首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serum thyroid hormone concentrations were measured in 100 samples from 25 patients with congenital hypothyroidism who were clinically well while receiving L-T4 therapy. Thyroxine concentrations were significantly higher than those of controls (p less than 0.01), while triiodothyronine was not significantly different. These samples were divided into four groups according to serum thyroid stimulating hormone concentrations as measured by highly sensitive immunoradiometric assay (IRMA-TSH). Serum thyroid hormone concentrations were compared among groups. The replacement dose of L-T4 and serum thyroid hormone in groups with undetectable IRMA-TSH were significantly higher than those in groups with normal or increased IRMA-TSH. These results show that serum thyroxine concentrations increase in most patients with congenital hypothyroidism on L-T4 therapy. Therefore, thyroxine concentrations above normal are not necessarily of clinical significance if IRMA-TSH is detectable. Undetectable IRMA-TSH might indicate the necessity for a reduction in the L-T4 replacement dose in patients with congenital hypothyroidism.  相似文献   

2.
The changes in plasma concentrations of TSH and thyroid hormones (L-T3 and L-T4), lactate, proteins and FFA were studied in 8 male volunteers undergoing maximal exercise during 12 min on the bicycle ergometer from 1 to 4 w/kg. Serial blood samples were taken at -30, 0, 3, 6, 9, 12, +3, +15 and +30 min intervals. All samples for TSH, L-T3 and L-T4 measurements were processed by radioimmunoassay. The possibility of interference in the RIA determination, with protein and FFA, has been studied in this work. However, in men the available evidence suggests that protein and FFA do not play an important role of interference in the determination methodology of thyroid hormone levels. This interpretation is in accordance with the fact that in men, plasma concentrations of thyroid hormones are related to changes in plasmatic volume, the intensity and the extended duration of the exercise.  相似文献   

3.
Using cultured GH1 cells, a growth hormone and prolactin-producing rat pituitary cell line, we have shown that n-butyrate and other short chain carboxylic acids stimulate histone acetylation and elicit a reduction of thyroid hormone nuclear receptor which is inversely related to the extent of acetylation (Samuels, H. H., Stanley, F., Casanova, J., and Shao, T. C. (1980) J. Biol. Chem. 255, 2499-2508). In this study, we compared the n-butyrate and propionate modulation of receptor levels to regulation of the growth hormone and prolactin response by 3,5,3'-triiodo-L-thyronine (L-T3). n-Butyrate (0.1-10 mM) did not stimulate growth hormone production. L-T3 stimulated the growth hormone response 4- to 5-fold and n-butyrate (0.5-1 mM) increased L-T3 stimulation of growth hormone production 1.5- to 2-fold compared to L-T3 alone. L-T3 stimulation of growth hormone production at higher n-butyrate concentrations decreased in parallel with the n-butyrate-mediated reduction of receptor levels. In contrast with the growth hormone response, n-butyrate (0.5 mM) increased basal prolactin production about 5-fold. Prolactin production, which is inhibited 25 to 50% by L-T3, was stimulated between 20- and 70-fold by L-T3 + n-butyrate (0.5-1 mM) and this decreased at higher n-butyrate levels. Prolactin mRNA and growth hormone mRNA levels paralleled the changes in prolactin and growth hormone production rates. These effects of L-T3, n-butyrate, or L-T3 + n-butyrate appeared unrelated to changes in cAMP levels or global changes in DNA methylation of the growth hormone or prolactin genes. Propionate elicited the same effects as n-butyrate but at a 5- to 10-fold higher concentration consistent with their relative effect on stimulating acetylation of chromatin proteins. These results suggest that prolactin gene expression is under partial regulatory repression which is reversed by a carboxylic acid-mediated postsynthetic modification event which allows for stimulation of the prolactin gene by thyroid hormone.  相似文献   

4.
The effect of thyroid hormone therapy (L-T4 or L-T3) on plasma immunoreactive insulin-like growth factor I (somatomedin C, Sm-C) concentrations was studied in 8 normal controls, 14 primary hypothyroid subjects and in 7 patients with endemic cretinism. In normals basal levels of Sm-C (1.56 +/- 0.77 U/ml) increased to (2.46 +/- 1.0 U/ml; L-T4) and to (2.9 +/- 0.95 U/ml; L-T3). Plasma Sm-C basal levels were significantly lower in primary hypothyroid subjects (0.81 +/- 0.48 U/ml) and increased to 2.54 +/- 1.43 U/ml (L-T4) and to 2.16 +/- 0.83 U/ml (L-T3). A significant and positive correlation (r = 0.56) was found between Sm-C and serum T4 and T3 concentrations. Plasma Sm-C concentrations in endemic cretinism were initially normal in 4 patients, but low in the remaining 3 (mean +/- SD: 1.18 +/- 0.63 U/ml) and did not increase after 12 months (1.34 +/- 0.61 U/ml) or 18 months (1.01 +/- 0.43 U/ml) of L-T4 and L-T3 therapy. Plasma T4 levels and free T4 increased considerably in EC after therapy with a significant decrease in the previously elevated plasma TSH concentrations. The subnormal response of plasma Sm-C during effective thyroid thyroid hormone therapy could be an additional factor involved in growth failure of endemic cretins.  相似文献   

5.
Triiodothyronine added at 0.1 nM to 3T3-F442A cells cultured in adipogenic medium having endogenous hormone concentrations similar to those of hypothyroid serum stimulated adipose conversion; activities of both lipogenic enzymes, glycerophosphate dehydrogenase and malic enzyme, increased with hormone treatment. The number of adipocytes was also augmented by L-T3 addition but the number of fat cell clusters remained the same as compared to non-treated cultures, suggesting that thyroid hormone increased the number of adipocytes probably through stimulating selective multiplication of precursor adipose cells. Hormone addition to cells cultured with non-adipogenic medium did not promote conversion showing that L-T3 is not an adipogenic factor by itself. Triiodothyronine added at concentrations similar to those found in hyperthyroidism, from 10 nM up to 10 µM, also increased the proportion of adipocytes without changing the number of fat cell clusters, but they decreased the activity of both lipogenic enzymes and lipid accumulation in mature adipocytes. It can be concluded that during 3T3-F442A differentiation into adipocytes L-T3 increases the number of differentiated adipocytes and, at low concentrations, also enhances lipogenic enzyme activities, whereas at the hyperthyroid hormone levels these enzyme activities are significantly reduced, remaining at levels similar to those of cells cultured with hypothyroid medium. This cloned cell line seems to be a useful model to study thyroid hormone action at both molecular and cellular level.  相似文献   

6.
The livers removed from thyroidectomized and L-T4 supplemented rats were rapidly frozen by Freon-12 chilled with liquid nitrogen, and concentrations of metabolites which affect glycogen synthetase and phosphorylase were determined. Serum and liver glycose levels were not changed in any thyroid functioning. But liver G6P and ATP were increased by thyroidectomy and decreased by L-T4 supplement, while cAMP was increased by the hormone supplement. The "enzyme activity" ratio of glycogen synthetase a to phosphorylase a was increased by thyroidectomy and decreased by L-T4 supplement. The most intimate correlation was observed between the "enzyme activity" ratio and the ratio of the "energy charge" ratio of cAMP among other indices calculated from changes in the metabolite concentrations in the various thyroid functioning. The change in the substrate levels brought about by thyroidectomy and L-T4 supplement appeared to modulate both the enzyme activities which in turn regulate the glycogen metabolism.  相似文献   

7.
8.
We have overexpressed the human beta 1 thyroid hormone receptor in insect cells using a recombinant baculovirus to a level of 5-10% of total cellular protein. The recombinant protein migrates as a 50 kDa band by SDS-PAGE and Western blot analysis. The expressed receptor binds to L-T3 with a Kd of 1.3 +/- 0.4 x 10(-10) M and to thyroid hormone analogues with an affinity hierarchy of TRIAC greater than L-T3 greater than L-T4 greater than rT3. Gel retardation assays show highly specific receptor binding to a TRE which is modified by the presence of ligand and avidin-biotin complex DNA analysis shows a Kd of 6.2 +/- 2.0 x 10(-10) M for this interaction. These results indicate high level expression of hTR beta with authentic hormone and DNA binding properties.  相似文献   

9.
Changes in the pituitary-thyroid axis in patients with Hashimoto's thyroiditis following withdrawal of thyroid suppressive therapy were analyzed. The group of patients with thyroid adenoma served as control (group I). Patients with Hashimoto's thyroiditis were divided into 2 groups on the basis of serum TSH levels 8 weeks after discontinuing the exogenous thyroid hormone (group II, less than 10 microunits/ml; group III, more than 10 microunits/ml). During treatment with L-T4(200 micrograms/day) or L-T3(50 micrograms/day), there was no significant difference in serum T4-I and T3 levels among the three groups. Following L-T4 withdrawal, basal serum TSH levels were higher at 2 to 8 weeks in groups II and III than in group I. Serum TSH response to TRH was greater at 4 to 8 weeks in groups II and III than in group I. Following L-T3 withdrawal, basal serum TSH levels were higher at 1 and 2 weeks in group II than in group I, while those of group III were consistently higher during the study. Higher TSH responses to TRH were observed at 1 to 8 weeks in groups II and III. Neither basal nor TRH-induced prolactin (PRL) secretion differed significantly among the three groups. We have demonstrated that pituitary TSH secretion in patients with Hashimoto's thyroiditis is affected more by withdrawal of thyroid hormone therapy than in patients with thyroid adenoma. In addition, the present findings suggest a difference between the sensitivity of thyrotrophs and lactotrophs in Hashimoto's thyroiditis after prolonged thyroid therapy is discontinued.  相似文献   

10.
11.
Recently we reported that hyperglucagonemia induced by glucagon infusion causes a decline in serum Triiodothyronine (T3) and a rise in reverse T3 (rT3) in euthyroid healthy volunteers. These changes in T3 and rT3 levels were attributed to altered T4 metabolism in peripheral tissues. However, the contribution of altered release of thyroid hormones by the thyroid gland could not be excluded. Since the release of thyroid hormones is suppressed by exogenous administration of L-thyroxine (L-T4) in appropriate dosage, we studied thyroid hormone levels for up to 6 hours after intravenous administration of glucagon in euthyroid healthy subjects after administration of L-T4 for 12 weeks. A control study was conducted using normal saline infusion. Plasma glucose rose promptly following glucagon administration demonstrating its physiologic effect. Serum T4, Free T4 and T3 resin uptake were not altered during both studies. Glucagon infusion induced a significant decline in serum T3 (P less than 0.01) and a marked rise in rT3 (P less than 0.01) whereas saline administration caused no alterations in T3 or rT3 levels. Thus the changes in T3 and rT3 were significantly different during glucagon study when compared to saline infusion. (P less than 0.01 for both comparisons). Therefore, this study demonstrates that changes in serum T3 and rT3 caused by hyperglucagonemia may be secondary to altered thyroid hormone metabolism in peripheral tissues and not due to altered release by the thyroid gland, since the release of thyroid hormones is suppressed by exogenous L-T4 administration.  相似文献   

12.
Human red blood cell membrane Ca2+-ATPase activity is stimulated in vitro by physiological concentrations (10(-10) M) of L-thyroxine (L-T4) and 3,5,3'-triiodo-L-thyronine (L-T3). This human cell system has been utilized to examine a series of iodothyronine and iodotyrosine analogues for structure-activity relationships. Analogue purity was verified by high pressure liquid chromatography. Analogues were studied at a concentration of 10(-10) M and the stimulatory effect of each analogue was compared with that of L-T4 in this system. Essential to Ca2+-ATPase stimulation were occupation of the 3 and 5 phenyl positions by iodide, bromide, or methyl groups, the L-configuration of the alanine side chain, side chain length equal to that of alanine, and a perpendicular (skewed) conformation of the two rings. The 4'-hydroxyl group is not essential to Ca2+-ATPase stimulation in this model system. T3 was 76% as active as T4 in stimulating Ca2+-ATPase activity. The stimulatory effect of 3,5-dimethyl-3'-isopropyl-L-thyronine and 3,5,3',5'-tetrabromo-L-thyronine approximated that of L-T4. Selected tyrosine analogues also stimulated the enzyme. The bioactivities of hormone analogues in this human model of extra-nuclear thyroid hormone action differ in several ways from results obtained previously in other animal model systems in vitro and in vivo.  相似文献   

13.
14.
15.
We have previously shown that 3,5,3'-triiodo-L-thyronine (L-T3) stimulates cell growth and a 4- to 8-fold increase in growth hormone mRNA in GH1 cells. These effects appear to be mediated by a thyroid hormone nuclear receptor with an equilibrium dissociation constant for L-T3 of 0.2 nM and an abundance of about 10,000 receptors per cell nucleus. In this report, we show that L-T3 exerts a pleiotypic effect on GH1 cells to rapidly (within 2 h) stimulate [3H]uridine uptake to a maximal value of 2.5- to 3-fold after 24 h. This results from an increase in the number of functional uridine "transport sites" as shown by studies documenting an increase in the apparent Vmax with no change in the Km, 17 microM. Although the labeling of the cellular uridine pool and pools of all phosphorylated uridine derivatives was increased by L-T3, there was no change in the relative amounts of the individual pools in cells incubated with or without hormone. The intracellular concentration of [3H]uridine was estimated to be similar to that of the medium, suggesting that facilitated transport mediates [3H]uridine uptake. That this increase in [3H]uridine transport was nuclear receptor-mediated is supported by the excellent correspondence of the L-T3 dose-response curve for [3H]uridine uptake and that for L-T3 binding to receptor. Finally, inhibition of protein synthesis by cycloheximide and RNA synthesis by actinomycin D demonstrated that the L-T3 effect required continuing protein and RNA synthesis. These results are consistent with an effect of the L-T3-nuclear receptor complex to increase uridine uptake in GH1 cells by altering the expression of gene(s) essential for the transport process.  相似文献   

16.
Effects of orexin A on secretion of thyrotropin-releasing hormone (TRH) and thyrotropin (TSH) in rats were studied. Orexin A (50 microg/kg) was injected iv, and the rats were serially decapitated. The effects of orexin A on TRH release from the rat hypothalamus in vitro and on TSH release from the anterior pituitary in vitro were also investigated. TRH and thyroid hormone were measured by individual radioimmunoassays. TSH was determined by the enzyme-immunoassay method. The hypothalamic TRH contents increased significantly after orexin A injection, whereas its plasma concentrations tended to decrease, but not significantly. The plasma TSH levels decreased significantly in a dose-related manner with a nadir at 15 min after injection. The plasma thyroid hormone levels showed no changes. TRH release from the rat hypothalamus in vitro was inhibited significantly in a dose-related manner with the addition of orexin A. TSH release from the anterior pituitary in vitro was not affected with the addition of orexin A. The findings suggest that orexin A acts on the hypothalamus to inhibit TRH release.  相似文献   

17.
Nuclear binding sites of T3 in human trophoblastic cells were biochemically characterized. Nuclei were isolated by a combination procedure with mild homogenization of the freshly obtained trophoblastic tissue aged term gestation, centrifugations and Triton X-100 treatment. The isolated nuclei were incubated with various concentrations of 125I-T3 at 20 degrees C for 3 h. The total number of T3 binding sites per nucleus was approximately 650. The apparent association constant (Ka) was 6.0 X 10(9)M-1. Nuclear proteins extracted from purified nuclei with 0.4M KCl were able to bind T3 giving rise to nuclear thyroid hormone binding protein-T3 complexes and they were precipitated with bovine IgG, as a carrier protein, by 12.5% polyethylene glycol. Binding was maximum in 3 h incubation at 20 degrees C or in 18 h at 0 degrees C, while it dropped quickly at 37 degrees C. The binding characteristics were analyzed by Scatchard plots. In nuclear proteins obtained from 8 term placentae there was a single set of high affinity-low capacity T3 binding sites with Ka of 7.0 X 10(9)M-1. The capacity is about 62.7 fmol T3/mg DNA. The binding sites were found to be specific for L-T3, while L-T4 was about 100-fold less effective, rT3 ineffective, and D-T3 and D-T4 were roughly 1/8 and 1/5 as active as L-T3 and L-T4, respectively in displacing 125I-T3 from the binding sites. These data confirmed that human placenta is a target organ of thyroid hormones; trophoblastic cells contain T3 nuclear receptors which are biochemically similar to those isolated from liver, although the capacity is low.  相似文献   

18.
Sarkar PK 《Life sciences》2008,82(17-18):920-927
Adult-onset thyroid disorders in humans impair several important central nervous system functions, causing various neuropsychiatric diseases. However, the mechanisms of thyroid hormone (TH) action in the mature mammalian brain remain unclear. Recent nongenomic actions of TH in adult brains are spotlighted. Many nongenomic mechanisms are modulated by phosphorylation-dephosphorylation of substrate proteins. In the present study, L-triiodothyronine (L-T3) demonstrated differential regulation of phosphorylation status of five different synaptosomal proteins (63, 53, 38, 23, and 16 kD) in both a Ca(2+)/calmodulin (CaM)-dependent and -independent manner. L-T3 increased the level of phosphorylation of all these five proteins. Ca(2+)/CaM further stimulated phosphorylation of 63- and 53-kD proteins by L-T3, which were inhibited both by EGTA (Ca(2+)-chelator) or KN62 (Ca(2+)/CaM kinase-II [CaMK-II] inhibitor), suggesting the role of CaMK-II. L-T3 increased the phosphorylation of 23- and 38-kD proteins; the effect was independent of EGTA or KN62. The presence of Ca(2+) decreased L-T3-induced phosphorylation of 63-, 53- and 38-kD proteins. Surprisingly, l-T3-induced phosphorylation of 16-kD protein was not augmented further with Ca(2+) or Ca(2+)/CaM; instead, the presence of CaM abolished the L-T3-induced phosphorylation. EGTA or KN62 could not restore the effect of CaM-induced dephosphorylation of this protein. This study identified the role of Ca(2+)/CaM in the regulation of L-T3-induced protein phosphorylation and supported a unique nongenomic mechanism of second messenger-mediated regulation of protein phosphorylation by TH in mature rat brain. This has profound implications for higher mental functions and strategies for novel therapeutics.  相似文献   

19.
Appropriate thyroid gland function and thyroid hormone activity are considered crucial to sustain the productive performance in domestic animals (growth, milk or hair fibre production). Changes of blood thyroid hormone concentrations are an indirect measure of the changes in thyroid gland activity and circulating thyroid hormones can be considered as indicators of the metabolic and nutritional status of the animals. Thyroid hormones play a pivotal role in the mechanisms permitting the animals to live and breed in the surrounding environment. Variations in hormone bioactivity allow the animals to adapt their metabolic balance to different environmental conditions, changes in nutrient requirements and availability, and to homeorhetic changes during different physiological stages. This is particularly important in the free-ranging and grazing animals, such as traditionally reared small ruminants, whose main physiological functions (feed intake, reproduction, hair growth) are markedly seasonal. Many investigations dealt with the involvement of thyroid hormones in the expression of endogenous seasonal rhythms, such as reproduction and hair growth cycles in fibre-producing (wool, mohair, cashmere) sheep and goats. Important knowledge about the pattern of thyroid hormone metabolism and their role in ontogenetic development has been obtained from studies in the ovine foetus and in the newborn. Many endogenous (breed, age, gender, physiological state) and environmental factors (climate, season, with a primary role of nutrition) are able to affect thyroid activity and hormone concentrations in blood, acting at the level of hypothalamus, pituitary and/or thyroid gland, as well as on peripheral monodeiodination. Knowledge on such topics mirror physiological changes and possibly allows the monitoring and manipulation of thyroid physiology, in order to improve animal health, welfare and production.  相似文献   

20.
Thyroid hormone regulation of beta-adrenergic receptor-coupled adenylate cyclase activity was studied in rat liver and heart particulate fractions. Thyroidectomy (Tx) increased isoproterenol-stimulated cAMP accumulation in the liver and decreased it in the heart. Administration of L-thyroxine (L-T4) or L-3,3',5-triiodothyronine (L-T3) reversed these changes in both liver and heart. The changes observed in liver beta-receptor-coupled adenylate cyclase activity after Tx were similar to those reported after adrenalectomy (ADX). Thus the hypothesis was considered that these changes with altered thyroid status are produced indirectly through alteration in adrenal corticosteroids. Hydrocortisone in Tx rats decreased liver isoproterenol-stimulated adenylate cyclase activity but had no significant effect on the heart. Serum corticosterone levels were decreased significantly (by 34%) in Tx rats, as compared to euthyroid rats. Administration of L-T4 to Tx rats doubled the serum corticosterone levels. In Tx-ADX rats, L-T4 had no significant effect on liver beta-receptor-coupled adenylate cyclase. However, L-T4 significantly increased heart beta-receptor-coupled adenylate cyclase in these animals. Dexamethasone, but not deoxycorticosterone, decreased liver isoproterenol-stimulated cAMP accumulation in Tx animals to the same extent as was observed with L-T4 and hydrocortisone. Thus overall the results indicate that in the liver, as opposed to the heart, thyroid hormones regulate beta-adrenergic receptor-coupled adenylate cyclase indirectly through corticosteroids. Glucocorticoid rather than mineralocorticoid activity seems to be responsible for this regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号