首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The intestinal epithelium establishes and maintains a precise spatial organization despite its continuous and rapid renewal. We have used transgenic mice containing liver fatty acid-binding protein/human growth hormone (L-FABP/hGH) fusion genes to begin to define the molecular mechanisms which are responsible for appropriate regional and cell-specific expression of genes in the gut. Multilabel immunocytochemical methods were employed to characterize the patterns of expression of two transgenes in the enteroendocrine and enterocytic populations of late gestation fetal mice at the time of initial cytodifferentiation of the gastrointestinal epithelium (fetal days 16-19). Surveys of the enteroendocrine cell population using a panel of antibodies directed against 11 neuroendocrine products revealed that these cells are scarce prior to fetal day 17, show a progressive increase in number through day 19, and while the relative proportion of subpopulations (defined by their principal peptide product) are somewhat different than in adults, their geographic distribution along the duodenal to colonic and intervillus(crypt) to villus axes are very similar to that encountered in adult (2-5 month old) mice. Immunoreactive L-FABP is first detectable at fetal day 17 and at this time of first appearance shows an adult pattern of regional enterocytic expression: i.e. it is present in cells overlying nascent villi but not those in the intervillus zone, it is highest in proximal small bowel, declines distally, and is absent from colonocytes. Colocalization studies indicate that L-FABP is not present in enteroendocrine cells during fetal life. Mapping studies indicate that nucleotides -596 to +21 of the rat L-FABP gene are sufficient to reproduce an appropriate temporal, cellular, and regional pattern of reporter (hGH) expression in fetal transgenic mice (with the exception that a subset(s) of enteroendocrine cells, typically containing immunoreactive gastric inhibitory peptide, support transgene but not L-FABP expression). This is in marked contrast to adult transgenic mice where inappropriate hGH accumulation occurs in crypt-associated epithelial cells, in colonocytes, and in many enteroendocrine populations. These studies indicate the importance of considering developmental stage when interpreting the results of any mapping study of cis-acting elements that regulate cell-specific and regional expression of genes in the perpetually renewing intestinal epithelium. Moreover, they also raise the possibility of using transgenes to define fundamental temporal changes in the gut's epithelial cell populations.  相似文献   

2.
The gastrointestinal tract is lined with a monolayer of cells that undergo perpetual and rapid renewal. Four principal, terminally differentiated cell types populate the monolayer, enterocytes, goblet cells, Paneth cells, and enteroendocrine cells. This epithelium exhibits complex patterns of regional differentiation, both from crypt-to-villus and from duodenum-to-colon. The "liver" fatty acid binding protein (L-FABP) gene represents a useful model for analyzing the molecular basis for intestinal epithelial differentiation since it exhibits cell-specific, region-specific, as well as developmental stage specific expression. We have previously linked portions of the 5' nontranscribed domain of the rat L-FABP gene to the human growth hormone (hGH) gene and analyzed expression of the fusion gene in adult transgenic mice. High levels of hGH expression were noted in enterocytes as well as cells that histologically resembled enteroendocrine cells. In the present study, we have used immunocytochemical techniques to map the distribution of enteroendocrine cells in the normal adult mouse gut and to characterize those that synthesize L-FABP. In addition, L-FABP/hGH fusion genes were used to identify subsets of enteroendocrine cells based on their ability to support hGH synthesis in several different pedigrees of transgenic mice. The results reveal remarkable differences in transgene expression between, and within, enteroendocrine cell populations previously classified only on the basis of their neuroendocrine products. In some cases, these differences are related to the position occupied by cells along the duodenal-to-colonic and crypt-to-villus axes of the gut. Thus, transgenes appear to be sensitive tools for examining the cellular and regional differentiation of this class of intestinal epithelial cells.  相似文献   

3.
4.
The spatial, temporal, and hormonal pattern of expression of the β-casein gene is highly regulated and confined to the epithelial cells of the lactating mammary gland. Previous studies have shown that 1.7 kb of the bovine β-casein promoter were able to drive cell-specific and hormone-dependent expression to a mouse mammary cell line but failed to induce accurate expression to the mammary gland of transgenic mice. We investigated here the ability of 3.8 kb of the bovine β-casein gene promoter to drive the expression of the human growth hormone (hGH) gene in transgenic mice. A Northern blot analysis using total RNA obtained from different tissues of lactating and nonlactating females revealed the presence of hGH mRNA only in the mammary gland of lactating females. hGH mRNA was not detectable in the mammary gland of virgin females or males. A developmental analysis showed that hGH mRNA only peaked on parturition, resembling more closely the bovine β-casein temporal expression pattern rather than the murine. In situ hibridization studies performed on mammary gland sections showed that the cellular pattern of hGH expression was homogeneous in all lobules from heterozygous and homozygous transgenic mice. Silver grain counts on the tissue sections highly correlated with the hGH contents in the milk determined by radioimmunoassay (r = 0.996). Thus 3.8 kb of the bovine β-casein promoter direct a high-level expression of a reporter gene to the lactating mammary gland of transgenic mice in a tissue-specific and developmentally regulated manner. Mol. Reprod. Dev. 49:236–245, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
Transgenes consisting of segments of the rat liver fatty acid-binding protein (L-FABP) gene's 5' non-transcribed domain linked to the human growth hormone (hGH) gene (minus its regulatory elements) have provided useful tools for analyzing the mechanisms that regulate cellular and spatial differentiation of the continuously renewing gut epithelium. We have removed the jejunum from normal and transgenic fetal mice before or coincident with, cytodifferentiation of its epithelium. These segments were implanted into the subcutaneous tissues of young adult CBY/B6 nude mouse hosts to determine whether the bipolar, migration-dependent differentiation pathways of gut epithelial cells can be established and maintained in the absence of its normal luminal environment. Immunocytochemical analysis of isografts harvested 4-6 wk after implantation revealed that activation of the intact endogenous mouse L-FABP gene (fabpl) in differentiating enterocytes is perfectly recapitulated as these cells are translocated along the crypt-to-villus axis. Similarly, Paneth and goblet cells appear to appropriately differentiate as they migrate to the crypt base and villus tip, respectively. The enteroendocrine cell subpopulations present in intact 4-6-wk-old jejunum are represented in these isografts. Their precise spatial distribution along the crypt-to-villus axis mimics that seen in the intact gut. A number of complex interrelationships between enteroendocrine subpopulations are also recapitulated. In both "intact" and isografted jejunum, nucleotides -596 to +21 of the rat L-FABP gene were sufficient to direct efficient expression of the hGH reporter to enterocytes although precocious expression of the transgene occurred in cells located in the upper crypt, before their translocation to the villus base. Inappropriate expression of hGH occurred in a high percentage (greater than 80%) of secretin, gastrin, cholecystokinin, and gastric inhibitory peptide producing enteroendocrine cells present in the intact jejunum of 4-6-wk-old L-FABP-596 to +21/hGH transgenics. Addition of nucleotides -597 to -4,000 reduced the percentage of cells co-expressing this reporter four- to eightfold in several of the subpopulations. Jejunal isografts from each transgenic pedigree studied contained a lower percentage of hGH positive enteroendocrine cells than in the comparably aged intact jejunum.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
7.
The cytosolic phosphoenolpyruvate carboxykinase (PEPCK) gene is expressed in multiple tissues and is regulated in a complex tissue-specific manner. To map the cis-acting DNA elements that direct this tissue-specific expression, we made transgenic mice containing truncated PEPCK-human growth hormone (hGH) fusion genes. The transgenes contained PEPCK promoter fragments with 5' endpoints at -2088, -888, -600, -402, and -207 bp, while the 3' endpoint was at +69 bp. Immunohistochemical analysis showed that the -2088 transgene was expressed in the correct cell types (hepatocytes, proximal tubular epithelium of the kidney, villar epithelium of the small intestine, epithelium of the colon, smooth muscle of the vagina and lungs, ductal epithelium of the sublingual gland, and white and brown adipocytes). Solution hybridization of hGH mRNA expressed from the transgenes indicated that white and brown fat-specific elements are located distally (-2088 to -888 bp) and that liver-, gut-, and kidney-specific elements are located proximally (-600 to +69 bp). However, elements outside of the region tested are necessary for the correct developmental pattern and level of PEPCK expression in kidney. Both the -2088 and -402 transgenes responded in a tissue-specific manner to dietary stimuli, and the -2088 transgene responded to glucocorticoid stimuli. Thus, different tissues utilize distinct cell-specific cis-acting elements to direct and regulate the PEPCK gene.  相似文献   

8.
Nonviral gene transfer was investigated as a potential treatment of growth hormone deficiency (GHD) using hypophysectomized mice as a model. After a single hydrodynamic administration of naked plasmid DNA containing the human growth hormone (hGH) gene controlled by an ubiquitin promoter, sustained elevation of circulating hGH was observed the entire observation period (68 days), with a concomitant normalization of circulating insulin-like growth factor I (IGF-I) and IGF-binding protein-3. Furthermore, longitudinal growth was corrected in terms of normalization of tibia length, tail length, and body weight gain. Liver, spleen, and lung weights were normalized, whereas heart weight was normalized partly. hGH mRNA was expressed exclusively in liver tissue. In conclusion, we showed that nonviral hGH gene transfer normalizes longitudinal growth in hypophysectomized mice, indicating that this method potentially could be relevant as a new therapeutic tool in the clinical handling of GHD.  相似文献   

9.
《The Journal of cell biology》1989,109(6):3231-3242
The intestinal epithelium is a heterogeneous cell monolayer that undergoes continuous renewal and differentiation along the crypt-villus axis. We have used transgenic mice to examine the compartmentalization of a regulated endocrine secretory protein, human growth hormone (hGH), in the four exocrine cells of the mouse intestinal epithelium (Paneth cells, intermediate cells, typical goblet cells, and granular goblet cells), as well as in its enteroendocrine and absorptive (enterocyte) cell populations. Nucleotides -596 to +21 of the rat liver fatty acid binding protein gene, when linked to the hGH gene (beginning at nucleotide +3) direct efficient synthesis of hGH in the gastrointestinal epithelium of transgenic animals (Sweetser, D. A., D. W. McKeel, E. F. Birkenmeier, P. C. Hoppe, and J. I. Gordon. 1988. Genes & Dev. 2:1318-1332). This provides a powerful in vivo model for analyzing protein sorting in diverse, differentiating, and polarized epithelial cells. Using EM immunocytochemical techniques, we demonstrated that this foreign polypeptide hormone entered the regulated basal granules of enteroendocrine cells as well as the apical secretory granules of exocrine Paneth cells, intermediate cells, and granular goblet cells. This suggests that common signals are recognized by the "sorting mechanisms" in regulated endocrine and exocrine cells. hGH was targeted to the electron-dense cores of secretory granules in granular goblet and intermediate cells, along with endogenous cell products. Thus, this polypeptide hormone contains domains that promote its segregation within certain exocrine granules. No expression of hGH was noted in typical goblet cells, suggesting that differences exist in the regulatory environments of granular and typical goblet cells. In enterocytes, hGH accumulated in dense-core granules located near apical and lateral cell surfaces, raising the possibility that these cells, which are known to conduct constitutive vesicular transport toward both apical and basolateral surfaces, also contain a previously unrecognized regulated pathway. Together our studies indicate that transgenic mice represent a valuable system for analyzing trafficking pathways and sorting mechanisms of secretory proteins in vivo.  相似文献   

10.
Our laboratory reported previously that chimeric genes encoding either rat somatostatin (SS) or human GH (hGH), but containing the identical mouse metallothionein-I (MT) promoter/enhancer sequences and hGH 3'-flanking sequences, were selectively expressed in the gonadotrophs of transgenic mice. The experiments reported here were designed to identify the DNA sequences responsible for this unexpected cell-specific expression within the anterior pituitary. We produced new transgenic mice expressing fusion genes that tested separately the requirement of the MT or 3'-hGH sequences for gonadotroph expression. A fusion gene that retained the original MT and SS sequences, with a simian virus 40 polyadenylation signal exchanged for the 3'-hGH sequences, no longer directed strong pituitary expression, but was active in the liver. In contrast, a cytomegalovirus promoter/enhancer-SS-hGH fusion gene was expressed at the same high level in the anterior pituitaries of transgenic mice as the originally studied MT-SS-hGH gene. Immunohistochemical analysis indicated that pituitary expression of the cytomegalovirus promoter/enhancer-SS-hGH fusion gene was also restricted to gonadotroph cells in adult mice. These studies indicate that sequences within the 3'-flanking region of the hGH gene can direct expression of chimeric genes to pituitary cells that do not normally produce growth hormone.  相似文献   

11.
12.
13.
14.
Her GM  Chiang CC  Chen WY  Wu JL 《FEBS letters》2003,538(1-3):125-133
Mammalian liver fatty acid binding protein (L-FABP) is a small cytosolic protein in various tissues including liver, small intestine and kidney and is thought to play a crucial role in intracellular fatty acid trafficking and metabolism. To better understand its tissue-specific regulation during zebrafish hepatogenesis, we isolated 5'-flanking sequences of the zebrafish L-FABP gene and used a green fluorescent protein (GFP) transgenic strategy to generate liver-specific transgenic zebrafish. The 2.8-kb 5'-flanking sequence of zebrafish L-FABP gene was sufficient to direct GFP expression in liver primordia, first observed in 2 dpf embryos and then continuously to the adult stage. This pattern of transgenic expression is consistent with the expression pattern of the endogenous gene. F2 inheritance rates of 42-51% in all the seven transgenic lines were consistent with the ratio of Mendelian segregation. Further, hhex and zXbp-1 morphants displayed a visible liver defect, which suggests that it is possible to establish an in vivo system for screening genes required for liver development.  相似文献   

15.
Transgenic mice were used to investigate sequences within the promoter of the gene for the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) from the rat (EC 4.1.1.32) (PEPCK) which are involved in tissue-specific and developmental regulation of gene expression. Segments of the PEPCK promoter between -2000 and -109 were linked to the structural gene for bovine growth hormone (bGH) and introduced into the germ line of mice by microinjection. Bovine growth hormone mRNA was found in tissues that express the endogenous PEPCK gene, mainly in the liver but to a lesser extent in the kidney, adipose tissue, small intestine, and mammary gland. In the liver the chimeric PEPCK/bGH(460) gene was expressed in periportal cells, which is consistent with the zonation of endogenous PEPCK. The PEPCK/bGH gene was not transcribed in the livers of fetal mice until immediately before birth; at birth the concentration of bGH mRNA increased 200-fold. Our results indicate that the region of the PEPCK promoter from -460 to +73 base pairs contains regulatory sequences required for tissue-specific and developmental regulation of PEPCK gene expression. Mice transgenic for PEPCK/bGH(460) were not hyperglycemic or hyperinsulinemic in response to elevated bGH, as were transgenic mice with the MT/bGH gene. The number of insulin receptors in skeletal muscle was no different in mice transgenic for MT/bGH when compared with mice transgenic for PEPCK/bGH(460) and control animals. However, mRNA abundance for the insulin-sensitive glucose transporter in skeletal muscle was decreased in mice transgenic for the MT/bGH gene. The differences in glucose homeostasis noted with the two types of transgenic mice may be the result of the relative site of expression, the different developmental pattern, or hormonal regulation of expression of the bGH gene.  相似文献   

16.
17.
The mouse intestinal epithelium is able to establish and maintain complex lineage-specific, spatial, and temporal patterns of gene expression despite its rapid and continuous renewal. A multipotent stem cell located near the base of each intestinal crypt gives rise to progeny which undergo amplification and allocation to either enterocytic, Paneth cell, goblet cell, or enteroendocrine cell lineages. Differentiation of these four lineages occurs during their geographically ordered migration along the crypt-villus axis. Gut stem cells appear to have a "positional address" which is manifested by differences in the differentiation programs of their lineal descendants along the duodenal-colonic (cephalocaudal) axis. We have used the intestinal fatty acid binding protein gene (Fabpi) as a model to identify cis-acting elements which regulate cell- and region-specific patterns of gene expression in the gut. Nucleotides -1178 to +28 of rat Fabpi direct a pattern of expression of a reporter (human growth hormone [hGH]) which mimics that of mouse Fabpi (a) steady-state levels of hGH mRNA are highest in the distal jejunum of adult transgenic mice and fall progressively toward both the duodenum and the mid-colon; and (b) hGH is confined to the enterocytic lineage and first appears as postmitotic, differentiating cells exit the crypt and migrate to the base of small intestinal villi or their colonic homologs, the surface epithelial cuffs. Nucleotides -103 to +28, which are highly conserved in rat, mouse and human Fabpi, are able to correctly initiate transgene expression in late fetal life, restrict hGH to the enterocytic lineage, and establish an appropriate cephalocaudal gradient of reporter expression. This cephalocaudal gradient is also influenced by cis-acting elements located between nucleotides -1178 and -278, and -277 and -185 that enhance and suppress (respectively) expression in the ileum and colon and by element(s) located upstream of nucleotide -277 that are needed to sustain high levels of hGH production after weaning. Nucleotides -277 to -185 contain part of a domain conserved between the three orthologous Fabpi genes (nucleotides -240 to -159), a 24-bp element (nucleotides -212 to -188) that binds nuclear factors present in colonic but not small intestinal epithelial cells, and a portion of a CCAAT/enhancer binding protein footprint (C/EBP alpha, nucleotides -188 to -167). Removal of nucleotides -277 to -185 (yielding I-FABP-184 to +28/hGH+3) results in inappropriate expression of hGH in proliferating and nonproliferating epithelial cells located in the mid and upper portions of duodenal, jejunal, ileal, and colonic crypts without affecting the "shape" of the cephalocaudal gradient of transgene expression.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
19.
We have determined the expression pattern of the A-raf proto-oncogene in the embryonic and adult mouse. Western blot analysis of protein lysates from tissues of adult mice show that p69A-raf is ubiquitously expressed, but that levels of expression vary among different tissues. To determine the cell-specific expression pattern of A-raf, we generated transgenic mice expressing the beta-galactosidase reporter gene from the A-raf promoter. We show that A-raf expression is highly specific within a given tissue, and we identify cell types expressing this gene in the adult testis, epididymis, vas deferens, seminal vesicle, ovary, oviduct, bladder, kidney, intestine, heart, spleen, thymus, and cerebellum. In the embryo, ubiquitous expression of the reporter gene is observed, but the highest levels of expression are specifically detected in the embryonic heart at stages 9.5-11.5 days post-coitum.  相似文献   

20.
The four principal cellular constituents of the mouse intestinal epithelium are all derived from a multipotent stem cell functionally anchored near the base of its crypts. Differentiation of enterocytes, enteroendocrine, and goblet cells occurs during an orderly upward migration from monoclonal crypts supplied by a single active stem cell to adjacent polyclonal small intestinal villi or to their colonic homologs, the surface epithelial cuffs. Paneth cells differentiate as they descend to the base of crypts. This epithelium undergoes rapid and perpetual renewal yet is able to maintain cephalocaudal (duodenal-to-colonic) differences in the differentiation programs of its four cell types from the time of its initial cytodifferentiation in late fetal life (embryonic (E) days 16-17). Rat liver fatty acid-binding protein/human growth hormone transgenes (Fabpl/hGH) have been used as novel phenotypic markers to describe the biological properties of gut stem cells and the differentiation programs of their enterocytic and enteroendocrine lineages. To determine whether the multipotent stem cell is able to retain a "positional" address in the absence of luminal signals, we prepared isografts from the proximal small intestine or distal small intestine and colon of E15-E16 Fabpl/hGH transgenic mice and their normal littermates and implanted them into the subcutaneous tissues of young, adult male CBY/B6 nude mice. Immunocytochemical and histochemical studies indicate that appropriate position-specific differences in the differentiation programs of each of the four principal cell lineages are present along the cephalocaudal and crypt-to-villus (or crypt-to-epithelial cuff) axes of isografts harvested 4-6 weeks after implantation. This suggests that the gut stem cell can be characterized not only by its multipotency and enormous capacity for self-renewal but also by its ability to be programmed (? imprinted) with positional information. Transgene expression is reduced in a number of enteroendocrine subpopulations in small intestinal and colonic isografts compared to the intact gut. Moreover, the decision to express the Fabpl/hGH transgene appears to be coordinated between adjacent crypts as evidenced by (i) the presence of multicrypt patches of wholly reporter (hGH)-positive or reporter-negative cells in the intact colon and in colonic isografts and (ii) by the presence of coherent bands of reporter-positive or -negative cells that emanate from adjacent monophenotypic crypts and extend to the apical extrusion zone of distal small intestinal villi.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号