共查询到20条相似文献,搜索用时 0 毫秒
1.
We describe here the cloning of 12 (7 dinucleotide, 1 trinucleotide and 4 tetranucleotide) microsatellite loci for the Galápagos marine iguana Amblyrhynchus cristatus. When tested for individuals from five different island populations on the Galápagos archipelago, high genetic diversities (9–20 alleles per locus) and heterozygosities (0.200–0.944) were observed. All loci showed no obvious deviations from Hardy–Weinberg equilibrium. The new set of microsatellite loci was able to assign individuals reliably to their island of origin, thus being able to discriminate between residents and migrants between islands. 相似文献
2.
Hybridization plays an important role in the evolution of some of the vertebrate taxa on the Galápagos Islands, such as the Darwin finches. Conversely, only a single possible hybrid between the Galápagos marine iguana ( Amblyrhynchus ) and the land iguana ( Conolophus ) has been reported from the island Plaza Sur. In this paper, the hybrid status of a morphologically unusual iguana from this island is confirmed, using restriction fragment length polymorphism (RFLP) analyses of the nuclear ribosomal DNA (rDNA). Sequencing of the hybrid's mitochondrial cytochrome b gene revealed that it was the offspring of a female land iguana and a male marine iguana. Preliminary molecular analyses of morphologically typical marine and land iguanas from Plaza Sur did not detect introgression of nuclear or mitochondrial markers between species. The potential significance of hybridization for the evolution of the Plaza Sur iguana populations is discussed. 相似文献
3.
M. J. JAMES 《Biological journal of the Linnean Society. Linnean Society of London》1984,21(1-2):77-95
Endemism is not as common in the marine invertebrate fauna of the Galápagos Islands region as in the adjacent terrestrial biota. Marine invertebrates in the Galápagos are largely cosmopolitan species from the Panamic, Indo-Pacific, Californian, or Peruvian faunal provinces. However, an endemic component is also present in the fauna. The observed pattern among marine invertebrate organisms can be accounted for by at least two processes: (1) genetic continuity between mainland and island populations mediated through planktonic larvae; and (2) lower rates of intrinsic evolutionary change. The evolutionary scenario standardly applied to terrestrial organisms in the Galápagos, namely, adaptive radiation and speciation in reproductive isolation from mainland source populations, does not apply to all marine invertebrates. Evidence in support of the alternative scenario for marine invertebrates comes from both published records of species occurring in the islands and recent studies of fossil-bearing deposits on several islands in the archipelago. Two misconceptions–considering the islands and sedimentary deposits to be older than now thought, and equating the rate of evolution of the terrestrial biota with the marine biota–can lead to an incorrect interpretation of evolution in the Galápagos Contrasts between marine invertebrate and terrestrial organisms serve to illustrate some fundamental differences which have important evolutionary implications. Some of these are: endemism; dispersal; taxonomic relationships; island definitions; rates of evolutionary change; and age of fossils. In terms of Darwin's evolutionary scenario, terrestrial organisms represent the paradigm and marine organisms represent the paradox. 相似文献
4.
Ontogenetic changes in food intake and digestion rate of the herbivorous marine iguana (Amblyrhynchus cristatus,Bell) 总被引:1,自引:0,他引:1
Young reptiles have higher relative energy demands than adults, but the proposed ontogenetic changes in diet to fulfil these demands were not found in the algae-eating Galápagos marine iguanas on Santa Fé. Feeding and digestion rates were investigated to analyse how young achieve higher energy intake. Daily food intake of free ranging marine iguana hatchlings (6–11 months old) was about one third that of adults, but relative intake (g dry mass · g–1 wet mass · day–1) was four times higher in the hatchlings. During feeding experiments, relative daily food intake of hatchling marine iguanas was approximately three times higher than that of adults (0.042 vs 0.013 g dry mass · g–0.8 wet mass · day–1), and mean gut passage time was two times shorter (5 vs 10 days). The hatchlings also maintained high body temperatures (36.7° C) even under relatively cool day-time air temperatures of 32° C. Apparent digestibility of algal food measured both during feeding trials and by Mn2+ AAS (atomic absorption spectrometry) for free-ranging iguanas was 70%, independent of body size and temperature. The red algae prevailing in the diet were high in protein (30% dry mass) and energy (12.1 kJ/g dry mass). Diving iguanas had higher rates of energy intake than intertidal foragers, but daily intake was less. Maintenance of high body temperature enabled hatchlings to achieve high digestion rates and, combined with high relative intake, thus achieve sufficient energy intake for rapid growth despite higher mass specific metabolic rates. Estimates of biomass of marine iguanas and their algal food are given for a section of coastline on Santa Fé. 相似文献
5.
King TL Switzer JF Morrison CL Eackles MS Young CC Lubinski BA Cryan P 《Molecular ecology》2006,15(14):4331-4359
Zapus hudsonius preblei, listed as threatened under the US Endangered Species Act (ESA), is one of 12 recognized subspecies of meadow jumping mice found in North America. Recent morphometric and phylogenetic comparisons among Z. h. preblei and neighbouring conspecifics questioned the taxonomic status of selected subspecies, resulting in a proposal to delist the Z. h. preblei from the ESA. We present additional analyses of the phylogeographic structure within Z. hudsonius that calls into question previously published data (and conclusions) and confirms the original taxonomic designations. A survey of 21 microsatellite DNA loci and 1380 base pairs from two mitochondrial DNA (mtDNA) regions (control region and cytochrome b) revealed that each Z. hudsonius subspecies is genetically distinct. These data do not support the null hypothesis of a homogeneous gene pool among the five subspecies found within the southwestern portion of the species' range. The magnitude of the observed differentiation was considerable and supported by significant findings for nearly every statistical comparison made, regardless of the genome or the taxa under consideration. Structuring of nuclear multilocus genotypes and subspecies-specific mtDNA haplotypes corresponded directly with the disjunct distributions of the subspecies investigated. Given the level of correspondence between the observed genetic population structure and previously proposed taxonomic classification of subspecies (based on the geographic separation and surveys of morphological variation), we conclude that the nominal subspecies surveyed in this study do not warrant synonymy, as has been proposed for Z. h. preblei, Z. h. campestris, and Z. h. intermedius. 相似文献
6.
A. Tonteri A. Je. Veselov† S. Titov ‡ J. Lumme § C. R. Primmer 《Journal of fish biology》2007,70(SC):381-398
The genetic diversity of anadromous and freshwater Atlantic salmon ( Salmo salar ) populations from north-west Russia and other north European locations was compared using microsatellite variation to evaluate the importance of anadromous migration, population size and population glacial history in determining population genetic diversity and divergence. In anadromous Atlantic salmon populations, the level of genetic diversity was significantly higher and the level of population divergence was significantly lower than among the freshwater Atlantic salmon populations, even after correcting for differences in stock size. The phylogeographic origin of the populations also had a significant effect on the genetic diversity characteristics of populations: anadromous populations from the basins of the Atlantic Ocean, White Sea and Barents Sea possessed higher levels of genetic diversity than anadromous populations from the Baltic Sea basin. Among the freshwater populations, the result was the opposite: the Baltic freshwater populations were more variable. The results of this study imply that differences in the level of long-term gene flow between freshwater populations and anadromous populations have led to different levels of genetic diversity, which was also evidenced by the hierarchical analysis of molecular variance. Furthermore, the results emphasize the importance of taking the life history of a population into consideration when developing conservation strategies: due to the limited possibilities for new genetic diversity to be generated via gene flow, it is expected that freshwater Atlantic salmon populations would be more vulnerable to extinction following a population crash. Hence, high conservation status is warranted in order to ensure the long-term survival of the limited number of European populations with this life-history strategy. 相似文献
7.
Phylogeography and recent emergence of the Old World screwworm fly, Chrysomya bezziana, based on mitochondrial and nuclear gene sequences 总被引:3,自引:3,他引:0
P. D. READY J. M. TESTA A. H. WARDHANA M. AL-IZZI M. KHALAJ and M. J. R. HALL 《Medical and veterinary entomology》2009,23(S1):43-50
Abstract. A previous study had identified an African and an Asian race of the Old World screwworm fly, Chrysomya bezziana Villeneuve (Diptera: Calliphoridae), based on the 3' terminal 279 basepairs (bp) of the mitochondrial cytochrome b gene. The current study improved the phylogeographic resolution of cytochrome b for this species by characterizing more of the gene (the 3' terminal 715 bp) and by sampling more geographical populations, including Oman, Iran, Hong Kong and the Indonesian islands of Sulawesi and East Sumba. Strong support was found for recognizing an African race, but not for a monophyletic Asian race. The cladistic and genealogical relationships among the Asian populations were complex. There was sufficient genetic homogeneity throughout separate regions (mainland Asia and each Indonesian island) to suggest that there are no reproductive barriers within each region that might necessitate the production of more than one strain for control by the sterile insect technique (SIT). Primers were designed for the amplification by polymerase chain reaction of two nuclear loci, the highly conserved elongation factor-1α gene and the less conserved white gene, and the preliminary results indicated that these genes showed the same pattern of small-scale regional variation as cytochrome b . The cytochrome b haplotypes are useful markers for identifying the geographical origins of any emerging infestations of the species: the absence of Indonesian and African haplotypes in the Middle East demonstrates that the large-scale transport of livestock is not spreading Old World screwworm. 相似文献
8.
F. Stefani P. Galli S. Zaccara G. Crosa 《Journal of Zoological Systematics and Evolutionary Research》2004,42(4):323-331
A phylogeographic analysis of 12 populations of Telestes muticellus was performed on the basis of mitochondrial DNA sequences of the cytochrome b gene. The main aims were to determine phylogenetic relationships from congener species and to highlight the patterns of genetic differentiation within the Italian peninsula. The results obtained showed a significant divergence with the congener species, indicating a possible Miocene origin for the genus. Divergence was found to be low for T. muticellus , yet distinct lineages resulted as being allopatric within the two main Italian biogeographic districts, the Padano-Venetian and the Tuscano-Latium, suggesting the existence of recent vicariance coupled with past demographic regression. The high level of genetic differentiation found between populations highlighted the low dispersal ability of this rheophilic Cyprinid, whose migration was mainly related to connections between the upper parts of river basins. The distribution of sequence characteristics found suggests that particular attention should be paid to the conservation management of this species. 相似文献
9.
The Steller's sea lion Eumetopias jubatus is an endangered marine mammal that has experienced dramatic population declines over much of its range during the past five decades. Studies using mitochondrial DNA (mtDNA) have shown that an apparently continuous population includes a strong division, yielding two discrete stocks, western and eastern. Based on a weaker split within the western stock, a third Asian stock has also been defined. While these findings indicate strong female philopatry, a recent study using nuclear microsatellite markers found little evidence of any genetic structure, implying extensive paternal gene flow. However, this result was at odds with mark–recapture data, and both sample sizes and genetic resolution were limited. To address these concerns, we increased analytical power by genotyping over 700 individuals from across the species' range at 13 highly polymorphic microsatellite loci. We found a clear phylogenetic break between populations of the eastern stock and those of the western and Asian stocks. However, our data provide little support for the classification of a separate Asian stock. Our findings show that mtDNA structuring is not due simply to female philopatry, but instead reflects a genuine discontinuity within the range, with implications for both the phylogeography and conservation of this important marine mammal. 相似文献
10.
Trans-Arctic dispersals and population and range expansions during the Pleistocene enhanced opportunities for evolutionary diversification and contributed to the process of speciation within the capelin, a northern marine-fish complex exhibiting a circumpolar distribution. Capelin is composed of four highly divergent and geographically discrete mitochondrial DNA (mtDNA) clades (609 bp; cytochrome b). Two clades occur in the North Atlantic, one associated with Canadian Atlantic waters, including Hudson Bay, and the second distributed from West Greenland to the Barents Sea. Two additional clades occur in the Arctic and northeast Pacific Oceans, representing the most recent divergence within the capelin phylogenetic tree. Judged from mtDNA diversity, capelin populations comprising all clades experienced at least one demographic and spatial reduction-expansion episode during recent Pleistocene glaciations that imprinted their molecular architecture. The large contemporary populations in the northeast Pacific and Arctic Oceans exhibited significant genetic structure whereas no such structure was detected in the equally extensive North Atlantic clades. All clades are characterized by one or two prevalent mtDNA haplotypes distributed over the entire range of the clade. Assuming a Pacific ancestor for capelin, we infer that capelin dispersed on two separate occasions to the North Atlantic. A more recent event resulted in the isolation of eastern Pacific and Arctic clades, with the Arctic clade positioned for a potential third Atlantic invasion, as revealed by the presence of this clade in the Labrador Sea. The Labrador Sea is a potential contact zone for three of the four capelin clades. 相似文献
11.
S. P. Yasuda S. Minato K. Tsuchiya H. Suzuki 《Journal of Zoological Systematics and Evolutionary Research》2007,45(2):155-162
The sequences of the mitochondrial cytochrome b gene and restriction site variation in the spacer region of the nuclear ribosomal RNA gene [rDNA-restriction fragment length polymorphism (RFLP)] were analysed to determine the phylogeographic structure of the Japanese dormouse ( Glirulus japonicus ), which is threatened by deforestation and has been designated an endangered species in Japan. The phylogenetic tree of cytochrome b grouped G. japonicus into six geographical populations: north-eastern Honshu (I), central Honshu (II), west-central Honshu/Kii Peninsula (III), western Honshu (IV), Shikoku (V), and westernmost Honshu/Kyushu (VI); the genetic distances among these groups suggest divergence in the Late Tertiary. The lineage of group VI was located at the basal position in the phylogenetic tree, followed by the radiation of the other lineages. An rDNA-RFLP analysis of 15 restriction sites roughly supported such genetic isolation; groups I, II, III, IV, V and VI have five, two, one, one, one and four unique restriction sites, respectively, revealing four geographic groups as cryptic species: I, II, III + IV + V and VI. Our results reveal the ancient divergences of the local population, which has a complicated evolutionary history, and should be useful in developing a framework for the conservation of this species. 相似文献
12.
Analysis of genetic diversity of domestic water buffaloes and anoas based on variations in the mitochondrial gene for cytochrome b 总被引:6,自引:0,他引:6
There are two major groups of domestic water buffaloes in East and Southeast Asia: swamp buffaloes and river buffaloes. Genetic diversity among swamp and river buffaloes was studied by DNA sequence analysis of the mitochondrial gene for cytochrome b. The results showed that each of the two groups has mitochondrial DNA (mtDNA) with a specific cytochrome b haplotype. The pairwise nucleotide sequence divergence was calculated to be 2·67% between swamp and river buffaloes, suggesting that they might have diverged from the ancestral populations of Asiatic domestic water buffaloes, approximately 1 million years ago. In addition, the sequences of the same gene from three subspecies of anoa (lowland, mountain and quarles anoa) were determined and compared with that of a domestic water buffalo. The sequence divergence was 1·2% for mountain anoa vs quarles anoa, 3·6% for mountain anoa vs lowland anoa and 3·3% for quarles anoa vs lowland anoa. Moreover, the sequence divergence between water buffaloes and anoas was found to be approximately 3·33%. Our results provide molecular evidence to support the taxonomic classification, namely, that Asiatic buffaloes may be classified into four lineages, swamp buffalo, river buffalo, lowland anoa and mountain plus quarles anoa. However, the sequence divergence values among these four groups were lower than the sequence divergence values found in the genus and subgenus levels within the subfamily Bovinae. In particular, in contrast to some proposed taxonomic classifications, our results indicated that mtDNA in the water buffaloes and anoas did not diverge at the genus level. 相似文献
13.
The household is a species-characteristic system of social, spatial, and material relations in which an individual interacts with and adjusts to his habitat. Genetically, the household can be viewed as that system and systems level in which individuals coordinate genetic and energetic investments in lineal and collateral descendants, and in which generational cohorts coordinate individual investments in their own and allied lineages. Elsewhere we have reviewed household organizations from the standpoint of behavior in evolution. Here we discuss (1) the utility of the household as an analytic concept which bridges behavior and genetics; (2) the systematic ways in which households influence kin recognition and mate choice; and (3) variation in genetic structure of household across cultures, which remains largely unexamined: —attention to such variation in conjunction with analysis of differences in household organization should yield insights into behavioral regulation of genetic exchange and the role of the household in determining local population structure. 相似文献
14.
Evolutionary mechanisms shaping the genetic population structure of marine fishes; lessons from the European flounder (Platichthys flesus L.) 总被引:1,自引:2,他引:1
A number of evolutionary mechanisms have been suggested for generating low but significant genetic structuring among marine fish populations. We used nine microsatellite loci and recently developed methods in landscape genetics and coalescence-based estimation of historical gene flow and effective population sizes to assess temporal and spatial dynamics of the population structure in European flounder (Platichthys flesus L.). We collected 1062 flounders from 13 localities in the northeast Atlantic and Baltic Seas and found temporally stable and highly significant genetic differentiation among samples covering a large part of the species' range (global F(ST) = 0.024, P < 0.0001). In addition to historical processes, a number of contemporary acting evolutionary mechanisms were associated with genetic structuring. Physical forces, such as oceanographic and bathymetric barriers, were most likely related with the extreme isolation of the island population at the Faroe Islands. A sharp genetic break was associated with a change in life history from pelagic to benthic spawners in the Baltic Sea. Partial Mantel tests showed that geographical distance per se was not related with genetic structuring among Atlantic and western Baltic Sea samples. Alternative factors, such as dispersal potential and/or environmental gradients, could be important for generating genetic divergence in this region. The results show that the magnitude and scale of structuring generated by a specific mechanism depend critically on its interplay with other evolutionary mechanisms, highlighting the importance of investigating species with wide geographical and ecological distributions to increase our understanding of evolution in the marine environment. 相似文献
15.
Polyploidy and gametophytic apomixis are two important and associated processes in plants. Many hawthorn species are polyploids and can reproduce both sexually and apomictically. However, the population genetic structure of these species is poorly understood. Crataegus douglasii is represented exclusively by self-compatible tetraploid pseudogamous apomicts across North America, whereas Crataegus suksdorfii found in the Pacific Northwest is known to include self-incompatible diploid sexuals as well as polyploid apomicts. We compare population structure and genetic variability in these two closely related taxa using microsatellite and chloroplast sequence markers. Using 13 microsatellite loci located on four linkage groups, 251 alleles were detected in 239 individuals sampled from 15 localities. Within-population multilocus genotypic variation and molecular diversity are greatest in diploid sexuals and lowest in triploid apomicts. Apart from the isolation of eastern North American populations of C. douglasii , there is little evidence of isolation by distance in this taxon. Genetic diversity in western populations of C. douglasii suggests that gene flow is frequent, and that colonization and establishment are often successful. In contrast, local populations of C. suksdorfii are more markedly differentiated. Gene flow appears to be limited primarily by distance in diploids and by apomixis and self-compatibility in polyploids. We infer that apomixis and reproductive barriers between cytotypes are factors that reduce the frequency of gene flow among populations, and may ultimately lead to allopatric speciation in C. suksdorfii . Our findings shed light on evolution in woody plants that show heterogeneous ploidy levels and reproductive systems. 相似文献
16.
Narrow endemics are at risk from climate change because of their restricted habitat
preferences, lower colonization ability and dispersal distances. Landscape genetics
combines new tools and analyses that allow us to test how both past and present landscape
features have facilitated or hindered previous range expansion and local migration
patterns, and thereby identifying potential limitations to future range shifts. We have
compared current and historic habitat corridors in Cirsium pitcheri, an endemic
of the linear dune ecosystem of the Great Lakes, to determine the relative contributions
of contemporary migration and post-glacial range expansion on genetic structure. We used
seven microsatellite loci to characterize the genetic structure for 24 populations of
Cirsium pitcheri, spanning the center to periphery of the range. We tested
genetic distance against different measures of geographic distance and landscape
permeability, based on contemporary and historic landscape features. We found moderate
genetic structure (Fst=0.14), and a north–south pattern to the distribution
of genetic diversity and inbreeding, with northern populations having the highest
diversity and lowest levels of inbreeding. High allelic diversity, small average pairwise
distances and mixed genetic clusters identified in Structure suggest that populations in
the center of the range represent the point of entry to the Lake Michigan and a refugium
of diversity for this species. A strong association between genetic distances and
lake-level changes suggests that historic lake fluctuations best explain the broad
geographic patterns, and sandy habitat best explains local patterns of movement. 相似文献
17.
Styela clava , an ascidian native to the northwest Pacific, was first recorded in the Atlantic at Plymouth, southwest England, in 1953. It now ranges in the northeast Atlantic from Portugal to northern Denmark, and has colonized the east coast of North America. Within the region of first introduction, we aimed to characterize current genetic diversity in the species, elucidate the respective roles of human-aided vs. natural dispersal, and assess the extent of larval dispersal by looking for genetic differentiation at very small scales. Eight sites, mostly marinas, were studied along c . 200 km of coast in southwest England encompassing Plymouth. Five microsatellite loci were genotyped in 303 individuals to analyse gene flow at regional (among sites) and fine (within sites) scales. F -statistics and assignment tests were used to investigate regional genetic structure. At the fine scale, deviation from mutation–drift equilibrium was tested, and isolation by distance and genetic clustering analyses were undertaken. Significant genetic differentiation existed between sites, unrelated to geographical separation; migration between geographically distant marinas was inferred, highlighting the likely importance of human-mediated dispersal in range expansion and occupancy by S. clava . Fine-scale population structure was present within at least four sites, which may be explained by the limited dispersal ability of this ascidian and recruitment from differentiated pools of larvae. Populations in enclosed marinas had higher self-recruitment rates than those in open sites. Some marinas might therefore function as reservoirs of propagules for subsequent spread, whereas others might be sinks for migrants. 相似文献
18.
JASON A. ADDISON BRIAN S. ORT KATHRYN A. MESA GRANT H. POGSON 《Molecular ecology》2008,17(19):4222-4232
We tested for genetic differentiation among six populations of California sea mussels (Mytilus californianus) sampled across 4000 km of its geographical range by comparing patterns of variation at four independent types of genetic markers: allozymes, single‐copy nuclear DNA markers, and DNA sequences from the male and female mitochondrial genomes. Despite our extensive sampling and genotyping efforts, we detected no significant differences among localities and no signal of isolation by distance suggesting that M. californianus is genetically homogeneous throughout its range. This concordance differs from similar studies on other mytilids, especially in the role of postsettlement selection generating differences between exposed coastal and estuarine habitats. To assess if this homogeneity was due to M. californianus not inhabiting estuarine environments, we reviewed studies comparing allozymes with other classes of nuclear DNA markers. Although both types of markers gave broadly consistent results, there was a bias favouring studies in which allozymes were more divergent than DNA markers (nine to three) and a disproportionate number of these cases involved marine taxa (seven). Furthermore, allozymes were significantly more heterogeneous than DNA markers in three of the four studies that sampled coastal and estuarine habitats. We conclude that the genetic uniformity exhibited by M. californianus may result from a combination of extensive gene flow and the lack of exposure to strong selective gradients across its range. 相似文献
19.
Fang Gong Tong Zhang Zhenming Chi Jun Sheng Jing Li Xianghong Wang 《Biotechnology and Bioprocess Engineering》2008,13(5):533-539
The extracellular inulinase of the marine yeast Pichia guilliermondii strain 1 was purified to homogeneity resulting in a 7.2-fold increase in specific inulinase activity. The molecular mass
of the purified enzyme was estimated to be 50.0 kDa. The optimal pH and temperature for the purified enzyme were 6.0 and 60°C,
respectively. The enzyme was activated by Mn2+, Ca2+, K+, Li+, Na+, Fe3+, Fe2+, Cu2+, and Co2+, but Mg2+, Hg2+, and Ag+ inhibited activity. The enzyme was strongly inhibited by phenylmethanesulphonyl fluoride (PMSF), iodoacetic acid, EDTA, and
1, 10-phenanthroline. The K
m and V
max values of the purified inulinase for inulin were 21.1 mg/mL and 0.08 mg/min, respectively. A large number of monosaccharides
were detected after the hydrolysis of inulin. The deduced protein sequence from the cloned P. guilliermondii strain 1 inulinase gene contained the consensus motifs R-D-P-K-V-F-W-H and W-M-N-D-P-N-G, which are conserved among the inulinases
from other microorganisms. 相似文献
20.
Little is known about the spatial and temporal scales at which planktonic organisms are genetically structured. A previous study of mitochondrial DNA (mtDNA) in the holoplanktonic chaetognath Sagitta setosa revealed strong phylogeographic structuring suggesting that Northeast (NE) Atlantic, Mediterranean and Black Sea populations are genetically disjunct. The present study used a higher sampling intensity and a combination of mitochondrial and four microsatellite markers to reveal population structuring between and within basins. Between basins, both marker sets indicated significant differentiation confirming earlier results that gene flow is probably absent between the respective S. setosa populations. At the within-basin scale, we found no evidence of spatial or temporal structuring within the NE Atlantic. In the Mediterranean basin, both marker sets indicated significant structuring, but only the mtDNA data indicated a sharp genetic division between Adriatic and all other Mediterranean populations. Data were inconclusive about population structuring in the Black Sea. The levels of differentiation indicated by the two marker sets differed substantially, with far less pronounced structure detected by microsatellite than mtDNA data. This study also uncovered the presence of highly divergent mitochondrial lineages that were discordant with morphology, geography and nuclear DNA. We thus propose the hypothesis that highly divergent mitochondrial lineages may be present within interbreeding S. setosa populations. 相似文献