首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesoheme bound to heme oxygenase protein was easily degraded to mesobiliverdin by incubation with NADPH-cytochrome c reductase and NADPH. The features of mesoheme degradation were very similar to those of protoheme degradation catalyzed by the heme oxygenase system; an intermediate compound having its absorption maximum at 660 nm appeared in the couse of mesoheme degradation and this compound is presumably equivalent to the 688 nm compound which appears in the course of protoheme degradation. Hydroxymesoheme was chemically prepared and a complex of hydroxymesoheme and heme oxygenase was prepared. The complex was fairly stable in air, but when the complex was incubated with the NADPH-cytochrome c reductase system, the hydroxymesoheme bound to heme oxygenase was readily converted to mesobiliverdin through the 660 nm compound as an intermediate. It is evident that hydroxyheme is a real intermediate of heme degradation in the heme oxygenase reaction and that the 688 nm compound (or the 660 nm compound in the mesoheme system) is located between hydroxyheme and the biliverdin-iron chelate. The ferrous state of heme-iron may also be necessary for the onset of further oxidation of hydroxyheme.  相似文献   

2.
Electrons utilized in the heme oxygenase (HO) reaction are provided by NADPH-cytochrome P450 reductase (CPR). To investigate the electron transfer pathway from CPR to HO, we examined the reactions of heme and verdoheme, the second intermediate in the heme degradation, complexed with rat HO-1 (rHO-1) using a rat FMN-depleted CPR; the FMN-depleted CPR was prepared by dialyzing the CPR mutant, Y140A/Y178A, against 2 m KBr. Degradation of heme in complex with rHO-1 did not occur with FMN-depleted CPR, notwithstanding that the FMN-depleted CPR was able to associate with the heme-rHO-1 complex with a binding affinity comparable with that of the wild-type CPR. Thus, the first electron to reduce the ferric iron of heme complexed with rHO-1 must be transferred from FMN. In contrast, verdoheme was converted to the ferric biliverdin-iron chelate with FMN-depleted CPR, and this conversion was inhibited by ferricyanide, indicating that electrons are certainly required for conversion of verdoheme to a ferric biliverdin-iron chelate and that they can be supplied from the FMN-depleted CPR through a pathway not involving FMN, probably via FAD. This conclusion was supported by the observation that verdoheme dimethyl esters were accumulated in the reaction of the ferriprotoporphyrin IX dimethyl ester-rHO-1 complex with the wild-type CPR. Ferric biliverdin-iron chelate, generated with the FMN-depleted CPR, was converted to biliverdin by the addition of the wild-type CPR or desferrioxamine. Thus, the final electron for reducing ferric biliverdin-iron chelate to release ferrous iron and biliverdin is apparently provided by the FMN of CPR.  相似文献   

3.
Photo-reversal of the carbon monoxide inhibition of heme oxygenase reaction by monochromatic light was investigated. Heme degradation in either the microsomal or the reconstituted heme oxygenase system was inhibited by CO. In both systems the extents of Co inhibition were dependent on the CO/O2 ratio and were nearly equal at a given CO/O2 ratio. In the reconstituted heme oxygenase reaction using a highly purified heme oxygenase preparation the relationship between the intensity of light and the degree of reversal of the CO inhibition of heme degradation as expressed in terms of delta K/Kd was not linear, but the tentatively obtained photochemical action spectrum exhibited the peaks of reversal at about 420, 540, 570, and 640 nm and suggested the occurrence of at least two steps of CO inhibition in the overall sequence of heme degradation. One could be ascribed to protoheme and the other was supposed to be the 688 nm compound which is an intermediate locating between hydroxyheme and the biliverdin-iron complex in the sequence of heme degradation.  相似文献   

4.
The heme oxygenase (HO) reaction consists of three successive oxygenation reactions, i.e. heme to alpha-hydroxyheme, alpha-hydroxyheme to verdoheme, and verdoheme to biliverdin-iron chelate. Of these, the least understood step is the conversion of verdoheme to biliverdin-iron chelate. For the cleavage of the oxaporphyrin ring of ferrous verdoheme, involvement of a verdoheme pi-neutral radical has been proposed. To probe this hypothetical mechanism in the HO reaction, we performed electrochemical reduction of ferrous verdoheme complexed with rat HO-1 under anaerobic conditions. On the basis of the electrochemical spectral changes, the midpoint potential for the one-electron reduction of the oxaporphyrin ring of ferrous verdoheme was found to be -0.47+/-0.01 V vs the normal hydrogen electrode (NHE). Because this potential is far lower than those of both flavins of NADPH-cytochrome P450 reductase, and of NADPH, it is concluded that the one-electron reduction of the oxaporphyrin ring of ferrous verdoheme is unlikely to occur and that the formation of the pi-neutral radical cannot be the initial step in the degradation of verdoheme by HO. Rather, it appears more reasonable to consider an alternative mechanism in which binding of O(2) to the ferrous iron of verdoheme is the first step in the degradation of verdoheme.  相似文献   

5.
In this report we provide data, for the first time, demonstrating the conversion of the heme moiety of certain cytochrome P-450 and P-420 preparations, to biliverdin, catalyzed by heme oxygenase. We have used purified preparations of cytochromes P-450c, P-450b, P-450/P-420c, or P-450/P-420b as substrates in a heme oxygenase assay system reconstituted with heme oxygenase isoforms, HO-2 or HO-1, NADPH-cytochrome c (P-450) reductase, biliverdin reductase, NADPH, and Emulgen 911. With cytochrome P-450b or P-450/P-420b preparations, a near quantitative conversion of degraded heme to bile pigments was observed. In the case of cytochrome P-450/P-420c approximately 70% of the degraded heme was accounted for as bilirubin but only cytochrome P-420c was appreciably degraded. The role of heme oxygenase in this reaction was supported by the following observations: (i) bilirubin formation was not observed when heme oxygenase was omitted from the assay system; (ii) the rate of degradation of the heme moiety was at least threefold greater with heme oxygenase and NADPH-cytochrome c (P-450) reductase than that observed with reductase alone; and (iii) the presence of Zn- or Sn-protoporphyrins (2 microM), known competitive inhibitors of heme oxygenase, resulted in 70-90% inhibition of bilirubin formation.  相似文献   

6.
A tryptic peptide of heme oxygenase obtained after solubilization of rat liver microsomes by mild trypsin treatment was purified. The purified peptide gave only a single protein band with a molecular mass of 28 kDa on SDS/PAGE. The tryptic peptide, like the native heme oxygenase, readily bound with substrate heme forming a hemeprotein transiently. The absorption spectra of the ferric, ferrous, ferrous-CO and ferrous-O2 forms of the resulting complex resembled those of the corresponding forms of the complex of heme and the native enzyme. Ferric heme bound to the tryptic peptide was quantitatively decomposed to biliverdin on incubation with a mixture of ascorbic acid and desferrioxamine, indicating that the tryptic peptide still retained catalytic activity. These observations suggest that heme oxygenase has two domains, a hydrophilic and a hydrophobic domain, and that the two domains are folded almost independently of each other. An NADPH-cytochrome-P-450 reductase system composed of NADPH and detergent-solubilized NADPH-cytochrome-P-450 reductase readily reduced the ferric heme bound to the tryptic peptide, but failed to transfer the second electron required for rapid heme degradation, suggesting that the hydrophobic domain of heme oxygenase is important for receiving the second electron from the reductase.  相似文献   

7.
F P Guengerich 《Biochemistry》1983,22(12):2811-2820
A series of equilibrium and kinetic measurements involving the oxidation-reduction properties of purified rat liver NADPH-cytochrome P-450 reductase and eight different purified rat liver cytochromes P-450 (P-450s) were carried out. Apparent spin states of P-450 iron were determined in the absence and presence of a number of known substrates by using second-derivative and conventional near-UV absorbance spectroscopy. Many of the substrates examined did not produce significant changes in the apparent iron spin state, even when binding could be demonstrated with equilibrium dialysis. Further, the spin state was not correlated to catalytic activity of the P-450s in reconstituted enzyme systems. The oxidation-reduction potentials were determined for the ferric/ferrous couples of each of the eight P-450s in the presence and absence of known substrates, as well as other proteins suspected of altering the potentials. The midpoint potential (Em,7) ranged from -350 to -289 mV for the P-450s under these conditions. In some cases Em,7 was raised with the addition of substrates, but the extent of the increase was no greater than +33 mV. The Em,7 of one P-450 (P-450 beta NF/ISF-G) was not changed significantly when the fraction of high-spin iron varied between 11 and 67%. Steady-state spectral studies provided evidence for the accumulation of an oxygenated ferrous intermediate (or a derived product) of one P-450 (P-450PB-B) in the presence of a substrate, cyclohexane. Studies on the donation of electrons from cytochrome b5 and a series of dyes to this complex suggest that it has an effective Em,7 (for reduction) of approximately +50 mV. In studies with one of the P-450s, steady-state spectral studies indicated that the three-electron-reduced form of NADPH-P-450 reductase accumulates, consistent with the view that this form of the reductase is involved in the reduction of P-450 from the ferric to the ferrous state.  相似文献   

8.
Physiological heme degradation is mediated by the heme oxygenase system consisting of heme oxygenase and NADPH-cytochrome P-450 reductase. Biliverdin IX alpha is formed by elimination of one methene bridge carbon atom as CO. Purified NADPH-cytochrome P-450 reductase alone will also degrade heme but biliverdin is a minor product (15%). The enzymatic mechanisms of heme degradation in the presence and absence of heme oxygenase were compared by analyzing the recovery of 14CO from the degradation of [14C]heme. 14CO recovery from purified NADPH-cytochrome P-450 reductase-catalyzed degradation of [14C]methemalbumin was 15% of the predicted value for one molecule of CO liberated per mole of heme degraded. 14CO2 and [14C]formic acid were formed in amounts (18 and 98%, respectively), suggesting oxidative cleavage of more than one methene bridge per heme degraded, similar to heme degradation by hydrogen peroxide. The reaction was strongly inhibited by catalase, but superoxide dismutase had no effect. [14C]Heme degradation by the reconstituted heme oxygenase system yielded 33% 14CO. Near-stoichiometric recovery of 14CO was achieved after addition of catalase to eliminate side reactions. Near-quantitative recovery of 14CO was also achieved using spleen microsomal preparations. Heme degradation by purified NADPH-cytochrome P-450 reductase appeared to be mediated by hydrogen peroxide. The major products were not bile pigments, and only small amounts of CO were formed. The presence of heme oxygenase, and possibly an intact membrane structure, were essential for efficient heme degradation to bile pigments, possibly by protecting the heme from indiscriminate attack by active oxygen species.  相似文献   

9.
Nitric oxide (NO) is synthesized in mammals where it acts as a signal molecule for neurotransmission, vasorelaxation, and cytotoxicity. The NO synthases isolated from brain and cytokine-activated macrophages are FAD- and FMN-containing flavoproteins that display considerable sequence homology to NADPH-cytochrome P-450 reductase. However, the nature of their catalytic centers is unknown. We have found that both isoenzymes contain 2 mol of iron-protoporphyrin IX/mol of enzyme homodimer. The optical and EPR spectroscopic properties of the heme groups were found to be remarkably similar to those of high-spin cytochrome P-450. The heme iron in the resting NO synthase is ferric and five-coordinate with a cysteine thiolate as the proximal axial ligand. In addition, the EPR spectra of the resting NO synthases contained a free radical signal attributable to a bound flavin semiquinone that appeared to interact magnetically with the ferric heme iron. NO production was inhibited by carbon monoxide, implying a role for the heme groups in catalysis.  相似文献   

10.
The mechanism of the inactivation of the major phenobarbital-inducible isozyme of rat liver cytochrome P-450 (P-450 PB-B2) by chloramphenicol has been investigated. Preparations of the enzyme from animals treated in vivo with chloramphenicol (CAP PB-B2) have been isolated, and their catalytic, spectral, and physical properties have been compared with those of the native PB-B2. The CAP PB-B2 exhibited: 1) a 60-70% loss in the rate of NADPH-supported monooxygenase activity with the substrates benzphetamine, 7-ethoxycoumarin, and p-nitroanisole; 2) a 60% decrease in the extent of enzymatic P-450 reduction catalyzed by NADPH-cytochrome P-450 reductase under both aerobic and anaerobic conditions; 3) a 60% decrease in the steady-state level of the ferrous dioxygen complex in the presence of substrates; 4) a 60% decrease in the magnitude of the type I spectral change induced by benzphetamine; and 5) a shift in the wavelength maximum for the chemically reduced ferrous-carbonyl complex from 450 to 451.5 nm. On the other hand, the ability of the CAP PB-B2 to catalyze the iodosobenzene-supported metabolism of 7-ethoxycoumarin and p-nitroanisole was unaltered. The results are consistent with a scheme whereby the binding of metabolites of chloramphenicol to amino acid residues in the PB-B2 close to the heme moiety blocks electron transport from NADPH-cytochrome P-450 reductase, thereby leading to a loss of monooxygenase activity.  相似文献   

11.
The anaerobic reduction kinetics of purified rat liver ferric cytochrome P-450 from phenobarbital-treated rat liver microsomes, reconstituted with saturating NADPH-cytochrome P-450 reductase, have been investigated and were shown not to be monophasic. From experiments correlating changes in the rate of fast-phase reduction with the spin state of the heme iron existing at preequilibrium, data were obtained consistent with a model for spin-state control of cytochrome P-450 reduction wherein the high-spin form of the hemoprotein is more rapidly reduced than the low-spin form. In addition, the temperature dependence of the reduction process in the presence of the substrate benzphetamine was studied. From the results obtained it is suggested that the endothermic nature of the low- to high-spin transition largely accounts for the apparent activation energy observed for the reduction of high-spin cytochrome P-450 being relatively temperature insensitive when compared to the rate constant for reduction of the membrane-bound form of the hemoprotein.  相似文献   

12.
The H25C and H25Y mutants of human heme oxygenase-1 (hHO-1), in which the proximal iron ligand is replaced by a cysteine or tyrosine, have been expressed and characterized. Resonance Raman studies indicate that the ferric heme complexes of these proteins, like the complex of the H25A mutant but unlike that of the wild type, are 5-coordinate high-spin. Labeling of the iron with 54Fe confirms that the proximal ligand in the ferric H25C protein is a cysteine thiolate. Resonance-enhanced tyrosinate modes in the resonance Raman spectrum of the H25Y.heme complex provide direct evidence for tyrosinate ligation in this protein. The H25C and H25Y heme complexes are reduced to the ferrous state by cytochrome P450 reductase but do not catalyze alpha-meso-hydroxylation of the heme or its conversion to biliverdin. Exposure of the ferrous heme complexes to O2 does not give detectable ferrous-dioxy complexes and leads to the uncoupled reduction of O2 to H2O2. Resonance Raman studies show that the ferrous H25C and H25Y heme complexes are present in both 5-coordinate high-spin and 4-coordinate intermediate-spin configurations. This finding indicates that the proximal cysteine and tyrosine ligand in the ferric H25C and H25Y complexes, respectively, dissociates upon reduction to the ferrous state. This is confirmed by the spectroscopic properties of the ferrous-CO complexes. Reduction potential measurements establish that reduction of the mutants by NADPH-cytochrome P450 reductase, as observed, is thermodynamically allowed. The two proximal ligand mutations thus destabilize the ferrous-dioxy complex and uncouple the reduction of O2 from oxidation of the heme group. The proximal histidine ligand, for geometric or electronic reasons, is specifically required for normal heme oxygenase catalysis.  相似文献   

13.
Modification of cytochrome P-450 with fluorescein isothiocyanate   总被引:1,自引:0,他引:1  
Fluorescein isothiocyanate (FITC) has been shown to be selectively attached to the N-terminus of cytochrome P-450 LM2. The N-demethylase activity of cytochrome P-450 LM2 reconstituted systems modified in this way was inhibited by 25%. As revealed by CD measurements the overall conformation as well as the immediate heme environment of cytochrome P-450 LM2 remained unchanged after attachment of the FITC molecule. The binding affinity of modified cytochrome P-450 LM2 toward benzphetamine and aniline and the cumene hydroperoxide- or H2O2-supported N-demethylation of benzphetamine are maintained. However, the introduction of the electron via NADPH-cytochrome P-450 reductase (EC 1.6.2.4) is impaired after modification of the alpha-amino group. The extent of reduced modified cytochrome P-450 LM2 in the cytochrome P-450 reductase-supported reduction reaction is diminished and the half-time of the reduction is increased. The diminished reducibility is ascribed to steric hindrance of groups directly involved in the interaction between cytochrome P-450 LM2 and NADPH-cytochrome P-450 reductase or to blocking of the charge-pair interactions between the alpha-amino group of P-450 LM2 and the respective negatively charged group of NADPH-cytochrome P-450 reductase. By energy-transfer measurements distances between the heme and the alpha-amino group of 2.65 and 3.97 nm for the oligomeric and the monomeric forms of P-450 LM2, respectively, have been determined.  相似文献   

14.
Function and induction of the microsomal heme oxygenase   总被引:7,自引:0,他引:7  
Molecular and Cellular Biochemistry - The microsomal heme oxygenase system consists of heme oxygenase and NADPH-cytochrome P-450 reductase, and is considered to play a key role in the physiological...  相似文献   

15.
Purified rat liver microsomal cytochrome P-450 and NADPH-cytochrome P-450 reductase were co-reconstituted in phosphatidylcholine-phosphatidylethanolamine-phosphatidylserine vesicles by a cholate dialysis technique. Rotational diffusion of cytochrome P-450 was measured by detecting the decay of absorption anisotropy r(t), after photolysis of the heme X CO complex by a vertically polarized laser flash. All cytochrome P-450 was found to be rotationally mobile when co-reconstituted with equimolar amounts of NADPH-cytochrome P-450 reductase in lipid to cytochrome P-450 ((L/P450)) = 1 (w/w] vesicles. Antibodies against NADPH-cytochrome P-450 reductase were raised. Their specificity was demonstrated by Ouchterlony double diffusion analysis. Antireductase Fab fragments were prepared from antireductase IgG by papain digestion. The N-demethylation of benzphetamine, catalyzed by the proteoliposomes, was significantly inhibited by antireductase IgG and by antireductase Fab fragments. Cross-linking of NADPH-cytochrome P-450 reductase by antireductase IgG resulted in complete immobilization of cytochrome P-450 in L/P450 = 1 vesicles. Antireductase IgG also immobilized cytochrome P-450 in L/P450 = 5 vesicles, although the degree of immobilization was slightly smaller. No immobilization of cytochrome P-450 in L/P450 = 1 vesicles was detected in the presence of antireductase Fab fragments or preimmune IgG. These results further support the proposal of the formation of monomolecular complexes between cytochrome P-450 and NADPH-cytochrome P-450 reductase in liposomal membranes (Gut, J., Richter, C., Cherry, R.J., Winterhalter, K.H., and Kawato, S. (1982) J. Biol. Chem. 257, 7030-7036).  相似文献   

16.
Reduction of cytochrome P-450S21 (SF) (SF, substrate-free; purified from bovine adrenocortical microsomes) with sodium dithionite (Na2S2O4) in the presence of phenylisocyanide produced a ferrous cytochrome P-450S21 (SF)-phenylisocyanide complex with Soret absorbance maxima at 429 and 456 nm. On the other hand, when a preformed ferric cytochrome P-450S21 (SF)-NADPH-cytochrome-P-450 reductase (Fp2) complex was reduced chemically or enzymatically under the same conditions, the absorbance spectrum of the ferrous cytochrome P-450S21 (SF)-phenylisocyanide complex changed drastically, as characterized by an increase in absorbance intensity at 429 nm and a decrease at 456 nm. Similar spectral changes were observed by addition of reduced Fp2 to the preformed ferrous cytochrome P-450S21 (SF)-phenylisocyanide complex. Experiments to reduce a ferric cytochrome P-450S21 (SF)-phenylisocyanide complex with sodium dithionite in the presence of various amounts of Fp2 showed that; (1), the spectral change reached maxima for both absorption increase at 429 nm and decrease at 456 nm when cytochrome P-450S21 and Fp2 were previously mixed at the cytochrome P-450S21:Fp2 ratio of 1:5; (2), the spectral change was suppressed in 300 mM potassium phosphate buffer (pH 7.4). These results suggest that the absorbance spectral change is due to a conformational change around the heme moiety induced by association with reduced Fp2.  相似文献   

17.
T Iwase  T Sakaki  Y Yabusaki  H Ohkawa  Y Ohta  S Kawato 《Biochemistry》1991,30(34):8347-8351
Rat liver cytochrome P-450IA1 and/or yeast NADPH-cytochrome P-450 reductase was expressed genetically in yeast microsomes. The ratio of P-450IA1 to the reductase was about 17:1 and 1:2 without and with coexpression of the reductase, respectively. Rotational diffusion of P-450IA1 was examined by observing the flash-induced absorption anisotropy, r(t), of the heme.CO complex. In only P-450IA1-expressed microsomes, 28% of P-450IA1 was rotating with a rotational relaxation time (phi) of about 1200 microseconds. The mobile population was increased to 43% by the presence of the coexpressed reductase, while phi was not changed significantly. Increased concentration of KCl from 0 to 1000 mM caused considerable mobilization of P-450IA1. The results demonstrate a proper incorporation of P-450IA1 molecules into yeast microsomal membranes. The significant mobilization of P-450IA1 by the presence of reductase suggests a possible transient association of P-450IA1 with the reductase.  相似文献   

18.
Purified rat liver microsomal cytochrome P-450 and NADPH-cytochrome P-450 reductase were co-reconstituted in phosphatidylcholine-phosphatidylethanolamine-phosphatidylserine vesicles using a cholate dialysis technique. The co-reconstitution of the enzymes was demonstrated in proteoliposomes fractionated by centrifugation in a glycerol gradient. The proteoliposomes catalyzed the N-demethylation of a variety of substrates. Rotational diffusion of cytochrome P-450 was measured by detecting the decay of absorption anisotropy r(t), after photolysis of the heme.CO complex by a vertically polarized laser flash. The rotational mobility of cytochrome P-450, when reconstituted alone, was found to be dependent on the lipid to protein ratio by weight (L/P450) (Kawato, S., Gut, J., Cherry, R. J., Winterhalter, K. H., and Richter, C. (1982) J. Biol. Chem. 257, 7023-7029). About 35% of cytochrome P-450 was immobilized and the rest was rotating with a mean rotational relaxation time phi 1 of about 95 mus in L/P450 = 1 vesicle. In L/P450 = 10 vesicles, about 10% of P-450 was immobile and the rest was rotating with phi 1 congruent to 55 mus. Co-reconstitution of equimolar amounts of NADPH-cytochrome P-450 reductase into the above vesicles results in completely mobile cytochrome P-450 with a phi 1 congruent to 40 mus. Only a small decrease in the immobile fraction of cytochrome P-450 is observed when the molar ratio of cytochrome P-450 to the reductase is 5. The results suggest the formation of a monomolecular 1:1 complex between cytochrome P-450 and NADPH-cytochrome P-450 reductase in the liposomes.  相似文献   

19.
Adrenocortical NADPH-cytochrome P-450 reductase (EC. 1.6.2.4) was purified from bovine adrenocortical microsomes by detergent solubilization and affinity chromatography. The purified cytochrome P-450 reductase was a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, being electrophoretically homogeneous and pure. The cytochrome P-450 reductase was optically a typical flavoprotein. The absorption peaks were at 274, 380 and 45 nm with shoulders at 290, 360 and 480 nm. The NADPH-cytochrome P-450 reductase was capable of reconstituting the 21-hydroxylase activity of 17 alpha-hydroxyprogesterone in the presence of cytochrome P-45021 of adrenocortical microsomes. The specific activity of the 21-hydroxylase of 17 alpha-hydroxyprogesterone in the reconstituted system using the excess concentration of the cytochrome P-450 reductase, was 15.8 nmol/min per nmol of cytochrome P-45021 at 37 degrees C. The NADPH-cytochrome P-450 reductase, like hepatic microsomal NADPH-cytochrome P-450 reductase, could directly reduce the cytochrome P-45021. The physicochemical properties of the NADPH-cytochrome P-450 reductase were investigated. Its molecular weight was estimated to be 80 000 +/- 1000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analytical ultracentrifugation. The cytochrome P-450 reductase contained 1 mol each FAD and FMN as coenzymes. Iron, manganese, molybdenum and copper were not detected. The Km values of NADPH and NADH for the NADPH-cytochrome c reductase activity and those of cytochrome c for the activity of NADPH-cytochrome P-450 reductase were determined kinetically. They were 5.3 microM for NADPH, 1.1 mM for NADH, and 9-24 microM for cytochrome c. Chemical modification of the amino acid residues showed that a histidyl and cysteinyl residue are essential for the binding site of NADPH of NADPH-cytochrome P-450 reductase.  相似文献   

20.
The formation of bile pigment from heme by a reconstituted heme oxygenase system containing purified bovine spleen heme oxygenase, NADPH-cytochrome P-450 reductase, and biliverdin reductase was studied under an atmosphere containing 18,18O2. The product, bilirubin, was isolated and subjected to mass spectrometry, which revealed incorporation of 18O consistent with a two-molecule mechanism, whereby the product bile pigment contains oxygen atoms derived from two different oxygen molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号