首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fungal root symbiont modifies plant resistance to an insect herbivore   总被引:3,自引:0,他引:3  
Vesicular-arbuscular mycorrhizal (VAM) fungi are common root-colonizing symbionts that affect nutrient uptake by plants and can alter plant susceptibility to herbivores. I conducted a factorial experiment to test the hypotheses that colonization by VAM fungi (1) improves soybean (Glycine max) tolerance to grazing by folivorous Mexican bean beetle (Epilachna varivestis), and (2) indirectly affects herbivores by increasing host resistance. Soybean seedlings were inoculated with the VAM fungus Glomus etunicatum or VAM-free filtrate and fertilized with high-[P] or low-[P] fertilizer. After plants had grown for 7 weeks first-instar beetle larvae were placed on bagged leaves. Growth of soybean was little affected by grazing larvae, and no effects of treatments on tolerance of soybeans to herbivores were evident. Colonization by VAM fungus doubled the size of phosphorus-stressed plants but these plants were still half the size of plants given adequate phosphorus. High-[P] fertilizer increased levels of phosphorus and soluble carbohydrates, and decreased levels of soluble proteins in leaves of grazed plants. Colonization of grazed plants by VAM fungus had no significant effect on plant soluble carbohydrates, but increased concentration of phosphorus and decreased levels of proteins in phosphorus-stressed plants to concentrations similar to those of plants given adequate phosphorus. Mexican bean beetle mass at pupation, pupation rate, and survival to eclosion were greatest for beetles reared on phosphorus-stressed, VAM-colonized plants, refuting the hypothesis that VAM colonization improves host plant resistance. VAM colonization indirectly affected performance of Mexician bean beetle larvae by improving growth and nutrition of the host plant. Received: 28 February 1997 / Accepted: 23 June 1997  相似文献   

2.
Wheat cultivars grown in pots in a greenhouse were inoculated either once or twice with the vesicular-arbuscular mycorrhizal fungus (VAMF) Glomus mosseae. If inoculum was only added to the soil once (before planting) the cultivars showed differences in subsequent VAM development. If additional inoculum was added ten days after planting, VAM development was much increased and cultivars which remained without VAM after only one inoculum application now became mycorrhizal.Succinate dehydrogenase (SDH) activity decreased throughout the experiment, but this decrease was less rapid in mycelium in twice-inoculated plants.No close relationship between SDH-activity and plant growth (VAM effectiveness) was found.  相似文献   

3.
Nutrient acquisition and growth of citronella Java (Cymbopogon winterianus Jowitt) was studied in a P-deficient sandy soil to determine the effects of mycorrhizal symbiosis and soil compaction. A pasteurized sandy loam soil was inoculated either with rhizosphere microorganisms excluding VAM fungi (non-mycorrhizal) or with the VAM fungus, Glomus intraradices Schenck and Smith (mycorrhizal) and supplied with 0, 50 or 100 mg P kg-1 soil. The soil was compacted to a bulk density of 1.2 and 1.4 Mg m-3 (dry soil basis). G. intraradices substantially increased root and shoot biomass, root length, nutrient (P, Zn and Cu) uptake per unit root length and nutrient concentrations in the plant, compared to inoculation with rhizosphere microorganisms when the soil was at the low bulk density and not amended with P. Little or no plant response to the VAM fungus was observed when the soil was supplied with 50 or 100 mg P kg-1 soil and/or compacted to the highest bulk density. At higher soil compaction and P supply the VAM fungus significantly reduced root length. Non-mycorrhizal plants at higher soil compaction produced relatively thinner roots and had higher concentrations and uptake of P, Zn and Cu than at lower soil compaction, particularly under conditions of P deficiency. The quality of citronella Java oil measured in terms citronellal and d-citronellol concentration did not vary appreciably due to various soil treatments.  相似文献   

4.
Abstract

The effect of dual inoculation on three local cultivars (Miss Kelly, Portland Red, Round Red) of red kidney bean (Phaseolus vulgaris, L.) with four strains of Rhizobium phaseoli (B36, B17, T2, and CIAT652) and three species of vesicular-arbuscular mycorrhizal (VAM) fungi (Glomus pallidum, Glomus aggregatum, and Sclerocystis microcarpa) was examined in sterilized and nonsterilized soil. Symbiotic efficiency (improved plant growth response and enhanced nitrogen (N) and phosphorus (P) nutrition) was dependent on the particular combination of Rhizobium strain, VAM fungus, and cultivar of kidney bean. Whereas rhizobial strains B36 and B17 paired with G. pallidum or G. aggregatum showed increased growth response of cv. Miss Kelly and Portland Red, rhizobial strain T2 paired with any of the three VAM fungi was the best compatible pairing for the cv. Round Red. It is suggested that even though dual inoculation significantly improves the growth response of the bean, the best pairings of VAM fungus and rhizobia for legumes is a question to be carefully examined.  相似文献   

5.
Summary Abundance and distribution of vascular plants and vesicular-arbuscular mycorrhizal (VAM) fungi across a soil moisture-nutrient gradient were studied at a single site. Vegetation on the site varied from a dry mesic paririe dominated by little bluestem (Schizachyrium scoparium) to emergent aquatic vegetation dominated by cattail (Typha latifolia) and water smartweed (Polygonum hydropiperoides). Plant cover, VAM spore abundance, plant species richness, and number of VAM fungi represented as spores, had significant positive correlations with each other and with percent organic matter. The plant and VAM spore variables had significant negative correlations with soil pH and available Ca, Mg, P and gravimetric soil moisture. Using stepwise multiple regression, Ca was found to be the best predictor of spore abundance. Test for association between plant species and VAM fungal spores indicated that the spores of Glomus caledonium are associated with plants from dry, nutrient poor sites and spores of gigaspora gigantea are positively associated with plants occurring on the wet, relatively nutrient rich sites. Glomus fasciculatum was the most abundant and widely distributed VAM fungus and it had more positive associations with endophyte hosts than the other VAM fungi. We found no relationship between beta niche breadth of plant species and the presence or absence of mycorrhizal infection. However, our data suggest that some plant species may vary with respect to their infection status depending upon soil moisture conditions that may fluctuate seasonally or annually to favor or hinder VAM associations.  相似文献   

6.
Effect of hydrogen uptake positive (Hup+) strain ofRhizobium sp. (pigeon pea) and VAM fungus (Glomus fasciculatum) was studied on the symbiotic parameters of pigeon pea (Cajanus cajan) cv. AL-15 at various levels of phosphorus. The Hup+ Rhizobium strain showed more nodulation, plant biomass and plant nitrogen content than its Hup counterpart. VAM infection in pigeon pea roots helped in translocating phosphorus from the soil and improved nitrogen fixation. Similarly, addition of phosphorus was found to play a positive role in enhancing all these parameters. Dual inoculation of Hup+ Rhizobium strain and VAM significantly increased nodulation, nitrogenase activity, plant nitrogen and phosphorus content and plant biomass compared to single inoculation of either organism and dual inoculation with Hup and VAM fungus.  相似文献   

7.
Prior field studies have shown that populations of forest herbs on relatively nutrient poor soils have higher vesicular-arbuscular mycorrhizal (VAM) infection intensity than plants on rich soils. However, the growth responses and ability to take up P against the soil nutrient gradient are often not linearly related to infection intensity. To determine if intraspecific differences among populations of the common VAM fungus Glomus occultum could differentially affect growth and nutrient uptake, Geranium robertianum seedlings were inoculated with Glomus occultum isolated from four forest types along a gradient of soil fertility, and grown in a greenhouse at P levels typical of the extremes of that gradient. Plants given inoculum from relatively infertile forest sites generally produced greater root, shoot, and total mass than plants given inoculum from fertile sites or uninoculated plants, especially at the low P supply rate. Total P uptake and both P and N uptake efficiency were also highest in plants given inocula from low fertility sites. These results indicate that local adaptation and intraspecific variations in the ability of VAM fungi to induce growth and nutrient uptake effects on host plants may be as important as interspecific differences among VAM fungus species.  相似文献   

8.
The mycorrhizal status of water-impounding tank bromeliad epiphytes from three locales differing in altitude and moisture regime within Venezuelan cloud forest was examined. Species of vesicular-arbuscular mycorrhizal (VAM) fungi found in arboreal soils were compared to VAM fungi found in terrestrial soils. Sixteen of the 19 epiphytes examined for the presence of VAM fungi had roots with infection stages; 14 of these specimens showed growth of the fine endophyte Glomus tenue. Fine endophyte was the only VAM fungus found associated with epiphytes in the driest locale studied, while coarse VAM fungi (Gigaspora and Scutellospora spp.) were found at sampling locales receiving more moisture. Root infection was usually composed of intercellular hyphae and peletons; few arbuscules were observed. However, abundant extracellular hyphae were often observed tangled about roots in arboreal soil. It is concluded that epiphytic bromeliads probably benefit, at least periodically, from VAM fungi scavenging for sporadically available nutrients in arboreal soils. Glomus tenue may be particularly important as a colonizing VAM fungus in drier sites of Venezuelan cloud forest. The species composition of VAM fungi in arboreal soils was different to that of terrestrial soils sampled directly under epiphytic bromeliad perches, suggesting that VAM fungi species associated with bromeliads are dispersed to their hosts by vagile animal vectors.  相似文献   

9.
To test the hypothesis that high levels of soluble phosphate applied in combination with VAM fungi, to citrus plants, can cause growth depression even in the absence of other limiting factors, and also to test if rock phosphate, under these conditions, may be a satisfactory P source, a greenhouse experiment was conducted using sterilized soil with four levels of phosphate (0, 50, 100 and 200 ppm P) supplied either as soluble P or as rock phosphate. Citrus seedlings were either inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus etunicatum or left uninoculated. Six months after the start of the experiment, the plants were harvested and shoot dry weight, P and K uptake, root colonization and the number of spores in 50 cm3 of soil were determined. Significant increases were found in dry matter yields and in P and K contents, due to VAM fungus inoculation, at the zero and 50 ppm soluble P levels and at all rock phosphate levels. At 100 ppm soluble P, the development of VAM plants was equilvalent to that of non-VAM plants, and at 200 ppm, growth was significantly less than that of non-VAM plants. Root colonization and sporulation were reduced at higher P levels. The absolute growth depression of VAM plants at the higher P level was likely due to P toxicity. In addition, high leaf P and K concentrations may have interfered with carbohydrate distribution and utilization in these symbioses. Rock phosphate may be used with VAM citrus to substitute for medium amounts of soluble phosphate.  相似文献   

10.
A greenhouse experiment was conducted to investigate the effects of the arbuscular mycorrhizal fungus Funneliformis mosseae on three parameters: Pb, Zn, Cu and Cd accumulation, translocation and plant growth in perennial ryegrass (Lolium perenne), tall fescue (Festuca arundinacea), showy stonecrop (Hylotelephium spectabile) and Purple Heart (Tradescantia pallida). The purpose of this work is to enhance site-specific phytostabilization of lead/zinc mine tailings using native plant species. The results showed that mycorrhizal fungi inoculation significantly increased plant biomass of F. arundinacea, H. spectabile and T. pallida. The Pb, Zn, Cu and Cd concentrations in roots were higher than those in shoots both with and without mycorrhizae, with the exception of the Zn concentration in H. spectabile. Mycorrhizae generally increased metal concentrations in roots and decreased metal concentrations in shoots of L. perenne and F. arundinacea. In addition, it was found that the majority of the bioconcentration and translocation factors were lower than 1 and mycorrhizal fungi inoculation further reduced these values. These results suggest that appropriate plant species inoculated with mycorrhiza might be a potential approach to revegetating mine tailing sites and that H. spectabile is an appropriate plant for phytostabilization of Pb/Zn tailings in northern China due to its higher biomass production and lower metal accumulation in shoots.  相似文献   

11.
Soybean [ Glycine max (L.) Merr. cv. Kent] plants were colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum (Thaxt. sensu Gerd.) Gerd. and Trappe in pot cultures using an inert medium and a nutrient solution. Phosphorus was provided initially as 0, 25,50, 100 or 200 mg hydroxyapatite [HAP, Ca10(PO4)6(OH)2] per pot. Under the low (0 mg HAP) and high (100 and 200 mg HAP) P regimes, VAM plants showed 20, 25 and 38% growth retardation, respectively, relative to non-colonized controls. At 50 mg HAP, VAM plant growth was significantly enhanced (14%). Dry weight and P content of both VAM and control plants increased with increased P availability throughout the HAP gradient. Intraradical VAM fungal biomass increased linearly with increasing P availability. Extraradical VAM fungal biomass was smaller than the intraradical component of the fungus at the lowest and highest levels of P addition in the growth medium. The ratio of extra- to intraradical mycelium, a suggested index of VAM fungal effectiveness, was greatest for the 50 mg HAP treatment, coinciding with growth enhancement of the host plant. This enhanced growth of the host at an intermediate P level was apparently a result of increased P uptake by the endophyte.  相似文献   

12.
Palmarosa (Cymbopogon martinii var. motia) was found to be associated with a vesicular-arbuscular mycorrhizal (VAM) fungus, Glomus aggregatum. Glasshouse experiments showed that inoculation of palmarosa with G. aggregatum caused a two-fold growth and three-fold biomass production as compared to non-mycorrhizal plants. These findings indicate the potential use of VAM-fungi for improving the production of this essential oil bearing plant.CIMAP Publication No. 879.CIMAP Publication No. 879.  相似文献   

13.
Ian R. Sanders 《Oecologia》1993,93(3):349-355
Specificity in vesicular-arbuscular mycorrhizas (VAM), arising from selection favouring host plant/mycorrhizal fungus associations in which both organisms receive benefit, might have a significant influence on interactions between co-existing plant species. In an attempt to detect such specificity root inoculum of four tempt to detect such specificity root inoculum of four plant species, harvested from a species-rich grassland on three dates during the plant growth season, was used to infect the same plant species grown in pots. The rate and overall level of infection was different according to inoculum source and the time of year in which the inoculum was harvested, i.e. temporal variation in VAM infectivity occurs. However, there was no evidence for either specificity or mycorrhizal benefit. Inoculum produced during this experiment was used to infect bait Trifolium pratense plants and protein patterns of these roots indicated that a number of biochemically different endophytes were present, both within the inoculum of the four plant species but also within inoculum from one plant species. Temporal variation in mycorrhizal infectivity could be important for mycorrhizal propagation in the field. However, the lack of evidence, in this study, for specificity of VAM or an obvious nutritional benefit to plants with mycorrhizas make the role of mycorrhizas in this community difficult to interpret.  相似文献   

14.
Maize (Zea mays L. cv. Great Lakes 586) plants were either inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus intraradices Schenck and Smith, or grown in the presence of the isoflavone formononetin or were provided with both G. intraradices and formononetin. All plants were grown in soil containing one of five levels of inorganic P (between 8 and 110 µg g?1 soil). By 3 weeks there were significant differences in a number of enzyme activities and in the pattern of isoenzymes in roots colonized by the VAM fungus or treated with formononetin. One NAD-malate dehydrogenase (MDH) isozyme was expressed only in mycorrhizal roots, whether treated or not with formononetin. Despite differences in the soil P level, the expression of this isozyme was not observed in non-mycorrhizal roots, indicating specific expression in the mycorrhizae. We suggest that MDH isozyme could serve as a specific, early indicator of the Zea-Glomus symbiosis. Differences in the esterase (EST) isozyme pattern were not detectable between VAM and non-VAM roots, suggesting that this enzyme system is not a good parameter for the evaluation of mycorrhizal colonization. As available P in the soil increased, total EST activity appeared to increase as well. Interestingly, total peroxidase (POX) activity increased along with P suggesting that as plant P nutrition improved, both cell wall ramification and the quantity of defense peroxidases increased as well. Total POX activity from mycorrhizal roots was inversely correlated with root colonization, indicating that there was suppression of POX activity by the host under low soil P. Most interestingly, formononetin further decreased POX activity regardless of the level of P or mycorrhizal status. This may suggest one mechanism by which formononetin enhances root VAM colonization. The presence of this isoflavone suppressed POX activity in mycorrhizal roots allowing a rapid penetration and spread of the fungus in the root cortex. The interplay between host root, soil P levels, secondary metabolites and endogenous host enzyme activities and a particular VAM fungus has a profound effect on the efficiency, duration and functioning of an endomycorrhizal symbiosis.  相似文献   

15.
This paper presents a hydroponic system for culturing and maintaining the VAM fungus Glomus intraradices in symbiosis with linseed (Linum usitatissimum L.) under greenhouse conditions in pure nutrient solution. It was possible to obtain large quantities of mycorrhizal host plant roots as well as extramatrical mycelium and chlamydospores free of impeding residues of solid substrate components. Starting from linseed donor plants inoculated in sand and transferred to the nutrient solution, new infections arose within the fast growing root system, hyphae spread out into the liquid and infected mycorrhiza-free receptor plants. Data for infection rates and plant growth parameters are presented. In comparsion to other culture systems for VAM fungi, the advantages of this hydroponic system are discussed and potential uses suggested.  相似文献   

16.
Summary Brassica nigra and selected species of Leucaena and Sesbania were used as indicator hosts in a greenhouse experiment designed to establish distinct categories of mycorrhizal dependence. The plants were grown in an oxisol with different concentrations of established soil solution P in the presence or absence of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus aggregatum. The extent to which the plant species depended on the fungus for dry matter production diminished with increased concentrations of soil solution P, but the magnitude of this decrease varied from species to species. Five distinct mycorrhizal categories are proposed based on the differences observed, ranging from non-dependent to very highly dependent. The critical soil solution P concentrations that were useful for separating host species into distinct VAM-dependency groups were 0.02 and 0.2 mg/l. Species differing in their mycorrhizal dependency differed with respect to the soil solution P concentration required for the expression of maximum VAM effectiveness, the degree to which increasing concentrations of P depressed VAM infection and the pattern of immobile nutrient accumulation.Contribution from the Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3547  相似文献   

17.
Morphological and biochemical interactions between a vesicular-arbuscular mycorrhizal (VAM) fungus (Glomus fasciculatum [Thaxt. sensu Gerdemann] Gerdemann and Trappe) and potato (Solanum tuberosum L.) plants during the development of P deficiency were characterized. Nonmycorrhizal (NM) plants grown for 63 d with low abiotic P supply (0.5 mM) produced 34, 52, and 73% less root, shoot, and tuber dry matter, respectively, than plants grown with high P (2.5 mM). The total leaf area and the leaf area:plant dry weight ratio of low-P plants were substantially lower than those of high-P plants. Moreover, a lower shoot:root dry weight ratio and tuber:plant dry weight ratio in low-P plants than in high-P plants characterized a major effect of P deficiency stress on dry matter partitioning. In addition to a slower rate of growth, low-P plants accumulated nonreducing sugars and nitrate. Furthermore, root respiration and leaf nitrate reductase activity were lower in low-P plants than in high-P plants. Low abiotic P supply also induced physiological changes that contributed to the greater efficiency of P acquisition by low-P plants than by high-P plants. For example, allocation of dry matter and P to root growth was less restricted by P deficiency stress than to shoot and tuber growth. Also, the specific activities of root acid phosphatases and vanadate-sensitive microsomal ATPases were enhanced in P-deficient plants. The establishment of a VAM symbiosis by low-P plants was essential for efficient P acquisition, and a greater root infection level for P-stressed plants indicated increased compatibility to the VAM fungus. By 63 d after planting, low-P VAM plants had recovered 42% more of the available soil P than low-P NM plants. However, the VAM fungus only partially alleviated P deficiency stress and did not completely compensate for inadequate abiotic P supply. Although the specific activities of acid phosphatases and microsomal ATPases were only marginally influenced by VAM infection, VAM roots characteristically had a higher protein concentration and, consequently, enhanced microsomal ATPase and acid phosphatase activities on a fresh weight basis compared with NM roots. Morphological and ultrastructural details of VAM plants are discussed in relation to the influence of the VAM symbiosis on P nutrition of potato.  相似文献   

18.
Growth of a filamentous fungus endophyte, Neotyphodium, and its host plant, tall fescue, Festuca arundinacea, was examined during the seed germination process under pseudo-microgravity [correction of micrgravity] generated by three dimensional (3D-) clinorotation. The shoot growth of tall fescue infected with the endophyte was remarkably suppressed on a 3D-clinostat compared with that of the ground control. Without being infected, shoot growth of tall fescue was not strongly affected by the 3D-clinorotation. Many aggregated hyphae were observed in the plant seed incubated for 1-day on the 3D-clinostat [correction of clinost] than in those kept on the ground. These results indicate that the clinorotation induces responses in the endophyte and its host plant different from those under normal gravity.  相似文献   

19.
Vesicular-arbuscular mycorrhizae may increase resistance of plants to drought by a number of mechanisms, such as increased root hydraulic conductivity, stomatal regulation, hyphal water uptake and osmotic adjustment. However, a substantial contribution of vesicular-arbuscular mycorrhizal (VAM) hyphae to water uptake has not been demonstrated unequivocally. The objective of this investigation was to examine the contribution of hyphae from two VAM fungi to water uptake and transport by the host plant. Lettuce (Lactuca sativa L.) plants were grown in a container divided by a screen into two compartments. One was occupied by roots, the other only by VAM hyphae, which the screen permitted to pass. Roots were colonized by the VAM fungi Glomus deserticola or Glomus fasciculatum, or were left uninoculated but P-supplemented. Water was supplied to the hyphal compartment at a distance of 10 cm from the screen (root). CO2 exchange rate, water-use efficiency, transpiration, stomatal conductance and photosynthetic phosphorus-use efficiency of VAM or P-amended control plants were evaluated at three levels of water application in the hyphal compartment. Results indicate that much of the water was taken up by the hyphae in VAM plants. VAM plants, which had access to the hyphal compartment, had higher water and nutrient contents. G. deserticola functioned efficiently under water limitation and mycelium from G. fasciculatum-colonized plants was very sensitive to water in the medium. This discrepancy in VAM behaviour reflects the various abilities of each fungus according to soil water levels. Different abilities of specific mycelia were also expressed in terms of nutritional and leaf gas-exchange parameters. G. fasciculatum caused a significant increase in net photosynthesis and rate of water use efficiency compared to G. deserticola and P-fertilized plants. In contrast, the G. deserticola treatment was the most efficient affecting N, P and K nutrition, leaf conductance and transpiration. Since no differences in the intra- and extra-radical hyphal extension of the two endophytes were found, the results demonstrate that mycorrhizal hyphae can take up water and that there are considerable variations in both the behaviour of these two VAM fungi and in the mechanisms involved in their effects on plant water relations.  相似文献   

20.
Galvez  L.  Douds  D.D.  Drinkwater  L.E.  Wagoner  P. 《Plant and Soil》2001,228(2):299-308
Low-input agricultural systems that do not rely on fertilizers may be more dependent on vesicular-arbuscular mycorrhizal [VAM] fungi than conventionally managed systems. We studied populations of spores of VAM fungi, mycorrhiza formation and nutrient utilization of maize (Zea mays L.) grown in moldboard plowed, chisel-disked or no-tilled soil under conventional and low-input agricultural systems. Maize shoots and roots were collected at four growth stages. Soils under low-input management had higher VAM fungus spore populations than soils under conventional management. Spore populations and colonization of maize roots by VAM fungi were higher in no-tilled than in moldboard plowed or chisel-disked soil. The inoculum potential of soil collected in the autumn was greater for no-till and chisel-disked soils than for moldboard plowed soils and greater for low-input than conventionally farmed soil. The effects of tillage and farming system on N uptake and utilization varied with growth stage of the maize plants. The effect of farming system on P use efficiency was significant at the vegetative stages only, with higher efficiencies in plants under low-input management. The effect of tillage was consistent through all growth stages, with higher P use efficiencies in plants under moldboard plow and chisel-disk than under no-till. Plants grown in no-tilled soils had the highest shoot P concentrations throughout the experiment. This benefit of enhanced VAM fungus colonization, particularly in the low-input system in the absence of effective weed control and with likely lower soil temperatures, did not translate into enhanced growth and yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号