首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Energy transduction and solute transport in streptococci   总被引:8,自引:1,他引:7  
Metabolic energy in lactic streptococci can be generated by substrate level phosphorylation and by efflux of end-products in symport with protons. During growth on lactose or glucose Streptococcus cremoris maintains a high proton motive force and phosphate potential. Both energy intermediates dissipate rapidly when the energy supply stops. In the initial phase of starvation the internal phosphoenolpyruvate (PEP) pool increases rapidly and this enables the organism for a prolonged period during starvation to accumulate the energy source via a PEP-dependent uptake system.  相似文献   

2.
Lactococcus lactis species can survive periods of carbohydrate starvation for relatively long periods of time. In the first hours of starvation, however, the maximal glycolytic and arginine deiminase (ADI) pathway activities decline rapidly. The rate of decrease of the pathway activities diminishes as soon as the cells become depleted of energy-rich intermediates. Loss of glycolytic activity is associated with loss of glyceraldehyde 3-phosphate dehydrogenase, phosphoglycerate mutase and pyruvate kinase activities. Upon addition of sugar to starved cultures these enzymatic, and thus the glycolytic, activities can be restored to 100% values. The recovery of enzymatic activities is inhibited by chloramphenicol, indicating that protein synthesis is involved. In contrast, restoration of ADI pathway activity does not require de novo synthesis of proteins. General protein degradation and synthesis have been studied in growing and starving cells using [35S]methionine-labeling of proteins and two-dimensional gel analysis. The breakdown of bulk proteins in exponentially growing cells shows first-order rate kinetics (t1/2 of approximately 5 h). Following an initial breakdown of proteins with a t1/2 of 5 h during the first hour(s) of starvation, bulk proteins are degraded very slowly in starving energy-depleted cells. The breakdown of proteins during starvation appears to be (largely) nonspecific. The rate of synthesis of proteins decreases rapidly in the first hour(s) of starvation. From the onset of starvation on at least 45 proteins are no longer synthesized. During starvation relative induction of fourteen to fifteen proteins can be observed.Abbreviations ADI Arginine deiminase - ATP adenosine triphosphate - PEP phosphoenolpyruvate - membrane potential - pH pH gradient - PTS sugar phosphotransferase system - CDM chemically defined medium - TCA trichloro-acetic acid  相似文献   

3.
The activities of phosphoenolpyruvate carboxylase (PEP carboxylase, EC 4.1.1.3.1) have been investigated in various organs of young nodulated Alnus glutinosa. The root nodules exhibited the highest specific enzyme activity when compared with the one in roots and leaves. Furthermore, in the root nodules the PEP carboxylase was predominantly localized in the cytosol of the large cortical cells containing the endophyte vesicles.Abbreviations PEP carboxylase phosphoenolpyruvate carboxylase - MDH malate dehydrogenase - PVP polyvinylpyrrolidone - PBS phosphate buffer saline  相似文献   

4.
Phosphorylation of free galactose by lactic streptococci was mediated by an adenosine triphosphate (ATP)-dependent kinase. The phosphoenolpyruvate (PEP) phosphotransferase system (PTS) was involved to a limited extent in transport of the sugar. The conversion of free galactose to glucose also was demonstrated, and uridine diphosphogalactose-4-epimerase was demonstrated to account for this change. Galactose, supplied as lactose, was phosphorylated during transport by means of the PTS with PEP as the phosphate donor. Data also indicated that galactose derived from lactose was catabolized by the glycolytic pathway. Results showed the participation of ATP or PEP, or both, in the phosphorylation of five growth sugars for lactic streptococci, namely, galactose, glucose, lactose, maltose, and mannose. Free galactose was phosphorylated exclusively by ATP except when cells were grown on galactose; in this case, slight involvement of PEP in phosphorylation also was noted. Lactose phosphorylation was much more effective with PEP except when cells were grown on lactose, in which case ATP was equally effective. Glucose was phosphorylated to about the same degree by either ATP or PEP.  相似文献   

5.
1. Mesophyll chloroplasts of the C4 plant Digitaria sanguinalis contain endogenous phosphoenolpyruvate which appears to distribute across the envelope according to the existing pH gradient. The phosphoenolpyruvate remaining in the stroma can be rapidly released by external inorganic phosphate or 3-phosphoglycerate while external pyruvate did not affect the distribution. 2. Phosphoenolpyruvate (PEP) was a competitive inhibitor (Ki (PEP) = 450 micrometer) of 32Pi uptake (Km(Pi)=200 micrometer) by chloroplasts in the dark and also reduced the steady-state internal concentration of 32Pi, which is consistent with phosphate and phosphoenolpyruvate sharing a common carrier. 3. Phosphoenolpyruvate formation by chloroplasts in the light in the presence of pyruvate but in the absence of inorganic phosphate was slow and the concentration ratio of phosphoenolpyruvate (internal/external) was high. Addition of 0.1 mM phosphate induced a high rate of phosphoenolpyruvate formation and the concentration ratio (internal/external) decreased 15-fold. It is proposed that external phosphate is required both for phosphoenolpyruvate formation and efflux from the chloroplast.  相似文献   

6.
The metabolism of trehalose in wild type cells of Escherichia coli and Salmonella typhimurium has been investigated. Intact cells of Escherichia coli (grown on trehalose) accumulated [14C]-trehalose as [14C]-trehalose 6-phosphate. Toluene-treated cells catalyzed the synthesis of the [14C]-sugar phosphate from [14C]-trehalose and phosphoenolpyruvate; ATP did not serve as phosphoryl donor. Trehalose 6-phosphate could subsequently be hydrolyzed by trehalose 6-phosphate hydrolase, an enzyme which catalyzes the hydrolysis of the disaccharide phosphate into glucose and glucose 6-phosphate. Both Escherichia coli and Salmonella typhimurium induced this enzyme when they grew on trehalose.These findings suggest that trehalose is transported in these bacteria by an inducible phosphoenolpyruvate:trehalose phosphotransferase system.The presence of a constitutive trehalase was also detected.Abbreviations HEPES N-2-hydroxyethylpiperazine-N-2-ethanosulfonic acid - PEP phosphoenolpyruvate - PTS phosphoenolpyruvate: glycose phosphotransferase system - O.D. optical density  相似文献   

7.
E R Kashket 《Biochemistry》1982,21(22):5534-5538
The H+/ATP stoichiometry of the proton-translocating ATPase was investigated in growing and nongrowing, respiring cells of Escherichia coli. The protonmotive force, delta p, was determined by measuring the transmembrane chemical gradient of protons, delta pH, from the cellular accumulation of benzoate anions, and the electrical gradient, delta psi, from the accumulation of the lipophilic cation tetraphenylphosphonium (TPP+). The accumulation of lactose was also used to calculate the delta p in this lactose operon constitutive beta-galactosidase negative mutant. The phosphorylation potential, delta GP', was determined by measuring the cellular concentration of ATP, ADP, and inorganic phosphate. According to chemiosmotic principles, at steady state the phosphorylation potential is in thermodynamic equilibrium with the protonmotive force, and thus the ratio delta p/delta GP' can be used to determine the H+/ATP ratio. Respiring E. coli cells, in mid-exponential phase of growth or incubated in buffer, at external pHs from 6.25 to 8.25 had a constant delta GP' of about 500 mV. The H+/ATP ratio was found to be 3 when the delta p value derived from lactose accumulation levels was used. However, when the delta p values derived from delta pH and delta psi were used in the calculations, the H+/ATP ratio varied from about 2.5 at external pH 6.25 to about 4 at pH 8.25. Arguments are presented for the hypothesis that the delta psi values obtained from the TPP+ measurements are likely to be inaccurate and that a value of 3 H+/ATP, independent of the external pH, is likely to be the valid stoichiometry.  相似文献   

8.
Facilitated diffusion of [14C]lactose into inverted membrane vesicles of Escherichia coli was measured using HgCl2 as a stopping reagent and polylysine to flocculate the vesicles for filtration. Equilibration of lactose between the internal and external volumes required expression of the y gene of the lac operon and was inhibited by thiodigalactoside or by prior incubation with N-ethylmaleimde or HgCl2. The initial rate of uptake was saturable, with a Kt of 0.95 mM. Counterflow of [14C]lactose was demonstrated in either direction. ATP hydrolysis or respiration drove the efflux of internal lactose. The effect of ATP required addition of F1 coupling factor (ATPase) from E. coli when lactose transport was studied in F1-deficient inverted vesicles. Accumulation of lactose against a concentration gradient was achieved by forming an artificial electrochemical proton gradient consisting of a membrane potential negative inside or a pH gradient basic inside. Addition of ATP inhibited this proton driven uptake showing that it occurred in inverted vesicles. It was concluded that the lactose-proton co-transport protein (M protein) is qualitatively symmetrical with respect to the facilitated diffusion of lactose and the coupling of proton and lactose transport.  相似文献   

9.
Gniazdowska  A.  Rychter  A. M. 《Plant and Soil》2000,226(1):79-85
Bean (Phaseolus vulgaris L.) plants were cultured for 19 d on complete or on phosphate deficient culture media. Low inorganic phosphate concentration in the roots decreased ATP level and nitrate uptake rate. The mechanisms which may control nitrate uptake rate during phosphate deficiency were examined. Plasma membrane enriched fractions from phosphate sufficient and phosphate deficient plants were isolated and compared. The decrease in total phospholipid content was observed in plasma membranes from phosphate deficient roots, but phospholipid composition was similar. No changes in ATPase and proton pumping activities measured in isolated plasma membrane of phosphate sufficient and phosphate deficient bean roots were noted. The electron microscope observations carried out on cortical meristematic cells of the roots showed that active ATPases were found in plasma membrane of both phosphate sufficient and phosphate deficient plants. The decrease in inorganic phosphate concentration in roots led to increased nitrate accumulation in roots, accompanied by a corresponding alterations in NO3 distribution between shoots and roots. Nitrate reductase activity in roots of phosphate deficient plants estimated in vivo and in vitro was reduced to 50–60% of the control. The increased NO3 concentration in root tissue may be explained by decreased NR activity and lower transport of nitrate from roots to shoots. Therefore, the reduction of nitrate uptake during phosphate starvation is mainly a consequence of nitrate accumulation in the roots.  相似文献   

10.
H. Schnabl  C. Kottmeier 《Planta》1984,162(3):220-225
Properties of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) obtained from isolated guard-cell protoplasts of Vicia faba L. were determined following rapidly desalting of the extract on a Sephadex G 25 column. The activity of PEP carboxylase was measured as a function of PEP and malate concentration, pH and K+ concentration within 2–3 min after homogenization of the guard-cell protoplasts. The activity of this enzyme was stimulated by PEP concentrations of 0.1 to 0.75 mM and by K+ ions (12 mM), but inhibited by PEP concentrations above 1 mM and by malate. Changes in the Km(PEP) and Vmax values with increasing malate concentrations (2.5 and 5 mM) indicate that the malate level, varying in relation to the physiological state of guard cells, plays an important role in regulating the properties of phosphoenolpyruvate carboxylase.Abbreviations CAM Crassulacean acid metabolism - GCP guard-cell protoplast - PEP phosphoenolpyruvate Dedicated to Professor Dr. Hubert Ziegler on the occasion of his 60th birthday  相似文献   

11.
Steven C. Huber  Gerald E. Edwards   《BBA》1977,462(3):603-612
1. Mesophyll chloroplasts of the C4 plant Digitaria sanguinalis contain endogenous phosphoenolpyruvate which appears to distribute across the envelope according to the existing pH gradient. The phosphoenolpyruvate remaining in the stroma can be rapidly released by external inorganic phosphate or 3-phosphoglycerate while external pyruvate did not affect the distribution.

2. Phosphoenolpyruvate (PEP) was a competitive inhibitor (Ki(PEP) = 450 μM) of 32Pi uptake (Km(Pi) = 200 μM) by chloroplasts in the dark and also reduced the steady-state internal concentration of 32Pi, which is consistent with phosphate and phosphoenolpyruvate sharing a common carrier.

3. Phosphoenolpyruvate formation by chloroplasts in the light in the presence of pyruvate but in the absence of inorganic phosphate was slow and the concentration ratio of phosphoenolpyruvate (internal/external) was high. Addition of 0.1 mM phosphate induced a high rate of phosphoenolpyruvate formation and the concentration ratio (internal/external) decreased 15-fold. It is proposed that external phosphate is required both for phosphoenolpyruvate formation and efflux from the chloroplast.  相似文献   


12.
E R Kashket 《FEBS letters》1983,154(2):343-346
The H+/ATP stoichiometry of the H+-ATPase was investigated in Escherichia coli cells growing under anaerobic conditions at pH 6 and 7. The protonmotive force was determined from the intracellular accumulation of benzoate and tetraphenylphosphonium ions, as well as the accumulation of lactose in this lac operon inducible, but beta-galactosidase negative strain. The phosphorylation potential was calculated from the cellular concentrations of ATP, ADP and inorganic phosphate. By comparing the phosphorylation potential and the proton motive force under these steady state conditions, the H+/ATP stoichiometry was determined to be 3, similar to the value previously found in the same cells growing under aerobic conditions.  相似文献   

13.
Pyruvate kinase from Propionibacterium shermanii was shown to be activated by glucose-6-phosphate (G-6-P) at non-saturating phosphoenol pyruvate (PEP) concentrations but other glycolytic and hexose monophosphate pathway intermediates and AMP were without effect. Half-maximal activation was obtained at 1 mM G-6-P. The presence of G-6-P decreased both the PEP0.5V and ADP0.5V values and the slope of the Hill plots for both substrates. The enzyme was strongly inhibited by ATP and inorganic phosphate (Pi) at all PEP concentrations. At non-saturating (0.5 mM) PEP, half-maximal inhibition was obtained at 1.8 mM ATP or 1.4 mM Pi. The inhibition by both Pi and ATP was largely overcome by 4 mM G-6-P. The specific activity of pyruvate kinase was considerably higher in lactate-, glucose- and glycerol-grown cultures than that of the enzyme catalysing the reverse reaction, pyruvate, phosphate dikinase. It is suggested that the activity of pyruvate kinase in vivo is determined by the balance between activators and inhibitors such that it is inhibited during gluconeogenesis while, during glycolysis, the inhibition is relieved by G-6-P.Abbreviations PEP phosphoenolpyruvate - G-6-P glucose-6-phosphate - Pi inorganic phosphate  相似文献   

14.
ATPase was detected in the membranes of a motile Streptococcus. Maximal enzymic activity was observed at pH 8 and ATP/Mg2+ ratio of 2. Mn2+ and Ca2+ could replace Mg2+ to some extent. Besides ATP, GTP and ITP were substrates. The enzyme was inhibited by N,N-dicyclohexylcarbodiimide but not by sodium azide, uncouplers or bathophenanthroline.An electrochemical gradient of protons, which was artificially imposed across the membranes of Streptococcus cells by manipulation of either the K+ diffusion potential or the transmembrane pH gradient, led to ATP synthesis. ATP synthesis was abolished by proton conductors, an inhibitor of the ATPase or an increase in the extracellular K+ concentration. A comparison between the phosphate potential and the electrochemical proton gradient showed that the data found are in agreement with a stoichiometry of 2 protons translocated per molecule ATP synthesized.Abbreviations electrochemical gradient of protons - DMO 5,5-dimethyl-2,4-oxazolidinedione - CCCP carbonylcyanide m-chlorophenylhydrazone - FCCP carbonylcyanide p-trifluoromethoxyphenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - DNP 2,4-dimitrophenol  相似文献   

15.
Starved cells of Streptococcus lactis ML3 grown previously on lactose, galactose, or maltose were devoid of adenosine 5'-triphosphate contained only three glycolytic intermediates: 3-phosphoglycerate, 2-phosphoglycerate, and phosphoenolpyruvate (PEP). The three metabolites (total concentration, ca 40 mM) served as the intracellular PEP potential for sugar transport via PEP-dependent phosphotransferase systems. When accumulation of [14C]lactose by iodoacetate-inhibited starved cells was abolished within 1 s of commencement of transport, a phosphorylated disaccharide was identified by autoradiography. The compound was isolated by ion-exchange (borate) chromatography, and enzymatic analysis showed that the derivative was 6-phosphoryl-O-beta-D-galactopyranosyl (1 leads to 4')-alpha-D-glucopyranose (lactose 6-phosphate). After maximum lactose uptake (ca. 15 mM in 15 s) the cells were collected by membrane filtration and extracted with trichloroacetic acid. Neither free nor phosphorylated lactose was detected in cell extracts, but enzymatic analysis revealed high levels of galactose 6-phosphate and glucose 6-phosphate. The starved organisms rapidly accumulated glucose, 2-deoxy-D-glucose, methyl-beta-D-thiogalactopyranoside, and o-nitrophenyl-beta-D-galactopyranoside in phosphorylated form to intracellular concentrations of 32, 32, 42, and 38.5 mM, respectively. In contrast, maximum accumulation of lactose (ca. 15 mM) was only 40 to 50% that of the monosaccharides. From the stoichiometry of PEP-dependent lactose transport and the results of enzymatic analysis, it was concluded that (i) ca. 60% of the PEP potential was utilized via the lactose phosphotransferase system for phosphorylation of the galactosyl moiety of the disaccharide, and (ii) the residual potential (ca. 40%) was consumed during phosphorylation of the glucose moiety.  相似文献   

16.
Accumulation of exogenous phosphoenolpyruvate against the concentration gradient was observed when human red cells were incubated in an acidified isotonic sucrose medium. Fluoride increased the apparent accumulation by inhibition of the intracellular metabolic interconversion of the phosphate compound. The accumulation appeared to be specific for phosphoenolpyruvate and the accumulation rate for 3-phosphoglycerate, which has a molecular size and pKa similar to those of phosphoenolpyruvate, was less than one-tenth of the rate of phosphoenolpyruvate. Red cells incubated in the acidified sucrose medium tended to adhere to each other when examined with a scanning electron microscope.  相似文献   

17.
Uptake of phosphate by Streptococcus lactis ML3 proceeds in the absence of a proton motive force, but requires the synthesis of ATP by either arginine or lactose metabolism. The appearance of free Pi internally in arginine-metabolizing cells corresponded quantitatively with the disappearance of extracellular phosphate. Phosphate transport was essentially unidirectional, and phosphate concentration gradients of up to 10(5) could be established. Substrate specificity studies of the transport system indicated no preference for either mono- or divalent phosphate anion. The activity of the phosphate transport system was affected by the intracellular Pi concentration by a feedback inhibition mechanism. Uncouplers and ionophores which dissipate the pH gradient across the cytoplasmic membrane inhibited phosphate transport at acidic but not at alkaline pH values, indicating that transport activity is regulated by the internal proton concentration. Phosphate uptake driven by arginine metabolism increased with the intracellular pH with a pKa of 7.3. Differences in transport activity with arginine and lactose as energy sources are discussed.  相似文献   

18.
Otto  Roel 《Archives of microbiology》1984,140(2-3):225-230
In lactose and leucine-limited continuous cultures of Streptococcus cremoris a linear relationship exists between specific rate of lactate production and specific growth rate. The rate of acid production in leucine-limited cultures is much higher than in lactose-limited cultures, indicating that under these conditions metabolic energy production is not coupled to growth and that metabolic energy has to be dissipated S. cremoris contains phosphofructokinase and fructose-1,6-diphosphatase, joint action of these two enzymes results in an ATP consuming futile cycle. Analyses of intracellular metabolite pools suggested that AMP and phosphoenolpyruvate play important roles in the regulation of the activity of this futile cycle.Abbreviations PEP Phosphoenolpyruvate - PFK phosphofructokinase (EC 2.7.1.11) - FBPase fructose-1,6-bisphosphatase (EC 3.1.3.11)  相似文献   

19.
The lactate concentration gradient and the components of the electrochemical proton gradient (delta micro H+) were determined in cells of Streptococcus cremoris growing in batch culture. The membrane potential (delta psi) and the pH gradient (delta pH) were determined from the accumulation of the lipophilic cation tetraphenylphosphonium and the weak acid benzoate, respectively. During growth the external pH decreased from 6.8 to 5.3 due to the production of lactate. Delta pH increased from 0 to -35 mV, inside alkaline (at an external pH of 5.7), and fell to zero directly after growth stopped. Delta psi was nearly constant at -90 mV during growth and also dissipated within 40 min after termination of growth. The internal lactate concentration decreased from 200 mM at the beginning of growth (at pH 6.8) to 30 mM at the end of growth (at pH 5.3); the external lactate concentration increased from 8 to 30 mM due to the fermentation of lactose. Thus, the lactate gradient decreased from 80 mV to zero as growth proceeded and the external pH decreased. From the data obtained on delta psi, delta pH, and the lactate concentration gradient, the H+/lactate stoichiometry (n) was calculated. The value of n varied with the external pH from 1.9 (at pH 6.8) to 0.9 (at pH values below 6). This implies that especially at high pH values the carrier-mediated efflux of lactate supplies a significant quantity of metabolic energy to S. cremoris cells. At pH 6.8 this energy gain was almost two ATP equivalents per molecule of lactose consumed if the H+/ATP stoichiometry equals 2. These results supply strong experimental evidence for the energy recycling model postulated by Michels et al.  相似文献   

20.
Autotrophically grown cells of Chloroflexus aurantiacus B-3 were shown to possess activity of ATP-dependent malate lyase (acetylating CoA). ATP: malate lyase is supposed to be the specific enzyme of the cycle of the autotrophic CO2 fixation, in which pyruvate synthase, pyruvate phosphate dikinase, phosphoenolpyruvate (PEP) carboxylase and malate dehydrogenase are involved as well. The main product of the CO2 fixation cycle is glyoxylate, which could further be converted into 3-phosphoglyceric acid (3-PGA) in the reactions of either glycerate or serine pathway. The enzymes of both pathways were detected in C. auratiacus B-3. The results of the in vivo studies of glyxoylate and glycine metabolism, as well as the inhibitor analysis using fluoroacetate (FAc), isonicotinic acid hydrazide (INH), and 4-aminopterin (4-AP) confirm the operation of the proposed pathway in Chloroflexus.Abbreviations 3-PGA 3-phosphoglyceric acid - 4-AP 4-aminopterin - FAc fluoroacetate - INH isonicotinic acid hydrazide - MV methyl viologen - PEP phosphoenolpyruvate - THF tetrahydrofolate - TPP thiamine pyrophosphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号