首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two novel β-oxidation products of peptido leukotrienes, 16-carboxy-17, 18, 19, 20-tetranor-14, 15-dihydro-N-acetyl LTE4 and 18-carboxy-19, 20-dinor-N-acetyl LTE4, were prepared by total synthesis and used to identify previously unknown polar rat biliary metabolites. When [3H] LTC4 and synthetic N-acetyl-LTE4 were administered intravenously to anesthetized inbred male rats, extraction of the bile and subsequent reverse-phase HPLC fractionation allowed the isolation of two novel metabolites of N-acetyl-LTE4. Comparison of U.V. spectra and coelution experiments revealed that these metabolites correspond to the above-mentioned synthetic β-oxidation products. This was further confirmed by the coelution of the corresponding methyl esters. Oxidative ozonolysis of the metabolically produced 16-carboxy-17, 18, 19, 20-tetranor-14, 15-dihydro-N-acetyl LTE4 (major metabolite) confirmed the absence of the 14, 15-unsaturation. The presence of these metabolites indicates that peptide leukotrienes undergo N-acetylation followed by ω and subsequent β-oxidation in the anesthetized rat.  相似文献   

2.
Metabolism and excretion of exogenous [3H]-LTC4 in primates   总被引:1,自引:0,他引:1  
Four novel omega- and beta-oxidation (from the omega end) products of peptide leukotrienes, 20-hydroxy and 20-carboxy-LTE4, 18-carboxy-19, 20-dinor-LTE4 and 16-carboxy-17,18,19,20-tetranor-14,15-dihydro-LTE4 were prepared by total synthesis and used as standards for identification of biliary and urinary metabolites in the cynomolgus monkey. After intravenous administration 14, 15-[3H] leukotriene C4 (10 microCi kg-1) was partially metabolized in and rapidly cleared from the vascular circulation. This resulted, within 24 hours, in significant urinary excretion (14.8 +/- 2.1%, n = 4), consisting largely of material more polar than LTE4 (61% of urinary excretion) as shown by reverse phase HPLC. The polar fraction demonstrated two predominant metabolites which coeluted in several HPLC solvent systems with synthetic 16-carboxytetranordihydro-LTE4 (major component) and 18-carboxydinor-LTE4 (minor component). Characterization of the major polar metabolite as 16-carboxytetranordihydro-LTE4 was substantiated by conversion to its N-acetylated derivative. The absence of the 14, 15 double bond was confirmed by product analysis of oxidative ozonolysis. In a single animal, the bile duct was cannulated, with significant biliary excretion of radioactivity demonstrated over 4 hours (58.6% recovery). The predominant polar biliary metabolites were also identified as the 18-carboxydinor and 16-carboxytetranordihydro derivatives of LTE4 mentioned above. These data suggest that beta-oxidation products generated from the omega-carboxyl end of the 20-carboxy-LTE4 are important products of [3H] LTC4 metabolism in the monkey. Quantitation of these urinary metabolites may be an important index of in vivo leukotriene production.  相似文献   

3.
Intraperitoneal administration of [3H]-leukotriene E4 in the rat resulted in the appearance of radiolabel in urine and feces. Separation of polar urinary metabolites and chromatographic comparison of synthetic metabolites indicated the in vivo formation of ω-oxidized metabolites of LTE4 with sequential β-oxidation. Futhermore, the metabolite identified as 16-carboxy-17,18,19,20-tetranor-14,15-dihydro-N-acetyl-LTE4 substantiates the biochemical patheway of β-oxidation in vivo involving the 2,4-dienoyl CoA reductase as an integral step. These results substantiate β-oxidation of sulfidopeptide leukotrienes in vivo and these metabolites account for some of the major urinary metabolites of this class of lipid mediator.  相似文献   

4.
The metabolism of leukotriene (LT)C4 and its major routes of elimination have been studied in four anesthetized domestic pigs administered intravenous [3H]-LTC4 (0.5 μCi/kg). The kinetic profile of LTC4 in the blood was followed for 60 min after administration while the biliary and urinary excretion of LTC4 and its metabolites were determined over a 120 min interval. The total recovery of radioactivity in bile and urine was 45% ± 1 (n = 3) and 18% (n = 2) respectively. Examination of the radioactive metabolites in bile showed LTD4 (44% of biliary content) and LTE4 (21% of biliary content) as the major identified lipoxygenase products at t (27 min). The only identified cysteinyl leukotriene observed in the urine was LTE4 (13% of urinary content). In both bile and urine substantial amount of radioactivity were detected at the solvent front of the reverse phase chromatographic system indicating the presence of additional unidentified metabolites. We suggest that measurement of metabolites using these sampling methods may be useful for the detection and measurement of peptide leukotriene production .  相似文献   

5.
The metabolism of leukotriene B4 (5(S),12(R)-dihydroxy-6-cis-8,10-trans-14-cis-eicosatetraenoic acid) by isolated guinea pig eosinophils was investigated. Incubation of guinea pig eosinophils with [3H]-leukotriene B4 resulted in the rapid conversion of leukotriene B4 to several more polar metabolites. Two of these metabolites were identified by ultraviolet spectroscopy and gas chromatography-mass spectrometry as the omega oxidation products 5(S),12(R),20-trihydroxy-6,8,10,14-eicosatetraenoic acid (20-hydroxy-leukotriene B4) and 5(S),12(R),19-trihydroxy-6,8,10,14-eicosatetraenoic acid (19-hydroxy-leukotriene B4). Two novel metabolites, 5(S),12(R),18,19-tetrahydroxy-6,8,10,14 eicosatetraenoic acid (18,19-dihydroxy-leukotriene B4) and 5(S),12(R)-dihydroxy-1,18-dicarboxylic-6,8,10,14,16-octadecapentaenoic acid (Δ16,17–18-carboxy-19,20-dinor-leukotriene B4) were tentatively identified. The identification of these compounds indicates that guinea pig eosinophils are capable of metabolizing leukotriene B4 by both omega and beta oxidation. This catabolic activity may play a role in modulating inflammatory reactions by removing the chemoattractant leukotriene B4 from inflammatory sites.  相似文献   

6.
Cysteinyl leukotrienes (LT) C4, LTD4, and LTE4 are potent mediators of anaphylaxis and inflammatin. LTE4 is extensively metabolized in man mainly by ω-oxidation followed by subsequent β-oxidation to more polar and biologically inactive metabolites. This paper describes a method for the synthesis of [1,20−18O2]-carboxy-LTE4, [1,18−18O2]-carboxy-dinor-LTE4, and [1,16−18O2]-carboxy-14,15-dihydro-tetranor-LTE4 starting from the unlabelled dimethyl esters of 20-carboxy-LTA4, 18-carboxy-dinor-LTA4 and 16-carboxy-14,15-dihydro-tetranor-LTA4, respectively, by separate chemical conjugation with cysteine hydrochloride in H218O-methanol followed by alkaline hydrolysis with Li18OH. The isotopic purity of the isolated reaction products was 94% at 18O for all three preparations while only 0.3% remained unlabelled as confirmed by negative-ion chemical-ionization gas chromatography-mass spectrometry (GC-NICI-MS) after their catalytical reduction/desulphurization and derivation. The 18O2-labelled compounds are demonstrated to be suitable internal standards for quantification by GC-NICI-MS and GC-NICI-tandem MS. We found by GC-NICI-tandem MS that the excretion rate of 20-carboxy-LTE4 is comparable to that of LTE4 (both in nmol/mol creatinine, mean ± S.E.) in healthy children (26.7 ± 4.7 vs. 32.0 ± 6.0, n = 9) and adults (13.9 ± 1.1 vs. 27.2 ± 5.4, n = 3).  相似文献   

7.
The formation of leukotriene B4 and its ω-oxidised metabolites has been compared in calcium ionophore-stimulated polymorphonuclear leukocytes, in the absence of exogenous substrate, from fourteen psoriatic subjects and thirteen healthy controls. Although there was no significant difference in the levels of leukotriene B4, the psoriatic cells synthesised significantly greater amounts of ω-oxidation products than control cells. This difference was confirmed in an experiment comparing the time course of formation of the ω-oxidation products of leukotriene B4, under similar conditions, in polymorphonuclear leukocytes from four psoriatic subjects and three healthy controls. The kinetic constants for the metabolism of exogenous leukotriene B4 by 20-hydroxylase were determined by a radiochromatographic enzyme assay in polymorphonuclear leukocytes from three patients with psoriasis and three healthy controls. No significant differences were found in the apparent Km and Vmax values. It is concluded that the increased formation of ω-oxidation products in psoriatic cells may be secondary to increased synthesis of leukotriene B4 by these cells, with consequent increased metabolism, rather than to an inherent abnormality of the 20-hydroxylase system. Further work is needed to determine the kinetics of the enzymes involved in leukotriene B4 synthesis in the psoriatic polymorphonuclear leukocyte, and also to assess the contribution of the leukotriene B4 and ω-oxidation products from polymorphonuclear leukocytes infiltrating the skin to the pathogenesis of the psoriatic lesion.  相似文献   

8.
w-oxidation products of leukotriene E4 in bile and urine of the monkey   总被引:1,自引:0,他引:1  
The intravenous administration of [3H]leukotriene C4 in the monkey Macaca fascicularis results in the biliary and urinary elimination of [3H]leukotriene D4 and [3H]leukotriene E4 in addition to more-polar metabolites. Separation of these polar metabolites and chromatographic comparison with synthetic w-oxidized leukotrienes indicated the in vivo formation of w-hydroxy-[3H]leukotriene E4 and w-carboxy-[3H]leukotriene E4. Time course studies of the [3H]leukotriene metabolite pattern in bile and urine showed that w-hydroxy-leukotriene E4 was decreasing as w-carboxy-leukotriene E4 and additional polar derivatives were increasing.  相似文献   

9.
ω-oxidation is regarded as the major pathway for the metabolism and inactivation of leukotriene B4 (LTB4). To investigate the action of 5-aminosalicylic acid (5-ASA) on LTB4ω-hydroxylase activity, we incubated human polymorphonuclear leukocytes (PMNLs) with 3H-labeled LTB4 after pre-incubation with various concentrations of 5-ASA. ω-oxidation metabolites were separated by high performance liquid chromatography and each radioactivity was measured by a liquid scintilation counter. LTB4ω-hydroxylase activity was inhibited by 5-ASA in a concentration-dependent fashion. The 50% inhibitory dose was about 50 μmol/l, which is within the concentration range found in the colonic mucosa. Our findings may be valuable in elucidating the potentially critical aspect of 5-ASA treatment in ulcerative colitis (UC).  相似文献   

10.
N-Acetyl-leukotriene E4, the end product of leukotriene C4 metabolism in the mercapturic acid pathway, was rapidly eliminated from the blood circulation into the bile of rats. Part of the N-acethyl-leukotriene E4 secreted from bile into the intestine undewent enterohepatic circulation. Leukotriene absorption occurred from the small intestine and from the colon. Biliary and urinary excretion within 5.5 h amounted to 15 and 2%, respectively, of the intraduodenally administered N-acetyl- H leukotriene E4 in animals anesthetized with ketamine. HPLC analyses indicated that 35% of the biliary radioactivity corresponded to unchanged N-acetyl- H leukotriene E4, while 65% in bile and 100% in urine were polar metabolites. Enterohepatic circulation extends the biological half-life of N-acetyl-leukotriene E4.  相似文献   

11.
The urinary excretion rate (ng/h/1.73 m2) of prostanoids was determined with a capillary gas-liquid chromatographic mass spectrometric method in 19 patients with cystic fibrosis (CF) aged 1–29 years. Patients with CF showed an increased excretion of prostaglandin E2 metabolites (PGE-M) and thromboxane B2 and its metabolites at all ages. An imbalance in the excretion pattern of thromboxane B2 metabolites also suggested a relative impairment of β-oxidation. There was no increased excretion of dinor-6-keto-PGF, indicating normal prostacyclin biosynthesis. No correlation was found to genotype, clinical score, lung function or bacterial colonization but a significant negative relation was found between the main prostanoids in the urine and serum phospholipid levels of essential fatty acids. The results show that, contrary to the generally accepted decrease of prostanoid excretion in essential fatty acid deficiency, patients with CF increase their production parallel to the development of the deficiency. Since prostanoid synthesis is rate limited by arachidonic acid release, our data support a previously presented hypothesis about a pathological regulation of the release of arachidonic acid in CF.  相似文献   

12.
The profiles of biliary, fecal and urinary excretion of tritium labeled prostaglandins (PG's) of differing biological activity were investigated in the rat. The PG's (10 μg/kg: 2 to 50 μCi/rat, in 1 ml polyethylene glycol-400) were administered intragastrically. Excretion data were expressed as a percentage of the total administered radioactivity. for the orally administered PG's 11R-methyl-16R-fluoro-15R-hydroxy-9-oxoprosta- -5- -13-dienoic acid and its methyl ester, excretion was equally divided between urine and feces. The fecal and urinary profile of excretion of 3H after prostacyclin (PGl2) was similar to that following administration of 11R, 16, 16-trimethyl-15R-hydroxy-9-oxoprosta- -5- -13-dienoic acid (trimoprostil), a PG with antisecretory-antiulcer potential. However, PGl2 was very poorly absorbed from the intestine, while the absorption of trimoprostil was very efficient. Biliary excretion, with little entero-porto-hepatic biliary circulation, was the main route of elimination of trimoprostil, thereby resulting in rapid elimination of drug-related products and diminishing the potential for systemic liability in the rat.  相似文献   

13.
Radioimmunoassay systems are described which have been developed to quantitate two principle urinary metabolites of PGF; 9α,11α-dihydroxy-15-oxo-2,3,4,5-tetranorprostanoic acid (I) and 9α-11α-dihydroxy-15-oxo-2,3,4,5-tetranorprosta-1,20-dioic acid (II). Preparation of the required metabolites was achieved by total synthesis (I) or by bioconversion (isolation from urine of animals treated with 15-keto-PGF*, II). These metabolites were used to prepare conjugates for immunization. Labeled metabolites, suitable as binding markers, were prepared by metabolism of 3H-PGF (I) or (II). Specificity of the resulting antibodies was compared to an antibody to PGF and to 13,14-dihydro-15-keto PGF. Antisera of II had little or no affinity for 20-carbon precursors (PGF or 13,14-dihydro-15-keto PGF), but had nearly equal affinity for metabolite I. Antisera of I, however, had little or no affinity for antigen of II. Therefore, analysis of samples by both assay systems enables quantitation of these excretion products of PGF. Other assay parameters (binding, affinity, recovery, precision and the repeatability of the assays) were similar to those previously described for other RIA systems, and were considered satisfactory for quanitation of compounds in biological fluids.Quantitation of 24 hour urinary excretion of di-acid metabolite in humans was in close agreement with previously published values determined by physical-chemical means. Greater quantity of di-acid metabolite was excreted by human males (42.0 μg/24 hr) than by females sampled either during the follicular (20.0) or luteal phase (21.2) of the menstrual cycle. The total quantity of C-16 metabolites (as approximated by system II) excreted/kg body weight by the rhesus monkey was similar to that excreted by the human. However, the ratio of di-acid to mono-acid was much nearer unity in the monkey than the human.  相似文献   

14.
Five milligrams of [5,6,8,9,11,12,14,15-3H8]-leukotriene B4 (LTB4) (1.68 Ci/mmol) were infused into a monkey over a three hour period. Twenty-five per cent of the infused 3H-activity was recovered in the urine during the twenty hours of collection. Plasma and urinary metabolite volatility studies revealed that in contrast to previously studied eicosanoids, more than 70% per cent of the infused LTB43H-label was converted to tritiated water. The major nonvolatile urinary metabolite of LTB4 representing 0.8% of the infused material was identified as 20-OH-LTB4. LTB4 was not excreted in the urine. Other nonvolatile metabolites of LTB4 representing less than 0.4% each of the infused material were isolated from the urine. While there was an adequate quantity of some of these metabolites for partial characterization, there was insufficient material for structural elucidation. Further studies were performed in rabbits in which either LTB4 or the structurally related compound 8,15-dihydroxyeicosatetraenoic acid (8,15-diHETE) were infused intravenously. In these rabbits the metabolism of LTB4 and 8,15-diHETE was similar to that in the monkey with greater than 80% of the infused 3H-activity converted to tritiated water. These studies suggest that leukotriene B4 and structurally related compounds undergo extensive degradation in vivo via the β-oxidation system.  相似文献   

15.
Biliary and urinary excretion of peptide leukotrienes in the domestic pig   总被引:2,自引:0,他引:2  
The metabolism of leukotriene (LT)C4 and its major routes of elimination in vivo have been studied in four anesthetized domestic pigs administered intravenous [3H]-LTC4 (0.5 microCi/kg). The kinetic profile of LTC4 in the blood was followed for 60 min after administration while the biliary and urinary excretion of LTC4 and its metabolites were determined over a 120 min interval. The total recovery of radioactivity in bile and urine was 45% +/- 1 (n = 3) and 18% (n = 2) respectively. Examination of the radioactive metabolites in bile showed LTD4 (44% of biliary content) and LTE4 (21% of biliary content) as the major identified lipoxygenase products at t 1/2 (27 min). The only identified cysteinyl leukotriene observed in the urine was LTE4 (13% of urinary content). In both bile and urine substantial amounts of radioactivity were detected at the solvent front of the reverse phase chromatographic system indicating the presence of additional unidentified metabolites. We suggest that measurement of metabolites using these sampling methods may be useful for the detection and measurement of peptide leukotriene production in vivo.  相似文献   

16.
The mitochondrial β-oxidation system is one of the central metabolic pathways of energy metabolism in mammals. Enzyme defects in this pathway cause fatty acid oxidation disorders. To elucidate the role of 2,4-dienoyl-CoA reductase (DECR) as an auxiliary enzyme in the mitochondrial β-oxidation of unsaturated fatty acids, we created a DECR–deficient mouse line. In Decr−/− mice, the mitochondrial β-oxidation of unsaturated fatty acids with double bonds is expected to halt at the level of trans-2, cis/trans-4-dienoyl-CoA intermediates. In line with this expectation, fasted Decr−/− mice displayed increased serum acylcarnitines, especially decadienoylcarnitine, a product of the incomplete oxidation of linoleic acid (C18:2), urinary excretion of unsaturated dicarboxylic acids, and hepatic steatosis, wherein unsaturated fatty acids accumulate in liver triacylglycerols. Metabolically challenged Decr−/− mice turned on ketogenesis, but unexpectedly developed hypoglycemia. Induced expression of peroxisomal β-oxidation and microsomal ω-oxidation enzymes reflect the increased lipid load, whereas reduced mRNA levels of PGC-1α and CREB, as well as enzymes in the gluconeogenetic pathway, can contribute to stress-induced hypoglycemia. Furthermore, the thermogenic response was perturbed, as demonstrated by intolerance to acute cold exposure. This study highlights the necessity of DECR and the breakdown of unsaturated fatty acids in the transition of intermediary metabolism from the fed to the fasted state.  相似文献   

17.
Simultaneous determination of urinary excretion rates of primary unmetabolized prostanoids and their enzymatic metabolites were performed by gas chromatography-mass spectrometry (GC/MS) or tandem mass spectrometry (GC/MS/MS). Changes in kidney function were induced by acute (4 h) volume expansion. Despite marked changes in urine flow, GFR, urinary pH, osmolality, sodium and potassium excretion, only a insignificant or transient rise in the enzymatic prostanoid metabolites (2,3-dinor-6-keto-PGF, PGE-M, 2,3-dinor-TxB2 and 11-dehydro-TxB2) was observed. The excretion rates of the primary prostanoids were elevated in parallel with the rise in urine flow: PGE2 rose (p < 0.05) from 14.2 ± 4.0 to 86.2 ± 20.7, PGF2α from 60.0 ± 4.9 to 119.8 ± 24.0, 6-keto-PGF from 7.2 ± 1.3 to 51.5 ± 17.0, and txB2 from 11.2 ± 3.3 to 13.6 ± 3.6 ng/h/1.73 m2 ( ) at the maximal urine flow. Except for 6-keto-PGF and TxB2, this rise in urinary prostanoid levels was only transient despite a sustained fourfold elevated urine flow. We conclude that urine flow rate acutely affect urine prostanoid excretion rates, however, over a prolonged peroid of time these effects are not maintained. The present data support the concept that urinary levels of primary prostanoids mainly reflect renal concentrations whereas those of enzymatic metabolites reflect systemic prostanoid activity. From the excretion pattern of TxB2 one can assume that this prostanoid represents renal as well as systemic TxA2 activity.  相似文献   

18.
Enterohepatic circulation of N-acetyl-leukotriene E4   总被引:1,自引:0,他引:1  
N-Acetyl-leukotriene E4, the end product of leukotriene C4 metabolism in the mercapturic acid pathway, was rapidly eliminated from the blood circulation into the bile of rats. Part of the N-acetyl-leukotriene E4 secreted from bile into the intestine underwent enterohepatic circulation. Leukotriene absorption occurred from the small intestine and from the colon. Biliary and urinary excretion within 5.5 h amounted to 15 and 2%, respectively, of the intraduodenally administered N-acetyl- 3H leukotriene E4 in animals anesthetized with ketamine. HPLC analyses indicated that 35% of the biliary radioactivity corresponded to unchanged N-acetyl-3H leukotriene E4, while 65% in bile and 100% in urine were polar metabolites. Enterohepatic circulation extends the biological half-life of N-acetyl-leukotriene E4.  相似文献   

19.
The effects of two polyunsaturated fatty acids, 18:4n-3 and 16:4n-3 purified from the marine algae, Undaria pinnatifida and Ulva pertusa, on icosanoid production in MC/9 mouse mast cells were assessed. Both fatty acids suppressed the production of leukotriene B4 (LTB4), leukotriene C4 (LTC4), and 5-hydroxyeicosatetraenoic acid (5-HETE). The order of the suppressive activity for the two marine algae-derived fatty acids and three other common polyunsaturated fatty acids was as follows; 22:6n-3=18:4n-3=18:3n-3>20:5n-3=16:4n-3 for LTB4; 22:6n-3=18:4n-3=18:3n-3>16:4n-3>20:5n-3 (no suppression) for LTC4; 22:6n-3=18:4n-3>18:3n-3>20:5n-3=16:4n-3 for 5-HETE.  相似文献   

20.
The oxidation and nitration of unsaturated fatty acids transforms cell membrane and lipoprotein constituents into mediators that regulate signal transduction. The formation of 9-NO2-octadeca-9,11-dienoic acid and 12-NO2-octadeca-9,11-dienoic acid stems from peroxynitrite- and myeloperoxidase-derived nitrogen dioxide reactions as well as secondary to nitrite disproportionation under the acidic conditions of digestion. Broad anti-inflammatory and tissue-protective responses are mediated by nitro-fatty acids. It is now shown that electrophilic fatty acid nitroalkenes are present in the urine of healthy human volunteers (9.9 ± 4.0 pmol/mg creatinine); along with electrophilic 16- and 14-carbon nitroalkenyl β-oxidation metabolites. High resolution mass determinations and coelution with isotopically-labeled metabolites support renal excretion of cysteine-nitroalkene conjugates. These products of Michael addition are in equilibrium with the free nitroalkene pool in urine and are displaced by thiol reaction with mercury chloride. This reaction increases the level of free nitroalkene fraction >10-fold and displays a KD of 7.5 × 10−6 M. In aggregate, the data indicates that formation of Michael adducts by electrophilic fatty acids is favored under biological conditions and that reversal of these addition reactions is critical for detecting both parent nitroalkenes and their metabolites. The measurement of this class of mediators can constitute a sensitive noninvasive index of metabolic and inflammatory status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号