首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The vit gene maps to the mi (microphthalmia) locus of the laboratory mouse.   总被引:5,自引:0,他引:5  
The murine model for human vitiligo (the vit/vit mouse) develops progressive depigmentation of the pelage, skin, and eyes. The vit gene is inherited as an autosomal recessive. We have used classical breeding and isozyme marker analysis to map this vit gene that produces a vitiligo-like condition in the mouse. Crossbreeding the C57BL/6J-vit/vit mice with C57BL/6J mice carrying the Miwh and/or miws alleles at the microphthalmia locus resulted in mutant phenotypes, demonstrating absence of complementation. When vit is heterozygous with the Miwh allele, a "blotched" pigment pattern results. When it is heterozygous with the miws allele, a novel expression of the vitiliginous phenotype results. Further mating analysis of these crossbred populations demonstrates allelic inheritance between vit and the alleles at the microphthalmia locus. Other breeding studies using alleles at the agouti, belted, brown, dominant spotting, extension, mahogany, patch, and piebald loci did not demonstrate pigmentation explainable by allelic inheritance with the vit gene. Also, vit was tested for linkage with isozyme markers located on chromosomes 1, 4, 5, 7, 9, and 11, and results were negative. Therefore, the vit (vitiligo) gene of the laboratory mouse has been mapped to the mi (microphthalmia) locus on chromosome 6. The gene properly should be designated as mivit.  相似文献   

4.
5.
6.
F(1) backcrosses involving the DDK and C57BL/6 inbred mouse strains show transmission ratio distortion at loci on two different chromosomes, 11 and X. Transmission ratio distortion on chromosome X is restricted to female offspring while that on chromosome 11 is present in offspring of both sexes. In this article we investigate whether the inheritance of alleles at loci on one chromosome is independent of inheritance of alleles on the other. A strong nonrandom association between the inheritance of alleles at loci on both chromosomes is found among male offspring, while independent assortment occurs among female offspring. We also provide evidence that the mechanism by which this phenomenon occurs involves preferential cosegregation of nonparental chromatids of both chromosomes at the second meiotic division, after the ova has been fertilized by a C57BL/6 sperm bearing a Y chromosome. These observations confirm the influence of the sperm in the segregation of chromatids during female meiosis, and indicate that a locus or loci on the Y chromosome are involved in this instance of meiotic drive.  相似文献   

7.
To correlate the chromosomal constitution of meiotic cells with possible disturbances in spindle function and the etiology of nondisjunction, we examined the spindle apparatus and chromosome behavior in maturing oocytes and analyzed the chromosomal constitution of metaphase II-arrested oocytes of CD/Cremona mice, which are heterozygous for a large number of Robertsonian translocation chromosomes (18 heterobrachial metacentrics in addition to two acrocentric chromosomes 19 and two X chromosomes). Spreading of oocytes during prometaphase 1 revealed that nearly all oocytes of the heterozygotes contained one large ring multivalent, apart from the bivalents of the two acrocentric chromosomes 19 and the X chromosomes, indicating that proper pairing and crossing-over between the homologous chromosome arms of all heterobrachial chromosomes took place during prophase. A large proportion of in vitro-matured oocytes arrested in metaphase II exhibited numerical chromosome aberrations (26.5% hyperploids, 40.8% hypoploids, and 6.1% diploids). In addition, some of the oocytes with euploid chromosome numbers (26.5% of the total examined) appeared to be nullisomic for one chromosome and disomic for another chromosome, so that aneuploidy levels may even be higher than expected on the basis of chromosome counts alone. Although oocytes of the complex heterozygous mice seemed able initially to form a bipolar spindle during first prometaphase, metaphase I spindles were frequently asymmetrical. Chromosomes in the multivalent did not align properly at the equator, centromeres of neighboring chromosomes in the multivalent remained maloriented, and pronounced lagging of chromosomes was observed at telophase I in oocytes obtained from the Robertsonian translocation heterozygotes. Therefore, disturbance in spindle structure and chromosome behavior appear to correlate with the chromosomal constitution in these oocytes and, ultimately, with failures in proper chromosome separation. In particular, reorientation appears to be a rare event, and malorientation of chromosomes may remain uncorrected throughout prometaphase, as we could not find many typical metaphase I stages in heterozygotes. This, in turn, could be the basis for malsegregation at anaphase and may ultimately induce a high rate of nondisjunction and aneuploidy in the oocytes of CD/Cremona mice, leading to total sterility in heterozygous females.  相似文献   

8.
Several chromosome races of the mesquite lizard, Sceloporus grammicus complex, hybridize at localities in central Mexico. In most cases, the hybridizing populations are delineated by centric fissions at one or more of the macrochromosomes. One notable exception is the Tulancingo hybrid zone between the F5 and FM2 cytotypes. In addition to fission and/or inversion differences at chromosomes 1, 3, 4, and 6, these races differ by a complex rearrangement of chromosome 2, which carries the nucleolus-organizer region in this species. The meiotic consequences of heterozygosity at this chromosome were examined in males to assess the potential for this chromosome to contribute to the dynamics of the hybrid zone. Chromosomal analysis revealed several putative F1 hybrids and confirmed the production of nonparental chromosomal morphologies through recombination. Pachytene analysis revealed meiotic pairing difficulties associated with chromosome 2 in males heterozygous for the parental chromosomal morphologies. Significant aneuploidy is expected because of random disjunction of the chromosome-2 elements. As a result, these males likely suffer reduced fertiliity and fitness. In contrast, males heterozygous for recombinant chromosomal morphologies displayed low levels of meiotic irregularities and presumably exhibit higher fertility than individuals heterozygous for parental morphologies. It is hypothesized that the recombinant phenotypes facilitate gene flow between the F5 and FM2 cytotypes.  相似文献   

9.
T Panavas  J Weir  E L Walker 《Genetics》1999,153(2):979-991
Paramutation is the meiotically heritable silencing of a gene that can occur in particular heterozygous combinations. The R-marbled (R-mb) haplotype is paramutagenic: it causes paramutable r1 haplotypes like R-r to become heritably silenced. R-mb was found to comprise three distinct r1 genes arranged as direct repeats. The most distal gene of R-mb, Scm, contains a novel transposable element, Shooter (Sho). Excision of the Sho element early in aleurone development results in the characteristic "marbled" aleurone pigmentation pattern conferred by R-mb. The effect of gene copy number on the paramutagenic strength of R-mb was tested. Paramutagenic strength of R-mb is directly correlated with r1 gene copy number. Paramutagenic strength of R-mb is directly correlated with r1 gene copy number. Paramutagenic strength of R-mb was not affected by removal, through crossing over, of the Sho transposon. Finally, R-mb does not appear to contain the transposable element, Doppia, which is associated with paramutability of R-r, and has been suggested to play a role in paramutagenicity of another paramutagenic haplotype, R-stippled.  相似文献   

10.
Deletions of gene sequences in chromosome 7 of the mouse are known to interfere with biochemical and cellular development differentiation with lethal effects in homozygotes. The presence of the corresponding wild-type alleles in Cattanach's translocation (chromosomes 7 to X) is able to “rescue” potentially lethal females if they are made heterozygous for the translocation-carrying X chromosome. This holds true for those chromosome 7 deletions with perinatally lethal effects, whereas “rescue” is not readily accomplished with the deletions that cause early embryonic lethality. Females homozygous for the relevant deletion sequences and heterozygous for the translocation-carrying X chromosome are mosaics of two cell types: those in which the wild-type alleles included in the translocated piece complement the depleted sequences, resulting in a normal cellular phenotype, and those with the ordinary X chromosome expressing the lethal phenotype. The developmental interactions between the two cell types and their role in the mechanisms responsible for survival of females homozygous for lethal deletions are discussed. The failure of “rescue” of embryonic lethals reflects as yet unknown temporal and functional aspects of X-inactivation early embryogenesis.  相似文献   

11.
12.
We describe a novel chromosome structure in which telomeric sequences are present interstitially, at the apparent breakpoint junctions of structurally abnormal chromosomes. In the linear chromosomes with interstitial telomeric sequences, there were three sites of hybridization of the telomere consensus sequence within each derived chromosome: one at each terminus and one at the breakpoint junction. Telomeric sequences also were observed within a ring chromosome. The rearrangements examined were constitutional chromosome abnormalities with a breakpoint assigned to a terminal band. In each case (with the exception of the ring chromosome), an acentric segment of one chromosome was joined to the terminus of an apparently intact recipient chromosome. One case exhibited apparent instability of the chromosome rearrangement, resulting in somatic mosaicism. The rearrangements described here differ from the telomeric associations observed in certain tumors, which appear to represent end-to-end fusion of two or more intact chromosomes. The observed interstitial telomeric sequences appear to represent nonfunctional chromosomal elements, analogous to the inactivated centromeres observed in dicentric chromosomes.  相似文献   

13.
This report includes a patient with an inherited pericentric inversion of chromosome No. 2 in addition to a Robertsonian translocation resulting in trisomy for chromosome 13q. The chromosomal constitution of the proband was 46,XX,inv(2) (pter leads to p11 : : q14 leads to p11 : : q14 leads to qter); t(13,14) (13qter leads to 13p11 : : 14q11 leads to 14qter). Sequential QFQ, RFA and GTG banding techniques were employed on the chromosomes of all family members. The chromosomal constitutions of the father and his first child were normal while the mother had an inversion of chromosome No. 2 [46,XX,inv(2) (pter leads to p11 : : q14 leads to p11 : : q14 leads to qter)]. The proband inherited this abnormal chromosome. In addition, she had a de novo Robertsonian translocation involving chromosomes 13q and 14q resulting in trisomy of chromosome 13q.  相似文献   

14.
Biotechnological applications of research on animal pigmentation   总被引:3,自引:0,他引:3  
The implications of primary research on pigmentation for the colour manipulation of animal species of economic importance, and the facilitation of specific processes in biotechnology are discussed. Pigment technologists, especially poultry and fish nutritionists, are concerned with achieving the often specific type and degree of coloration demanded by consumers of various products (notably egg yolk, eggshell, broiler skin and salmon flesh). In most instances involving melanin (pelage, plumage and integument) and porphyrin (eggshell) pigments, the desired coloration is achieved through the use of alternate alleles at gene loci controlling the characters of interest. In contrast, coloration involving carotenoids is controlled primarily through pigment supplementation in the diet. The difference between carotenoids and other pigments involves the strict dietary origin of the former. Factors other than pigment availability, such as body condition, hormonal status and genetic constitution, also affect coloration. Although day-old chicks can be sexed by visual inspection of their genitalia, matings resulting in sex-associated phenotypes are in wide use. The genetic markers involved affect the colour of the plumage. The cloning of genes involved in pigmentation offers the prospect of deciphering the genetic control of animal pigmentation and modifying it to meet specific pigmentation needs.  相似文献   

15.
Through use of multiply disomic strains, the genes arg1 and arg8 were excluded from all of chromosomes I to XVII except (i) XV and (ii) IX and XV, respectively. Further aneuploid analyses showed that these two genes were on the same chromosome. By tetrad analysis, arg1 was shown to be linked to SUP3 on the left arm of chromosome XV (parental ditype:nonparental ditype:tetratype = 74; 6:139) and arg8 was shown to be loosely linked to arg1 (parental ditype:nonparental ditype:tetratype 72:17:220) on the same arm. The sequence of the genes on this chromosome arm is centromere-SUP3-arg8. Because arg1 had previously been used to define an 18th chromosome, these results reestablished the minimum chromosome number in Saccharomyces cerevisiae as 17.  相似文献   

16.
The maize p1 gene encodes a Myb-homologous regulator of red pigment biosynthesis. To investigate the tissue-specific regulation of the p1 gene, maize plants were transformed with constructs combining promoter and cDNA sequences of two alleles which differ in pigmentation patterns: P1-wr (white pericarp/red cob) and P1-rr (red pericarp/red cob). Surprisingly, all promoter/cDNA combinations produced transgenic plants with red pericarp and red cob (RR pattern), indicating that the P1-wr promoter and encoded protein can function in pericarp. Some of the RR patterned transgenic plants produced progeny plants with white pericarp and red cob (WR pattern), and this switch in tissue-specificity correlated with increased transgene methylation. A similar inverse correlation between pericarp pigmentation and DNA methylation was observed for certain natural p1 alleles, which have a gene structure characteristic of standard P1-wr alleles, but which confer red pericarp pigmentation and are consistently less methylated than standard P1-wr alleles. Although we cannot rule out the possible existence of tissue-specific regulatory elements within the p1 non-coding sequences or flanking regions, the data from transgenic and natural alleles suggest that the tissue-specific pigmentation pattern characteristic of the P1-wr phenotype is epigenetically controlled.  相似文献   

17.
Buergeria buergeri is female heterozygous in sex determination; chromosome pair No. 7 in this species is a pair of sex chromosomes of the ZZ/ZW type. Genetic analysis of AAT-1 variants was carried out to elucidate the mode of inheritance of this locus by starch-gel electrophoresis using field-caught females and males and their offspring produced by artificial crossings. The results showed that the AAT-1 locus is sex-linked and that alleles are expressed on the Z chromosome, but not the W chromosome. It is evident that the AAT-1 gene of female offspring is hemizygous and that the allele present is on the Z chromosome, which is derived from the male parent.  相似文献   

18.
Hollick JB  Chandler VL 《Genetics》2001,157(1):369-378
A genetic screen identified two novel gene functions required to maintain mitotically and meiotically heritable gene silencing associated with paramutation of the maize purple plant 1 (pl1) locus. Paramutation at pl1 leads to heritable alterations of pl1 gene regulation; the Pl-Rhoades (Pl-Rh) allele, which typically confers strong pigmentation to juvenile and adult plant structures, changes to a lower expression state termed Pl'-mahogany (Pl'). Paramutation spontaneously occurs at low frequencies in Pl-Rh homozygotes but always occurs when Pl-Rh is heterozygous with Pl'. We identified four mutations that caused increased Pl' pigment levels. Allelism tests revealed that three mutations identified two new maize loci, required to maintain repression 1 (rmr1) and rmr2 and that the other mutation represents a new allele of the previously described mediator of paramutation 1 (mop1) locus. RNA levels from Pl' are elevated in rmr mutants and genetic tests demonstrate that Pl' can heritably change back to Pl-Rh in rmr mutant individuals at variable frequencies. Pigment levels controlled by two pl1 alleles that do not participate in paramutation are unaffected in rmr mutants. These results suggest that RMR functions are intimately involved in maintaining the repressed expression state of paramutant Pl' alleles. Despite strong effects on Pl' repression, rmr mutant plants have no gross developmental abnormalities even after several generations of inbreeding, implying that RMR1 and RMR2 functions are not generally required for developmental homeostasis.  相似文献   

19.
M. M. Golic  K. G. Golic 《Genetics》1996,143(1):385-400
In Drosophila there exist several examples of gene expression that can be modified by an interaction between alleles; this effect is known as transvection. The inference that alleles interact comes from the observations that homologous chromosomes pair in mitotically dividing cells, and that chromosome rearrangements can alter the phenotype produced by a pair of alleles. It is thought that heterozygous rearrangements impede the ability of alleles to pair and interact. However, because the existing data are inconsistent, this issue is not fully settled. By measuring the frequency of site-specific recombination between homologous chromosomes, we show that structural heterozygosity inhibits the pairing of alleles that lie distal to a rearrangement breakpoint. We suggest that some of the apparent conflicts may owe to variations in cell-cycle lengths in the tissues where the relevant allelic interactions occur. Cells with a longer cell cycle have more time to establish the normal pairing relationships that have been disturbed by rearrangements. In support, we show that Minute mutations, which slow the rate of cell division, partially restore a transvection effect that is disrupted by inversion heterozygosity.  相似文献   

20.
Friedreich ataxia (FRDA) is a progressive neurodegenerative disorder caused by loss-of-function mutations in the gene encoding frataxin. Most patients with FRDA have trinucleotide repeat expansions in both alleles of the FRDA1 gene. In patients heterozygous for the expansion the second allele may be inactivated by a point mutation. We identified the ATG→ATT (M1I) mutation of the start codon in three independent families. Individuals with symptoms of FRDA in these families are compound heterozygous for the repeat expansion and the ATG mutation. To look for a common founder of the M1I mutation, a detailed linkage analysis employing six polymorphic chromosome 9 markers was performed. We found complete haplotype identity for two of the three chromosomes with the point mutation. The third case shows partial conformity and may be the result of a single recombination event. Received: 13 February 1998 / Accepted: 18 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号