Harasib in the Otavi Mountain region of northern Namibia. The new finds consist of a virtually complete atlas vertebra from Berg Aukas attributable to the hominoid Otavipithecus namibiensis and two teeth and four postcranial fragments from Harasib referrable to Cercopithecoidea. The atlas vertebra exhibits anatomical characteristics intermediate between those of modern cercopithecoids and hominoids which may be indicative of a transition from pronograde to orthograde postures. The cercopithecoid remains show that the earliest Old World monkeys known from southern Africa were small, approximately the size of vervet monkeys. These new specimens are important because they provide the first evidence relating to possible positional behaviors of Otavipithecus and the earliest fossil record of cercopithecoids from southern Africa. © 1996 Wiley-Liss, Inc.  相似文献   

14.
The middle Miocene (15 Ma) Maboko Formation of Maboko Island and Majiwa Bluffs, southwestern Kenya, has yielded abundant fossils of the earliest known cercopithecoid monkey (Victoriapithecus macinnesi), and of a kenyapithecine hominoid (Kenyapithecus africanus), as well as rare proconsuline (Simiolus leakeyorum, cf. Limnopithecus evansi) and oreopithecine apes (Mabokopithecus clarki, M. pickfordi), and galagids (Komba winamensis). Specific habitat preferences can be interpreted from large collections of primate fossils in different kinds of paleosols (pedotypes). Fossiliferous drab-colored paleosols with iron-manganese nodules (Yom pedotype) are like modern soils of seasonally waterlogged depressions (dambo). Their crumb structure and abundant fine root-traces, as well as scattered large calcareous rhizoconcretions indicate former vegetation of seasonally wet, wooded grassland. Other fossiliferous paleosols are evidence of nyika bushland (Ratong), and early-successional riparian woodland (Dhero). No fossils were found in Mogo paleosols interpreted as saline scrub soils. Very shallow calcic horizons (in Yom, Ratong, and Mogo paleosols) and Na-montmorillonite (in Mogo) are evidence of dry paleoclimate (300-500 mm MAP=mean annual precipitation). This is the driest paleoclimate and most open vegetation yet inferred as a habitat for any Kenyan Miocene apes or monkeys. Victoriapithecus was abundant in dambo wooded grassland (Yom) and riparian woodland (Dhero), a distribution like that of modern vervet monkeys. Kenyapithecus ranged through all these paleosols, but was the most common primate in nyika bushland paleosols (Ratong), comparable to baboons and macaques today. Mabokopithecus was virtually restricted to riparian woodland paleosols (Dhero), and Simiolus had a similar, but marginally wider, distribution. Habitat preferences of Mabokopithecus and Simiolus were like those of modern colobus monkeys and mangabeys. A single specimen of Komba was found in dambo wooded grassland paleosol (Yom), a habitat more like that of the living Senegal bushbaby than of rainforest galagids. A shift to non-forest habitats may explain the terrestrial adaptations of Victoriapithecus, basal to the cercopithecid radiation, and of Kenyapithecus, basal to the hominoid radiation. Both taxa are distinct from earlier Miocene arboreal proconsulines, oreopithecines and galagids.  相似文献   

15.
A mandible of Rangwapithecus gordoni from the early Miocene site of Songhor, Kenya, provides additional information about this relatively poorly known taxon. The R. gordoni sample is small, being composed of dental and a few gnathic parts. The fossil described here provides examples of previously unknown dental and mandibular anatomy, and confirms former reassignments of isolated anterior teeth based on less certain evidence. The phylogenetic status of Rangwapithecus, its distribution, and paleobiology are briefly reviewed. Rangwapithecus shows a suite of dental and gnathic features that warrants its generic distinction from Proconsul. Derived features shared with Nyanzapithecus and Turkanapithecus indicate that it is an early member of the subfamily Nyanzapithecinae. Its molar morphology suggests a considerable component of folivory in its diet. A review of the hypodigm shows Rangwapithecus to be restricted to Songhor. This distribution parallels that of Limnopithecus evansi, and is mirrored by Limnopithecus legetet and Micropithecus clarki suggesting that Songhor may have differed ecologically from other more or less contemporary sites in the region.  相似文献   

16.
This paper describes a well-preserved hemimandible of Percrocuta miocenica from Brajkovac (Lazarevac municipality, Central Serbia). Based on the faunal remains recovered so far, the site is attributed to Mammal Zone MN6 (Langhian, middle Miocene). Apart from Prebreza, this is only the second site where remains of P. miocenica have been found in Serbia, and the third one in the Balkans. The newly discovered fossil, along with other taxa (e.g., Bunolistriodon meidamon, Giraffokeryx punjabiensis, Alloptox sp.), underlines the similarities between the middle Miocene Balkan and Anatolian mammal faunas.  相似文献   

17.
《Geobios》2016,49(5):349-354
87Sr/86Sr values from otoliths of the worldwide-distributed fish Hygophum hygomii are used for the purpose of isotope chemostratigraphy. In order to evaluate the potential of Hhygomii otoliths for strontium (Sr) isotopic studies, we first compare the 87Sr/86Sr ratio of current representatives of the species with that of modern sea water. Then, three fossil otoliths of Hhygomii collected in middle Miocene sediments of the Aquitaine Basin (Lafaurie locality, SW France) and the Carpathian Foredeep of the Central Paratethys (Brno-Kralovo Pole locality, SE Czech Republic) are analysed. The age inferred from the 87Sr/86Sr ratio at Lafaurie places the two analysed otoliths within the time interval of 15.5–15.1 Ma. This time interval matches the published early Langhian age obtained from the 87Sr/86Sr ratio of bivalves measured at the same locality. At the Brno-Kralovo Pole, the 87Sr/86Sr ratio of the analysed otolith returns a wider timespan of 14.78–13.10 Ma, falling into an interval of poor time resolution of the 87Sr/86Sr chemostratigraphy. Comparisons with published biostratigraphic and paleoclimatic data suggest that the analysed fossil otoliths of Hhygomii were mineralized during the late part of the Langhian, at ∼14.2 Ma. This work represents a first attempt to use otoliths for 87Sr/86Sr chemostratigraphy, and indicates that such a use may represent a powerful tool for testing stratigraphic correlations in the future.  相似文献   

18.
A skeleton fragment of a spadefoot toad (family Pelobatidae Bonaparte, 1850) from the Middle Miocene (Early Sarmatian) of the Karpov Yar locality (northern Moldova) is described. Since the material is incomplete, it is only determined as Pelobatidae gen. indet. This is the first spadefoot toad from the Miocene of Moldova.  相似文献   

19.
We studied 344 samples from Well XK-1 in Xisha Islands, South China Sea, and identified 66 species of larger benthic foraminifera, providing critical evidence for biostratigraphy and palaeoenvironmental interpretation of the Miocene reef carbonate sequence. Three assemblages are recognized, namely, Spiroclypeus higginsiBorelis pygmaeus Assemblage (Letter Stage Te5, Early Miocene, 1256.28–1180.15 m), NephrolepidinaMiogypsina Assemblage (Tf, Middle Miocene, 1031.10–577.04 m), and CycloclypeusHeterostegina Assemblage (Tg, Late Miocene, 468.13–380.42 m). On the basis of the palaeoecological preference of the larger foraminifera, we interpret that the Miocene carbonate sequence was deposited mainly in a warm tropical shallow water environment, characterized by five stages of continuous long-term evolution: backreef lagoon to shelf in the Early Miocene, normal to frontal reef in the early Middle Miocene, backreef lagoon to shelf in the later Middle Miocene, normal to frontal reef in the early Late Miocene, and proximal forereef shelf in the later Late Miocene.  相似文献   

20.
The two hominoid teeth—a central upper incisor (NMB G.a.9.) and an upper molar (FSL 213981)—from the Middle Miocene site of La Grive‐Saint‐Alban (France) have been traditionally attributed to Dryopithecus fontani (Hominidae: Dryopithecinae). However, during the last decade discoveries in the Vallès‐Penedès Basin (Spain) have shown that several hominoid genera were present in Western Europe during the late Middle Miocene. As a result, the attribution of the dryopithecine teeth from La Grive is not as straightforward as previously thought. In fact, similarities with the upper incisor of Pierolapithecus have led to suggestions that either the latter taxon is present at La Grive, or that it is a junior synonym of Dryopithecus. Here, we re‐describe the La Grive teeth and critically revise their taxonomic assignment based on metrical and morphological comparisons with other Middle to Late Miocene hominoids from Europe and Turkey, with particular emphasis on those from the Vallès‐Penedès Basin. Our results suggest that the I1 differs in several respects from those of Pierolapithecus and Hispanopithecus, so that an attribution to either Dryopithecus or Anoiapithecus (for which this tooth is unknown) seems more likely. The molar, in turn, most likely corresponds to the M1 of a female individual. Compared to other Middle Miocene taxa, its occlusal morphology enables its distinction from Pierolapithecus, whereas relative crown height agrees well with Dryopithecus. Therefore, based on available evidence, we support the traditional attribution of the La Grive hominoid to D. fontani. Am J Phys Anthropol 151:558–565, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号