首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of the core oligosaccharide of the lipopolysaccharide from an organic solvent tolerant Gram-negative bacterium, Acinetobacter radioresistens S13, was investigated by chemical analysis, NMR spectroscopy and MALDI-TOF mass spectrometry. All the experiments were performed on the oligosaccharides obtained either by alkaline degradation or mild acid hydrolysis. The data showed the presence of two novel oligosaccharide molecules containing a trisaccharide of 3-deoxy-D-manno-octulopyranosonic acid in the inner core region and a glucose rich outer core whose structure is the following: [structure: see text] R=H in the main oligosaccharide and beta-Glc in the minor product. The bacterium was grown on aromatic (phenol and benzoic acid) and nonaromatic carbon sources and the core oligosaccharide resulted to occur always with this novel structure.  相似文献   

2.
A minor oligosaccharide fraction was isolated after complete de-acylation of the lipooligosaccharide extracted from Pseudomonas stutzeri OX1. The full structure of this oligosaccharide was obtained by chemical degradation, NMR spectroscopy and MALDI-TOF MS spectrometry. These experiments showed the presence of two novel oligosaccharides (OS1 and OS2): [structure: see text] where R=(S)-Pyr(-->4,6) in OS1 and alpha-Rha-(1-->3) in OS2. All sugars are D-pyranoses, except Rha, which is L-pyranose. Hep is L-glycero-D-manno-heptose, Kdo is 3-deoxy-D-manno-oct-2-ulosonic acid, Pyr is pyruvic acid, P is phosphate.  相似文献   

3.
The structure of the core part of the LPS from Geobacter sulfurreducens was analysed. The LPS contained no O-specific polysaccharide (O-side chain) and upon mild hydrolysis gave a core oligosaccharide, which was isolated by gel chromatography. It was studied by chemical methods, NMR and mass spectrometry, and the following structure was proposed. [carbohydrate structure: see text] where Q = 3-O-Me-alpha-L-QuiNAc-(1-->or H (approximately 3:2).  相似文献   

4.
The structure of the core oligosaccharide region of the lipopolysaccharide from the Pasteurella multocida strain X73 was elucidated. The lipopolysaccharide was subjected to a variety of degradative procedures. The structure of the purified oligosaccharide was established by monosaccharide and methylation analyses, NMR spectroscopy and mass spectrometry. The following structure illustrates a similar structure to the recently identified oligosaccharide from another P. multocida strain VP161, but with additional symmetrical substitution of the terminal galactose residues with phosphoethanolamine moieties, where based on the NMR data all sugars were found in pyranose ring forms and Kdo is 3-deoxy-alpha-D-manno-2-oct-2-ulosonic acid, l,D-alpha-Hep is l-glycero-D-manno-heptose, PEtn is phosphoethanolamine and PCho is phosphocholine.  相似文献   

5.
The structure of the LPS from Serratia marcescens serotype O19 was investigated. Deamination of the LPS released the O-chain polysaccharide together with a fragment of the core oligosaccharide. The following structure of the product was determined by NMR spectroscopy, mass spectrometry, and chemical methods: [carbohydrate structure: see text] The main polymer consists of a repeating disaccharide V-U and is present on average of 18 units per chain as estimated by integration of signals in the NMR spectra. The residue O corresponds to the primer, which initiates biosynthesis of the O-chain, and an oligomer of a disaccharide R-S is an insert between the primer and the main polymer. The polysaccharide has a beta-Kdo residue at the non-reducing end, a feature similar to that observed previously in the LPS from Klebsiella O12.  相似文献   

6.
Proteolytic digestion of the phenol-water extraction product of the fish pathogen Flavobacterium columnare afforded a mixture of glycopeptides in which the oligosaccharide moiety was an unusual hexasaccharide composed of 4-O-methyl-2-acetamido-2-deoxy-D-glucuronic acid (GlcNAcA), D-glucuronic acid (D-GlcA), 2,3-di-O-acetyl-D-xylose (D-Xyl), 2-O-methyl-D-glucuronic acid (D-GlcA), D-mannose (D-Man), and 2-O-methyl-L-rhamnose (L-Rha). By the application of high-resolution 1D and 2D NMR, mass spectrometry, and chemical analysis, the hexasaccharide structure was determined to be: [carbohydrate structure--see text] where all monosaccharides have the D-configuration except for 2-O-methyl-L-rhamnose; and were in the pyranose form. Only one carbohydrate structure was found. The peptide part was represented by tri- to hepta-peptides with a minimal common tripeptide fragment Asp-Ser-Ala, extended with Ala and Val.  相似文献   

7.
Sulphate-reducing bacteria have a wide variety of periplasmic cytochromes involved in electron transfer from the periplasm to the cytoplasm. HmcA is a high molecular mass cytochrome of 550 amino acid residues that harbours 16 c-type heme groups. We report the crystal structure of HmcA isolated from the periplasm of Desulfovibrio gigas. Crystals were grown using polyethylene glycol 8K and zinc acetate, and diffracted beyond 2.1 A resolution. A multiple-wavelength anomalous dispersion experiment at the iron absorption edge enabled us to obtain good-quality phases for structure solution and model building. DgHmcA has a V-shape architecture, already observed in HmcA isolated from Desulfovibrio vulgaris Hildenborough. The presence of an oligosaccharide molecule covalently bound to an Asn residue was observed in the electron density maps of DgHmcA and confirmed by mass spectrometry. Three modified monosaccharides appear at the highly hydrophobic vertex, possibly acting as an anchor of the protein to the cytoplasmic membrane.  相似文献   

8.
The promising new anticancer agent, PI-88, is prepared by the sulfonation of the oligosaccharide phosphate fraction of the extracellular phosphomannan produced by the yeast Pichia (Hansenula) holstii NRRL Y-2448. The composition of the oligosaccharide phosphate fraction was determined by capillary electrophoresis (CE) with indirect UV detection using 6 mM potassium sorbate at pH 10.3 as the background electrolyte. Further confirmation of the composition was obtained by HPLC analysis of a sample dephosphorylated by treatment with alkaline phosphatase. The structure of the hexasaccharide component has been determined by isolation and NMR spectroscopic analysis of its dephosphorylated derivative. Additionally, the structure of a second, previously undetected tetrasaccharide component (a hexosamine) has been determined by isolation and NMR spectroscopic analysis of the acetate of its dephosphorylated derivative. It is demonstrated that CE is an ideal method for the quality control of the oligosaccharide phosphate fraction for use in the production of PI-88.  相似文献   

9.
The complete novel structure of the components of the core oligosaccharide fraction from the LOS of the halophilic marine bacterium Pseudoalteromonas carrageenovora was characterized. The fully de-acylated lipooligosaccharide was studied by means of compositional analysis, matrix-assisted laser desorption/ionization mass spectrometry and complete (1)H and (13)C and (31)P NMR spectroscopy. The core oligosaccharide is composed by a mixture of species differing for the length of the sugar chain and the phosphorylation pattern: [carbohydrate structure]; see text. All sugars are D-pyranoses. Hep is L-glycero-D-manno-heptose, Kdo is 3-deoxy-D-manno-oct-2-ulosonic acid, P is phosphate, residues and substituents in italic are not stoichiometrically linked.  相似文献   

10.
A novel core-lipid A backbone oligosaccharide was isolated and identified from the lipopolysaccharide fraction of the mushrooms pathogen bacterium Pseudomonas tolaasii. The oligosaccharide was obtained by alkaline treatment of the lipopolysaccharide fraction. Since the repeating unit of the O-antigen contained one residue of -->4)-alpha-l-GulpNAcAN, the hydrolysis was accompanied by beta-elimination on this residue and following depolymerization, producing a mixture of oligosaccharides. The complete structural elucidation showed the presence of a single core glycoform and was achieved by chemical analysis and by (1)H, (31)P, and (13)C NMR spectroscopy applying various 1D and 2D experiments. [structure: see text]. All sugars are alpha-d-pyranoses, if not stated otherwise. Hep is l-glycero-d-manno-heptose, Kdo is 3-deoxy-d-manno-oct-2-ulosonic acid, P is phosphate. QuiN and DeltaGulNA are present in nonstoichiometric amount.  相似文献   

11.
Triterpenoid saponins from the fruits of Aesculus pavia   总被引:2,自引:0,他引:2  
The compounds, named aesculiosides Ia-Ie, IIa-IId, and IVa-IVc, were isolated from an ethanol extract of the fruits of North American Aesculus pavia, along with two known compounds. Their structures were characterized as polyhydroxyoleanene pentacyclic triterpenoid saponins by spectroscopic and chemical analyses. These saponins were divided into three elution zones by chromatography according to the polarity because of the acyl substitution at C-21 and C-22 of the aglycone saponins moiety. These are structurally different from those isolated from Eurasian Aesculus hippocastanum and Aesculus chinensis in their oligosaccharide moieties.  相似文献   

12.
The core-lipid A region of the lipopolysaccharides from Proteus penneri strains 7, 8, 14, 15, and 21 was studied using NMR spectroscopy, ESI MS, and chemical analysis after alkaline deacylation, deamination, and mild-acid hydrolysis of the lipopolysaccharides. The following general structure of the major core oligosaccharides is proposed: [abstract: see text] where all sugars are in the pyranose form and have the D configuration unless otherwise stated, Hep and DDHep=L-glycero- and D-glycero-D-manno-heptose, respectively, K=H, and Q=H in strain 8 or alpha-Glc in strains 7, 14, 15, and 21. In addition, several minor structural variants are present, including those lacking Ara4N in strains 7 and 15 and having the alpha-GlcN residue N-acylated to a various degree with glycine in strains 7, 8, 14, and 21. In strain 14, there are also core oligosaccharides with K=amide of beta-D-GalpA with putrescine, spermidine, or 4-azaheptane-1,7-diamine; remarkably, these structural variants lack either the PEtN group or the alpha-Hep-(1-->2)-alpha-DDHep disaccharide fragment at alpha-D-GalpA. While structural features of the inner core part are shared by Proteus strains studied earlier, the outermost Q-(1-->4)-alpha-GalNAc-(1-->2)-alpha-DDHep-(1-->6)-alpha-GlcN oligosaccharide unit has not been hitherto reported.  相似文献   

13.
A novel oligosaccharide was isolated and identified from the lipooligosaccharide fraction of the halophilic marine bacterium Arcobacter halophilus. The complete structure was achieved by chemical analysis, 2D NMR spectroscopy, and MALDI mass spectrometry as the following:
α-Glc-(1→7)-α-Hep-(1→5)-α-Kdo4P-(2→6)-β-GlcN4P-(1→6)-α-GlcN1P.  相似文献   

14.
A new tetrahydro beta-carboline alkaloid that has an oligosaccharide unit was isolated from the root extracts of the Palicourea coriacea. The structure was elucidated using spectral methods, including 2D NMR: COSY, HMQC, HMBC and NOESY.  相似文献   

15.
The structure of the major constituent of the biofilm matrix produced by Pseudomonas sp. OX1, when grown on phenol as the sole carbon source is described. This investigation, carried out by chemical analysis, NMR spectroscopy and MALDI-TOF MS spectrometry, showed the presence of an oligosaccharide blend with the typical alginate structure, namely (1-->4) substituted beta-D-mannuronic (ManA) and alpha-L-guluronic acid (GulA). GulA residues were non-acetylated whereas ManA was always O-acetylated at C-2 or C-3.  相似文献   

16.
Niimura Y 《Carbohydrate research》2006,341(16):2669-2676
Monosialosyl gangliosides from the gills of the Pacific salmon, Oncorhynchus keta, have been prepared by solvent extraction and DEAE-Sephadex column chromatography. The unknown acidic glycolipids (M14 and M15) with slower mobility than GM1a on thin-layer chromatography were separated by Iatrobeads column chromatography and were characterized by compositional analysis, methylation analysis, chemical, and enzymatic degradation, negative-ion LSIMS, and (1)H nuclear magnetic resonance spectroscopy. Both M14 and M15 contained a same oligosaccharide core with isoglobo-, neolacto-, and ganglio-series as follows: [carbohydrate structure: see text]. The only difference between M14 and M15 was in fatty acid acylation. Analysis of the fatty acids indicated a predominance of C24:1 fatty acid in M14 and shorter chain saturated fatty acids, C14:0 and C16:0, in M15.  相似文献   

17.
The structure for the carbohydrate moiety of the lipooligosaccharide (LOS) from the commensal Haemophilus somnus strain 129Pt was elucidated. The structure of the core oligosaccharide and O-deacylated LOS was established by monosaccharide and methylation analyses, NMR spectroscopy and mass spectrometry. The following structure for the major fully extended carbohydrate glycoform of the LOS was determined on the basis of the combined data from these experiments. [Carbohydrate structure: see text]. In the structure Kdo is 3-deoxy-D-manno-octulosonic acid, Hep is L-glycero-D-manno-heptose and PEtn is phosphoethanolamine. Minor amounts of glycoforms containing nonstoichiometric substituents glycine and phosphate at the distal heptose residue were also identified.  相似文献   

18.
Lee JH  Shim JS  Lee JS  Kim MK  Chung MS  Kim KH 《Carbohydrate research》2006,341(9):1154-1163
Previous studies have revealed the inhibitory effects of an acidic polysaccharide purified from the root of Panax ginseng against the adhesion of Helicobacter pylori to gastric epithelial cells and the ability of Porphyromonas gingivalis to agglutinate erythrocytes. In this study, this acidic polysaccharide from P. ginseng, PG-F2, was investigated further, in order to characterize its antiadhesive effects against Actinobacillus actinomycetemcomitans, Propionibacterium acnes, and Staphylococcus aureus. The minimum inhibitory concentrations (MIC) were found to be in a range of 0.25-0.5mg/mL. However, results showed no inhibitory effects of PG-F2 against Lactobacillus acidophilus, Escherichia coli, or Staphylococcus epidermidis. PG-F2 is a pectin-type polysaccharide with a mean MW of 1.2 x 10(4) Da, and consists primarily of galacturonic and glucuronic acids along with rhamnose, arabinose, and galactose as minor components. The complete hydrolysis of PG-F2 via chemical or carbohydrolase enzyme treatment resulted in the abrogation of its antiadhesive activity, but limited hydrolysis via treatment with pectinase (EC. 3.2.1.15) yielded an oligosaccharide fraction, with activity comparable to the precursor PG-F2 (the MIC of ca. 0.01 mg/mL against H. pylori and P. gingivalis). Our results suggest that PG-F2 may exert a selective antiadhesive effect against pathogenic bacteria, while having no effects on beneficial and commensal bacteria.  相似文献   

19.
Twenty-eight enzymes, encoded by different genes and secreted by different mutant strains of Chrysosporium lucknowense, were subjected to MALDI-TOF MS peptide fingerprinting followed by analysis of the MS data using the GlycoMod tool from the ExPASy proteomic site. Various N-linked glycan structures were discriminated in the C. lucknowense proteins as a result of the analysis. N-Glycosylated peptides with modifications matching the oligosaccharide compositions contained in the GlycoSuiteDB were found in 12 proteins. The most frequently encountered N-linked glycan, found in 9 peptides from 7 proteins, was (Man)(3)(GlcNAc)(2), that is, the core pentasaccharide structure forming mammalian-type high-mannose and hybrid/complex glycans in glycoproteins from different organisms. Nine out of 12 enzymes represented variably N-glycosylated proteins carrying common (Hex)(0-4)(HexNAc)(0-6)+(Man)(3)(GlcNAc)(2) structures, most of them being hybrid/complex glycans. Various glycan structures were likely formed as a result of the enzymatic trimming of a 'parent' oligosaccharide with different glycosidases. The N-glycosylation patterns found in C. lucknowense proteins differ from those reported for the extensively studied enzymes from Aspergilli and Trichoderma species, where high-mannose glycans of variable structure have been detected.  相似文献   

20.
A phosphorylated core-lipid A backbone oligosaccharide that carries a disaccharide remainder of the first O-antigen repeating unit was derived by strong alkaline degradation following mild hydrazinolysis of the lipopolysaccharide of Pseudomonas aeruginosa immunotype 4 (serogroup O-1). The structure of the oligosaccharide was determined using ESI MS and NMR spectroscopy and it was demonstrated that 2-acetamido-2,6-dideoxy-D-glucose is the first monosaccharide of the O-polysaccharide that is linked to the LPS core. These data define the structure of the biological repeating unit of the O-antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号