首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The acidic polysaccharide (K6) antigen from Escherichia coli LP 1092 contains d-ribose and 3-deoxy-d-manno-octulosonic acid in the molar ratio of 2:1, respectively. Spectroscopic data (13C- and 1H-n.m.r.), methylation analyses, and periodate oxidation indicate that the polysaccharide is composed of the foregoing components essentially in the following trisaccharide sequence: →2)-β-d-Ribf-(1→2)-β-d-Ribf-(1→7)-α-d-KDO-(2→The polysaccharide also contains O-acetyl substituents (~0.2–0.3 mol per KDO residue).  相似文献   

2.
The Ter-15 mutant derived from E. coli K12 W2252-11U? RCstr (wild type I) is found to be sensitive to φx174 phage infection. Lipopolysaccharide extracted from this mutant inactivates the phage, and has core oligosaccharides identical in amounts to those in the lipopolysaccharide from wild type cells.In contrast, the Ter-21 mutant derived from E. coli K12 W2252-11U? RCrel (wild type II) is not sensitive to this phage infection, and its lipopolysaccharide does not inactivate the phage. Its lipopolysaccharide sugars are found to be D-glucose and D-ribose, thus differing from the lipopolysaccharide sugars of the wild type cells.  相似文献   

3.
A partition chromatographic procedure utilizing a cationic exchange resin column in the Li+ form and 90% ethanol as the mobile phase was employed to quantify 3-deoxy-d-manno-octulosonic acid (KDO) and l-glycero-d-manno-heptose in the lipopolysaccharides (LPS) of Re and RdP? rough mutants of Salmonella minnesota. In a standard mixture of monosaccharides, KDO eluted shortly after the void volume and heptose eluted after the neutral hexoses. Mild acid treatment of either the Re or RdP? LPS with 0.16 n methanesulfonic acid in the presence of Dowex 50-X8 resin (H+ form) released more than 80% of the KDO residues within 15 min. The heptose of the RdP? LPS, first detected after 90 min of hydrolysis, increased gradually to a maximum level at 12 h. A secondary gradual increase in KDO became apparent during the heptose release. The weight contents of these two monosaccharides based upon aheir maximum values detected during hydrolysis were 20.3 ± 0.6% KDO, for the Re LPS, and 13.8 ± 0.4% KDO and 12.0 ± 0.4% heptose, for the RdP? LPS. The relationship between the kinetics of release of KDO and heptose and the nature of the linkages involving these two monosaccharides are discussed.  相似文献   

4.
We have developed a filamentous phage display system for the detection of asparagine-linked glycoproteins in Escherichia coli that carry a plasmid encoding the protein glycosylation locus (pgl) from Campylobacter jejuni. In our assay, fusion of target glycoproteins to the minor phage coat protein g3p results in the display of glycans on phage. The glyco-epitope displayed on phage is the product of biosynthetic enzymes encoded by the C. jejuni pgl pathway and minimally requires three essential factors: a pathway for oligosaccharide biosynthesis, a functional oligosaccharyltransferase, and an acceptor protein with a D/E-X1-N-X2-S/T motif. Glycosylated phages could be recovered by lectin chromatography with enrichment factors as high as 2 × 105 per round of panning and these enriched phages retained their infectivity after panning. Using this assay, we show that desired glyco-phenotypes can be reliably selected by panning phage-displayed glycoprotein libraries on lectins that are specific for the glycan. For instance, we used our phage selection to identify permissible residues in the −2 position of the bacterial consensus acceptor site sequence. Taken together, our results demonstrate that a genotype–phenotype link can be established between the phage-associated glyco-epitope and the phagemid-encoded genes for any of the three essential components of the glycosylation process. Thus, we anticipate that our phage display system can be used to isolate interesting variants in any step of the glycosylation process, thereby making it an invaluable tool for genetic analysis of protein glycosylation and for glycoengineering in E. coli cells.  相似文献   

5.
A study was made of several bacteriophages (including phages U2 and LB related to T-even phages of Escherichia coli) that grow both on E. coli K12 and on some Salmonella strains. Such phages were termed ambivalent. T-even ambivalent phages (U2 and LB) are rare and have a limited number of hosts among Salmonella strains. U2 and LB are similar to canonical E. coli-specific T-even phages in morphological type and size of the phage particle and in reaction with specific anti-T4 serum. Phages U2 and LB have identical sets of structural proteins, some of which are similar in size to structural proteins of phages T2 and T4. DNA restriction patterns of phages U2 and LB differ from each other and from those of T2 and T4. Still, DNAs of all four phages have considerable homology. Unexpectedly, phages U2 and LB grown on Salmonella bongori were unstable during centrifugation in a CsCl gradient. Ambivalent bacteriophages were found in species other than T-even phages and were similar in morphotype to lambdoid and other E. coli phages. One of the ambivalent phages was highly similar to well-known Felix01, which is specific for Salmonella. Ambivalent phages can be used to develop a new set for phage typing in Salmonella. An obvious advantage is that ambivalent phages can be reproduced in the E. coli K12 laboratory strain, which does not produce active temperature phages. Consequently, the resulting typing phage preparation is devoid of an admixture of temperate phages, which are common in Salmonella. The presence of temperate phages in phage-typing preparations may cause false-positive results in identifying specific Salmonella strains isolated from the environment or salmonellosis patients. Ambivalent phages are potentially useful for phage therapy and prevention of salmonellosis in humans and animals.  相似文献   

6.
A previously characterized O157-specific lytic bacteriophage KH1 and a newly isolated phage designated SH1 were tested, alone or in combination, for reducing intestinal Escherichia coli O157:H7 in animals. Oral treatment with phage KH1 did not reduce the intestinal E. coli O157:H7 in sheep. Phage SH1 formed clear and relatively larger plaques on lawns of all 12 E. coli O157:H7 isolates tested and had a broader host range than phage KH1, lysing O55:H6 and 18 of 120 non-O157 E. coli isolates tested. In vitro, mucin or bovine mucus did not inhibit bacterial lysis by phage SH1 or KH1. A phage treatment protocol was optimized using a mouse model of E. coli O157:H7 intestinal carriage. Oral treatment with SH1 or a mixture of SH1 and KH1 at phage/bacterium ratios ≥102 terminated the presence of fecal E. coli O157:H7 within 2 to 6 days after phage treatment. Untreated control mice remained culture positive for >10 days. To optimize bacterial carriage and phage delivery in cattle, E. coli O157:H7 was applied rectally to Holstein steers 7 days before the administration of 1010 PFU SH1 and KH1. Phages were applied directly to the rectoanal junction mucosa at phage/bacterium ratios calculated to be ≥102. In addition, phages were maintained at 106 PFU/ml in the drinking water of the phage treatment group. This phage therapy reduced the average number of E. coli O157:H7 CFU among phage-treated steers compared to control steers (P < 0.05); however, it did not eliminate the bacteria from the majority of steers.  相似文献   

7.
Outbreaks of verotoxigenic Escherichia coli are often associated with fresh produce. However, the molecular basis to adherence is unknown beyond ionic lipid-flagellum interactions in plant cell membranes. We demonstrate that arabinans present in different constituents of plant cell walls are targeted for adherence by E. coli common pilus (ECP; or meningitis-associated and temperature-regulated (Mat) fimbriae) for E. coli serotypes O157:H7 and O18:K1:H7. l-Arabinose is a common constituent of plant cell wall that is rarely found in other organisms, whereas ECP is widespread in E. coli and other environmental enteric species. ECP bound to oligosaccharides of at least arabinotriose or longer in a glycan array, plant cell wall pectic polysaccharides, and plant glycoproteins. Recognition overlapped with the antibody LM13, which binds arabinanase-sensitive pectic epitopes, and showed a preferential affinity for (1→5)-α-linked l-arabinosyl residues and longer chains of arabinan as demonstrated with the use of arabinan-degrading enzymes. Functional adherence in planta was mediated by the adhesin EcpD in combination with the structural subunit, EcpA, and expression was demonstrated with an ecpR–GFP fusion and ECP antibodies. Spinach was found to be enriched for ECP/LM13 targets compared with lettuce. Specific recognition of arabinosyl residues may help explain the persistence of E. coli in the wider environment and association of verotoxigenic E. coli with some fresh produce plants by exploitation of a glycan found only in plant, not animal, cells.  相似文献   

8.
9.
A previously isolated T-even-type PP01 bacteriophage was used to detect its host cell, Escherichia coli O157:H7. The phage small outer capsid (SOC) protein was used as a platform to present a marker protein, green fluorescent protein (GFP), on the phage capsid. The DNA fragment around soc was amplified by PCR and sequenced. The gene alignment of soc and its upstream region was g56-soc.2-soc.1-soc, which is the same as that for T2 phage. GFP was introduced into the C- and N-terminal regions of SOC to produce recombinant phages PP01-GFP/SOC and PP01-SOC/GFP, respectively. Fusion of GFP to SOC did not change the host range of PP01. On the contrary, the binding affinity of the recombinant phages to the host cell increased. However, the stability of the recombinant phages in alkaline solution decreased. Adsorption of the GFP-labeled PP01 phages to the E. coli cell surface enabled visualization of cells under a fluorescence microscope. GFP-labeled PP01 phage was not only adsorbed on culturable E. coli cells but also on viable but nonculturable or pasteurized cells. The coexistence of insensitive E. coli K-12 (W3110) cells did not influence the specificity and affinity of GFP-labeled PP01 adsorption on E. coli O157:H7. After a 10-min incubation with GFP-labeled PP01 phage at a multiplicity of infection of 1,000 at 4°C, E. coli O157:H7 cells could be visualized by fluorescence microscopy. The GFP-labeled PP01 phage could be a rapid and sensitive tool for E. coli O157:H7 detection.  相似文献   

10.
Effect of Prophage W on the Propagation of Bacteriophages T2 and T4   总被引:10,自引:7,他引:3       下载免费PDF全文
Studies have been undertaken to determine whether the temperate phage ω present in Escherichia coli strain W is responsible for the inability of this strain to act as a host for T2 and T4. E. coli WS, cured of phage ω, was sensitive to T2 and T4. Lysogenation of E. coli C and WS with phage ω resulted in loss of ability to plate T2 and T4. However, E. coli K-12 lysogens still served as hosts for the T -even phage. Two of three WS lysogens studied resembled strain W at the biochemical level. They converted about 30% of infecting T2 deoxyribonucleic acid (DNA) to acid-soluble fragments and limited macromolecular synthesis to a few minutes after infection. The third lysogen did not degrade phage DNA, and nucleic acid and protein synthesis continued for some time, although no phage production occurred. It is concluded that phage ω plays a role in the restriction of virulent phage but that it is not the only factor involved. Since acid solubilization was not observed in all cases of phage ω-mediated restriction of T -even phage, a hypothesis for the restriction has been proposed which is based on an alteration in the cell envelope after lysogenation with phage ω.  相似文献   

11.
The serologically and structurally related Escherichia coli capsular polysaccharides (K antigens) K13, K20, and K23 were found to be depolymerized by the bacteriophages ΦK13 and ΦK20 to almost similar oligomer profiles as shown by polyacrylamide gel electrophoresis. The phage-polysaccharide interactions were followed by an increase of reducing 2-keto-3-deoxyoctulosonic acid due to a phage-associated glycanase that catalyzed the hydrolytic cleavage of common β-ketopyranosidic 2-keto-3-deoxyoctulosonic acid linkages. The related E. coli K antigens K18, K22, and K100 as well as the Haemophilus influenzae type b capsular polysaccharide were degraded by bacteriophage ΦK100 with different efficacy. It is suggested that ΦK100 enzymatically cleaves ribitol-5-phosphate bonds as the only structural feature present in all the polysaccharides investigated.  相似文献   

12.
Campylobacter jejuni and Campylobacter coli are the most common bacterial causes of foodborne gastroenteritis which is occasionally followed by a debilitating neuropathy known as Guillain-Barré syndrome. Rapid and specific detection of these pathogens is very important for effective control and quick treatment of infection. Most of the diagnostics available for these organisms are time consuming and require technical expertise with expensive instruments and reagents to perform. Bacteriophages bind to their host specifically through their receptor binding proteins (RBPs), which can be exploited for pathogen detection. We recently sequenced the genome of C. jejuni phage NCTC12673 and identified its putative host receptor binding protein, Gp047. In the current study, we localized the receptor binding domain to the C-terminal quarter of Gp047. CC-Gp047 could be produced recombinantly and was capable of agglutinating both C. jejuni and C. coli cells unlike the host range of the parent phage which is limited to a subset of C. jejuni isolates. The agglutination procedure could be performed within minutes on a glass slide at room temperature and was not hindered by the presence of buffers or nutrient media. This agglutination assay showed 100% specificity and the sensitivity was 95% for C. jejuni (n = 40) and 90% for C. coli (n = 19). CC-Gp047 was also expressed as a fusion with enhanced green fluorescent protein (EGFP). Chimeric EGFP_CC-Gp047 was able to specifically label C. jejuni and C. coli cells in mixed cultures allowing for the detection of these pathogens by fluorescent microscopy. This study describes a simple and rapid method for the detection of C. jejuni and C. coli using engineered phage RBPs and offers a promising new diagnostics platform for healthcare and surveillance laboratories.  相似文献   

13.
Escherichia coli O55 hybrids able to adsorb the lambda phage were obtained by mating anEscherichia coli O55 recipient with anEscherichia coli K12HfrC donor. λ mutants, capable of forming plaques on these hybrids, were not isolated. A new type of host specificity betweenEscherichia coli O55 and urinaryEscherichia coli J was established. For efficient reduction of the phage plating ability more growth steps on the new strain are required in this type. Host specificities O55 and J proved to be different from K specificity.  相似文献   

14.
A bacteriophage growing on Escherichia coli K13, K20, and K23 strains carries a glycanase that catalyzes the hydrolytic cleavage of the beta-ketopyranosidic linkages of 3-deoxy-D-manno-2-octulosonic acid (KDO) in the respective capsular polysaccharides. The main cleavage product of the K23 polysaccharide has been identified by 1H- and 13C-n.m.r. spectroscopy as beta beta Ribfl----7 beta KDOp2----3-beta Ribfl----7KDO. Cleavage of polysaccharides containing alpha-pyranosidic, or 5-substituted beta-pyranosidic KDO is not catalyzed by the enzyme.  相似文献   

15.
The chain length distribution of murein glycan strands was analyzed in wild-type cells and in cells in which preseptal and/or septal murein synthesis was prevented in ftsZ84 and ftsI36 mutants of E. coli. This revealed a significant change in glycan chain lengths in newly synthesized murein associated with inactivation of the ftsZ gene product but not with inactivation of the ftsI gene product. This is the first reported abnormality in murein biosynthesis associated with mutation of an essential cell division gene.  相似文献   

16.
Impact of Phages on Two-Species Bacterial Communities   总被引:1,自引:0,他引:1       下载免费PDF全文
A long history of experimental work has shown that addition of bacteriophages to a monoculture of bacteria leads to only a temporary depression of bacterial levels. Resistant bacteria usually become abundant, despite reduced growth rates relative to those of phage-sensitive bacteria. This restoration of high bacterial density occurs even if the phages evolve to overcome bacterial resistance. We believe that the generality of this result may be limited to monocultures, in which the resistant bacteria do not face competition from bacterial species unaffected by the phage. As a simple case, we investigated the impact of phages attacking one species in a two-species culture of bacteria. In the absence of phages, Escherichia coli B and Salmonella enterica serovar Typhimurium were stably maintained during daily serial passage in glucose minimal medium (M9). When either of two E. coli-specific phages (T7 or T5) was added to the mixed culture, E. coli became extinct or was maintained at densities that were orders of magnitude lower than those before phage introduction, even though the E. coli densities with phage reached high levels when Salmonella was absent. In contrast, the addition of a phage that attacked only Salmonella (SP6) led to transient decreases in the bacterial number whether E. coli was absent or present. These results suggest that phages can sometimes, although not always, provide long-term suppression of target bacteria.  相似文献   

17.
Restriction of lambda trp bacteriophages by Escherichia coli K   总被引:4,自引:0,他引:4  
trp-transducing derivatives of phage λ have been used to study Escherichia coli K specific restriction in vivo. The expression of the trp genes from unmodified phages during infection of a rec+, restricting host is eliminated by restriction. In a K-restricting recB,C host, where degradation of restricted phage DNA is prevented, expression of the trp genes is little affected by the presence of a single unmodified, K-restriction recognition site, even when that site is within the trpE gene. RI restriction, in contrast to K restriction, prevents trp gene expression in a recB,C host when the restriction target is between the trp genes and the relevant promoter. The presence of two K-restriction recognition sites in a λtrp phage can have a marked effect on trp gene expression. This effect can be interpreted as the result of preferential breakage between the two restriction recognition sites. We conclude that K restriction does not break susceptible DNA at, or even preferentially near, a restriction recognition sequence.  相似文献   

18.
T7 phage was exposed to 56 mM nitrous acid at pH 4.6 causing a 90% decrease in survival for each 10 min duration of exposure. The survival of phage made by encapsulating nitrous acid treated DNA into empty phage heads was nearly the same as the survival of phage exposed to nitrous acid in vivo. In contrast to previous reports, growth of SOS-induced wild-type E. coli showed no increase in survival. The survival of nitrous acid treated phage was not lowered when grown on E. coli strains deficient in DNA polymerase I, exonuclease III, and the uvrA component of the nucleotide excision-repair endonuclease. Therefore, these enzymes are not vital for repair of nitrous acid induced damage in bacteriophage T7.  相似文献   

19.
The cpkA gene encoding a second (α) subunit of archaeal chaperonin from Pyrococcus kodakaraensis KOD1 was cloned, sequenced, and expressed in Escherichia coli. Recombinant CpkA was studied for chaperonin functions in comparison with CpkB (β subunit). The effect on decreasing the insoluble form of proteins was examined by coexpressing CpkA or CpkB with CobQ (cobyric acid synthase from P. kodakaraensis) in E. coli. The results indicate that both CpkA and CpkB effectively decrease the amount of the insoluble form of CobQ. Both CpkA and CpkB possessed the same ATPase activity as other bacterial and eukaryal chaperonins. The ATPase-deficient mutant proteins CpkA-D95K and CpkB-D95K were constructed by changing conserved Asp95 to Lys. Effect of the mutation on the ATPase activity and CobQ solubilization was examined. Neither mutant exhibited ATPase activity in vitro. Nevertheless, they decreased the amount of the insoluble form of CobQ by coexpression as did wild-type CpkA and CpkB. These results implied that both CpkA and CpkB could assist protein folding for nascent protein in E. coli without requiring energy from ATP hydrolysis.  相似文献   

20.
Participation of RNase I in the growth of phage on infection with bacteriophage MS2 was studied.

Some strains of uracil-requiring E. coli were isolated, grown in MS broth, and transferred to a minimal medium to exhaust the pool of nucleotides. The phage was then added to the cells grown in uracil-deficient medium. The growth of phage was observed to occur at the burst size of two hundreds in strains of E. coli K12S (F+) U? and C600 (F+) U?, which possessed RNase I, but not in strains, A19 (Hfr) U? and Q13 (Hfr) U?, which lacked RNase I.

A marked increase in acid-soluble fraction was observed with E. coli K12S (F+) U? and C600 (F+) U?, whereas the increase was little with E. coli A10 (Hfr) U? and Q13 (Hfr) U? Conditions for the growth of phage in uracil-deficient medium were investigated and the effect of antibiotics were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号