首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purified capsid proteins VP1, VP2, and VP3 of foot-and-mouth disease virus type A12 strain 119 emulsified with incomplete Freund's adjuvant were studied in swine and guinea pigs. Swine inoculated on days 0, 28, and 60 with 100-mug doses of VP3 were protected by day 82 against exposure to infected swine. Serums from animals inoculated with VP3 contained viral precipitating and neutralizing antibodies, but such serums recognized fewer viral antigenic determinants than did antiviral serums. Capsid proteins VP1 and VP2 did not produce detectable antiviral antibody in guinea pigs, and antiviral antibody responses in swine to a mixture of VP1, VP2, and VP3 were lower than the responses to VP3 alone. However, when swine were inoculated with VP1, VP2, and VP3 separately at different body sites, no interference with the response to VP3 was observed. Vaccine containing VP3 isolated from acetylethylenimine-treated virus appeared less protective for swine than vaccine containing VP3 from nontreated virus. Trypsinized virus, which contains the cleaved peptides VP3a and VP3b rather than intact VP3, produced approximately the same levels of antiviral antibody responses in guinea pigs as did virus. Conversely, an isolated mixture of VP3a and VP3b did not produce detectable antiviral antibody responses in guinea pigs. The VP3a-VP3b mixture did, however, sensitize guinea pigs to elicit such responses following reinoculation with a marginally effective dose of trypsinized virus.  相似文献   

2.
Intraperitoneal injection of chlorite-oxidized oxyamylose (COAM) protected mice against mengo, vaccinia, Semliki Forest, and influenza APR8 viruses. Topical administration in the eye of rabbits partially inhibited the development of experimental herpetic keratoconjunctivitis. COAM resembled polyacrylic acid in many aspects, but it was markedly less toxic. For systemic administration, the therapeutic index was on the order of magnitude of 1:300 to 1:500. Although the in vivo antiviral effect of COAM wore off faster than that of polyacrylic acid, protection lasted for several weeks. Against mengovirus, such prolonged protection was achieved only when polymer and virus were injected intraperitoneally. Protection against intravenous vaccinia virus was not dependent on the injection route of COAM. Experiments on the mode of action of COAM pointed to macrophages as possible mediators of the antiviral effect. The fact that small amounts of interferon appeared in the serum after administration of high doses of COAM suggests that interferon may play a role in the induction of antiviral resistance by COAM.  相似文献   

3.
Typing of foot-and-mouth disease (FMD) virus was performed by the direct fluorescent antibody (FA) technique. Type-specific FA was prepared from the following two sorts of procedures: (1) FA against live virus (FA-live) was prepared from hyperimmune serum taken from guinea pigs having received live FMD virus. Then it was adsorbed with concentrated heterotype antigen. (2) FA against inactivated virus (FA-Inact) was prepared from antiserum taken from guinea pigs immunized with purified FMD virus inactivated with acetylethyleneimine. Seventeen strains of FMD virus (seven strains of type A, seven strains of type O, and three strains of thpe C) were used. Type-specific FMD virus antigen was detected distinctly from the monolayer of BHK cells infected with each type of virus and fixed in acetone, in spite of negative results obtained from the cells fixed in methyl alcohol. All the 17 strains were typed successfully by the implementation of these two FA methods.  相似文献   

4.
Zhao X  Sun Y  Pu J  Fan L  Shi W  Hu Y  Yang J  Xu Q  Wang J  Hou D  Ma G  Liu J 《PloS one》2011,6(7):e22091
Pandemic H1N1/2009 influenza virus, derived from a reassortment of avian, human, and swine influenza viruses, possesses a unique gene segment combination that had not been detected previously in animal and human populations. Whether such a gene combination could result in the pathogenicity and transmission as H1N1/2009 virus remains unclear. In the present study, we used reverse genetics to construct a reassortant virus (rH1N1) with the same gene combination as H1N1/2009 virus (NA and M genes from a Eurasian avian-like H1N1 swine virus and another six genes from a North American triple-reassortant H1N2 swine virus). Characterization of rH1N1 in mice showed that this virus had higher replicability and pathogenicity than those of the seasonal human H1N1 and Eurasian avian-like swine H1N1 viruses, but was similar to the H1N1/2009 and triple-reassortant H1N2 viruses. Experiments performed on guinea pigs showed that rH1N1 was not transmissible, whereas pandemic H1N1/2009 displayed efficient transmissibility. To further determine which gene segment played a key role in transmissibility, we constructed a series of reassortants derived from rH1N1 and H1N1/2009 viruses. Direct contact transmission studies demonstrated that the HA and NS genes contributed to the transmission of H1N1/2009 virus. Second, the HA gene of H1N1/2009 virus, when combined with the H1N1/2009 NA gene, conferred efficient contact transmission among guinea pigs. The present results reveal that not only gene segment reassortment but also amino acid mutation were needed for the generation of the pandemic influenza virus.  相似文献   

5.
A sandwich format immunochromatographic assay for detecting foot-and-mouth disease virus (FMDV) serotypes was developed. In this rapid test, affinity purified polyclonal antibodies from Guinea pigs which were immunized with sucking-mouse adapted FMD virus (A/AV88(L) strain) were conjugated to colloidal gold beads and used as the capture antibody, and affinity purified polyclonal antibodies from rabbits which were immunized with cell-culture adapted FMD virus (A/CHA/09 strain) were used as detector antibody. On the nitrocellulose membrane of the immunochromatographic strip, the capture antibody was laid on a sample pad, the detector antibody was printed at the test line(T) and goat anti-guinea pigs IgG antibodies were immobilized to the control line(C). The lower detection limit of the test for a FMDV 146S antigen is 11.7ng/ml as determined in serial tests after the strip device was assembled and the assay condition optimization. No cross reactions were found with FMDV serotype C, Swine vesicular disease (SVD), Vesicular stomatiti svirus (VSV) and vesicular exanthema of swine virus (VES) viral antigens with this rapid test. Clinically, the diagnostic sensitivity of this test for FMDV serotypes A was 88.7% which is as same as an indirect-sandwich ELISA. The specificity of this strip test was 98.2% and is comparable to the 98.7% obtained with indirect-sandwich ELISA. This rapid strip test is simple, easy and fast for clinical testing on field sites; no special instruments and skills are required, and the result can be obtained within 15 min. To our knowledge, this is the first rapid immunochromatogarpic assay for serotype A of FMDV.  相似文献   

6.
D Hou  YH Bi  H Sun  J Yang  G Fu  Y Sun  J Liu  J Pu 《Virology journal》2012,9(1):169
ABSTRACT: BACKGROUND: Influenza virus virulence can be exacerbated by bacterial co-infections. Swine influenza virus (SIV) infection together with some bacteria is found to enhance pathogenicity. METHODS: SIV-positive samples suspected of containing bacteria were used for bacterial isolation and identification. Antimicrobial susceptibility testing was performed by disc diffusion methods. To investigate the interaction of SIV and the bacteria in vitro, guinea pigs were used as mammalian hosts to determine the effect on viral susceptibility and transmissibility. Differences in viral titers between groups were compared using Student's t-test. RESULTS: During surveillance for SIV in China from 2006 to 2009, seven isolates (24.14%) of 29 influenza A viruses were co-isolated with Stenotrophomonas maltophilia from nasal and tracheal swab samples of pigs. Antimicrobial susceptibility testing showed that the bacteria possessed a high level of resistance towards clinically used antibiotics. To investigate the interaction between these two microorganisms in influencing viral susceptibility and transmission in humans, guinea pigs were used as an infection model. Animals were inoculated with SIV or S. maltophilia alone or co-infected with SIV and S. maltophilia. The results showed that although no transmission among guinea pigs was observed, virus--bacteria co-infections resulted in higher virus titers in nasal washes and trachea and a longer virus shedding period. CONCLUSIONS: This is the first report of influenza virus co-infection with S. maltophilia in the Chinese swine population. Increased replication of virus by co-infection with multidrug resistant bacteria might increase the infection rate of SIV in humans. The control of S. maltophilia in clinics will contribute to reducing the spread of SIV in pigs and humans.  相似文献   

7.
《Biologicals》2014,42(3):153-159
A DNA vaccine for foot and mouth disease (FMD) based on mannosylated chitosan nanoparticles was evaluated in guinea pigs. The DNA construct was comprised of FMD virus full length-VP1 gene and outer membrane protein A (Omp A) gene of Salmonella typhimurium as a Toll-like receptor (TLR)-ligand in pVAC vector. Groups of guinea pigs immunized either intramuscularly or intra-nasally were evaluated for induction of virus neutralizing antibodies, Th1(IgG2) and Th2 (IgG1) responses, lymphocyte proliferation, reactive nitrogen intermediate production, secretory IgA for naso-mucosal immune response and protection upon homotypic type O virulent FMD virus challenge. The results indicate the synergistic effect of OmpA on the immunogenic potential of FMD DNA vaccine construct delivered using mannosylated chitosan nano-particles by different routes of administration. These observations suggest the substantial improvement in all the immunological parameters with enhanced protection in guinea pigs.  相似文献   

8.
Chen W  Liu M  Jiao Y  Yan W  Wei X  Chen J  Fei L  Liu Y  Zuo X  Yang F  Lu Y  Zheng Z 《Journal of virology》2006,80(7):3559-3566
Foot-and-mouth disease virus (FMDV) infection is responsible for the heavy economic losses in stockbreeding each year. Because of the limited effectiveness of existing vaccines and antiviral drugs, the development of new strategies is needed. RNA interference (RNAi) is an effective means of suppressing virus replication in vitro. Here we demonstrate that treatment with recombinant, replication-defective human adenovirus type 5 (Ad5) expressing short-hairpin RNAs (shRNAs) directed against either structural protein 1D (Ad5-NT21) or polymerase 3D (Ad5-POL) of FMDV totally protects swine IBRS-2 cells from homologous FMDV infection, whereas only Ad5-POL inhibits heterologous FMDV replication. Moreover, delivery of these shRNAs significantly reduces the susceptibility of guinea pigs and swine to FMDV infection. Three of five guinea pigs inoculated with 10(6) PFU of Ad5-POL and challenged 24 h later with 50 50% infectious doses (ID50) of homologous virus were protected from the major clinical manifestation of disease: the appearance of vesicles on the feet. Two of three swine inoculated with an Ad5-NT21-Ad5-POL mixture containing 2 x 10(9) PFU each and challenged 24 h later with 100 ID50 of homologous virus were protected from the major clinical disease, but treatment with a higher dose of adenovirus mixture cannot promote protection of animals. The inhibition was rapid and specific because treatment with a control adenovirus construct (Ad5-LacZ) expressing Escherichia coli galactosidase-specific shRNA showed no marked antiviral activity. Our data highlight the in vivo potential of RNAi technology in the case of FMD.  相似文献   

9.
In late April of 2009, a global outbreak of human influenza was reported. The causative agent is a highly unusual reassortant H1N1 influenza virus carrying genetic segments derived from swine, human and avian influenza viruses. In this study, we compared the HA, NA and other gene segments of a swine H3N2 influenza A virus, A/Swine/Guangdong/z5/2003, which was isolated from pigs in 2003 in Guangdong Province, China, to the predominant human and swine H3N2 viruses. We found that the similarity of gene segments of A/Swine/Guangdong/z5/2003 was closer to Moscow/99-like human H3N2 virus than Europe swine H3N2 viruses during 1999-2002. These results suggest that A/Swine/Guangdong/z5/2003 may be porcine in origin, possibly being driven by human immune pressure induced by either natural H3N2 virus infection or use of A/Moscow/10/99 (H3N2)-based human influenza vaccine. The results further confirm that swine may play a dual role as a “shelter” for hosting influenza virus from humans or birds and as a “mixing vessel” for generating reassortant influenza viruses, such as the one causing current influenza pandemic.  相似文献   

10.
Wang J  Qi X  Lu C 《Folia microbiologica》2012,57(3):169-175
The NS1 protein of classical swine H1N1 influenza A virus evolved dynamically during the past 80 years, most notable changes happened in the four C-terminal sequences and the C-terminal truncation of 11 amino acids. However, the role of these changes on the virulence of classical swine H1N1 influenza A virus remains unknown. Using reverse genetics, three NS1 mutant viruses (RSEV, GSEI, and EPEV) and a wild-type virus (PEQK) were generated from A/Swine/Shanghai/1/2005 virus and the pathogenicity of the viruses was determined in mice. The results showed that RSEV and PEQK viruses could not infect the mice. By contrast, GSEI and EPEV viruses could replicate in the lungs of mice without prior adaptation. The viral titers in lungs from GSEI and EPEV virus-infected mice were 2,300 and 7 pfu/g at fourth-day post-infection, respectively. Mild-to-moderate alveolitis was observed in the histopathological test of lungs from GSEI and EPEV virus-infected mice. The results indicated that C-terminal GSEI and EPEV motifs of NS1 protein involved in viral virulence and facilitated the A/Swine/Shanghai/1/2005 virus crossing the species barrier from swine to mice.  相似文献   

11.
The two hydrazone-compounds 2-(phenylethylhydrazono)-propionic acid (PEHP) and 2-(2-cyclohexyl-ethylhydrazono)-propionic acid (CHEHP) significantly lowered the blood glucose level in several laboratory animals fasted 48 hours (guinea pigs, mice, hamsters and rats). In the guinea pig, PEHP produced a three times stronger hypoglycemic effect than phenelzine, its corresponding hydrazine. Conversely both hydrazono compounds decreased the monoamine oxidase activity much less, than phenelzine. CHEHP (145 mumol/kg) inhibited this enzyme by less than 14%. After oral administration both hydrazones (200 mumol/kg) also produced a distinct hypoglycemic effect. The blood glucose lowering properties of the two hydrazones were most manifest in fasted guinea pigs, diabetic mice and rats with streptozotozin diabetes.  相似文献   

12.
To better understand influenza virus infection of pigs, we examined primary swine respiratory epithelial cells (SRECs, the primary target cells of influenza viruses in vivo), as a model system. Glycomic profiling of SRECs by mass spectrometry revealed a diverse range of glycans terminating in sialic acid or GalαGal. In terms of sialylation, α2–6 linkage was more abundant than α2–3, and NeuAc was more abundant than NeuGc. Virus binding and infection experiments were conducted to determine functionally important glycans for influenza virus infection, with a focus on recently emerged swine viruses. Infection of SRECs with swine and human viruses resulted in different infectivity levels. Glycan microarray analysis with a high infectivity “triple reassortant” virus ((A/Swine/MN/593/99 (H3N2)) that spread widely throughout the North American swine population and a lower infectivity human virus isolated from a single pig (A/Swine/ONT/00130/97 (H3N2)) showed that both viruses bound exclusively to glycans containing NeuAcα2–6, with strong binding to sialylated polylactosamine and sialylated N-glycans. Treatment with mannosamine precursors of sialic acid (to alter NeuAc/NeuGc abundances) and linkage-specific sialidases prior to infection indicated that the influenza viruses tested preferentially utilize NeuAcα2–6-sialylated glycans to infect SRECs. Our data indicate that NeuAcα2–6-terminated polylactosamine and sialylated N-glycans are important determinants for influenza viruses to infect SRECs. As NeuAcα2–6 polylactosamine glycans play major roles in human virus infection, the importance of these receptor components in virus infection of swine cells has implications for transmission of viruses between humans and pigs and for pigs as possible adaptation hosts of novel human influenza viruses.  相似文献   

13.
《Phytomedicine》2015,22(12):1088-1095
BackgroundThe aerial parts of Peganum harmala L. (APP) is a well-known and effective herbal medicine in China, and has been commonly used for treating various ailments, including cough and asthma.ObjectivesTo evaluate the antitussive, expectorant, and bronchodilating effects of the quinazoline alkaloids (±)-vasicine (VAS), deoxyvasicine (DVAS) (both isolated from the alkaloid fraction of APP) and (±)-vasicinone (VAO) (synthesized from VAS).MethodsThe three quinazoline alkaloids were tested as antitussive on cough models in mice and guinea pigs. VAO was synthesized from VAS via the oxidation of hydrogen peroxide. VAS, VAO, and DVAS were orally administered at dosages of 5, 15, and 45 mg/kg. Cough in these models was induced by ammonia, capsaicin, and citric acid. Phenol red secretion experiments in mice were performed to evaluate the expectorant activity of the alkaloids. Bronchodilating effects were evaluated by using a bronchoconstrictive induced by acetylcholine chloride and histamine in guinea pigs.ResultsIn antitussive tests, VAS, VAO, and DVAS significantly inhibited coughing frequency and prolonged the cough latency period in animals. At the highest doses tested (45 mg/kg), they showed antitussive activities similar to codeine phosphate (30 mg/kg) in mice and guinea pigs. Expectorant evaluation showed that VAS, VAO, and DVAS could significantly increase phenol red secretion in mice by 0.54-, 0.79- and 0.97-fold, by 0.60-, 0.99-, and 1.06-fold, and by 0.46-, 0.73-, and 0.96-fold, respectively, at dosages of 5, 15, and 45 mg/kg compared with the control (0.5% CMC-Na, 20 ml/kg). Ammonium chloride at 1500 mg/kg increased phenol red secretion in mice by 0.97-fold compared with the control. Bronchodilation tests showed that VAS, VAO, and DVAS prolonged the pre-convulsive time for 28.59%, 57.21%, and 29.66%, respectively, at a dose of 45 mg/kg in guinea pigs, whereas aminophylline prolonged the pre-convulsive time by 46.98% compared with pretreatment.ConclusionsQuinazoline alkaloids VAS, VAO, and DVAS have significant antitussive, expectorant, and bronchodilating activities. VAS, VAO, and DVAS are the active ingredients in APP, which can be used to treat respiratory disease.  相似文献   

14.
The hydrazone-compound 2-(3-methyl-cinnamylhydrazono)-propionate (MCHP) significantly lowered the blood glucose concentration in fasted guinea pigs and rats. A significant decrease of blood glucose levels was observed in fasted guinea pigs already after an intraperitoneal injection of 20.5 mumol/kg MCHP, while much higher doses (about 1000 mumol/kg) were necessary to produce a hypoglycemic effect in the fasted rat. After oral administration MCHP (82.0 mumol/kg) significantly decreased the blood glucose concentration in guinea pigs. Furthermore MCHP caused a dose-dependent increase of plasma free fatty acid concentrations in guinea pigs and rats. In addition, MCHP decreased the concentrations of blood ketone bodies, plasma cholesterol and intrahepatic acetyl-coenzyme A in the guinea pig. All of these findings appear to be due to a reduced fatty acid utilization in the presence of MCHP resulting presumably in an intramitochondrial deficiency of acetyl-CoA. At hypoglycemic effective doses the intramitochondrial and cytoplasmatic redox ratios as well as the hepatic ATP/ADP ratio were not influenced by MCHP in fasted guinea pigs. Even at large doses (123 mumol/kg) MCHP decreased the activity of monoamino oxidase in guinea pigs only by less than 15%. Furthermore MCHP showed under our experimental conditions no relevant influence on the activity of various liver enzymes in plasma, the plasma concentration of creatinine, the plasma triglyceride-glycerol level and on the intrahepatic triglyceride-glycerol concentration of fasted guinea pigs. It is concluded that MCHP meets basic requirements for a potential oral antidiabetic agent.  相似文献   

15.
We report that adaptation to infect the guinea pig did not modify the capacity of foot-and-mouth disease virus (FMDV) to kill suckling mice and to cause an acute and transmissible disease in the pig, an important natural host for this pathogen. Adaptive amino acid replacements (I(248)-->T in 2C, Q(44)-->R in 3A, and L(147)-->P in VP1), selected upon serial passages of a type C FMDV isolated from swine (biological clone C-S8c1) in the guinea pig, were maintained after virus multiplication in swine and suckling mice. However, the adaptive replacement L(147)-->P, next to the integrin-binding RGD motif at the GH loop in VP1, abolished growth of the virus in different established cell lines and modified its antigenicity. In contrast, primary bovine thyroid cell cultures could be productively infected by viruses with replacement L(147)-->P, and this infection was inhibited by antibodies to alphavbeta6 and by an FMDV-derived RGD-containing peptide, suggesting that integrin alphavbeta6 may be used as a receptor for these mutants in the animal (porcine, guinea pig, and suckling mice) host. Substitution T(248)-->N in 2C was not detectable in C-S8c1 but was present in a low proportion of the guinea pig-adapted virus. This substitution became rapidly dominant in the viral population after the reintroduction of the guinea pig-adapted virus into pigs. These observations illustrate how the appearance of minority variant viruses in an unnatural host can result in the dominance of these viruses on reinfection of the original host species.  相似文献   

16.
从广东省疑似流感发病猪分离到1株H3N2亚型猪流感病毒(A/Swine/Guangdong/01/2005(H3N2)),对其各个基因进行克隆与测序,并与GenBank中收录的其它猪流感、禽流感和人流感的相关基因进行比较,结果表明,HA全基因与广东2003~2004年分离的H3N2猪流感毒株的核苷酸序列同源性在99%以上,与纽约90年代末分离的H3N2人流感毒株同源性在98.5%以上;NA基因与纽约1998~2000年分离的H3N2人流感毒株的核苷酸序列同源性在99%以上;NS基因、M基因的核苷酸序列与H1N1亚型猪流感毒株A/swine/HongKong/273/1994(H1N1)的核苷酸序列同源性较高,分别为97.9%、98.4%,与美洲A/swine/Iowa/17672/1988(H1N1)的核苷酸序列同源性分别为96.7%、97.1%;其他基因的核苷酸序列与H3N2人流感毒株具有很高的同源性。因此,推测其M和NS基因来源于H1N1亚型猪流感病毒,HA、NA及其他基因均来源于H3N2亚型人流感病毒。表明此H3N2亚型猪流感病毒为H3N2亚型人流感病毒和H1N1亚型猪流感病毒经基因重排而得到的重组病毒。  相似文献   

17.
The protective effects of ciprofloxacin and rufloxacin were compared to those of rifampicin againstMycobacterium tuberculosis infections in mice and in guinea pigs. Rifampicin was very protective in both models. In tubercular infections produced in mice, ciprofloxacin (30 mg/kg) showed slight protection but none was observed in guinea pigs. Rufloxacin, was weakly active in guinea pigs but inactive in mice.  相似文献   

18.
The effects of a novel leukotriene (LT) C4/D4 antagonist, BAY-x-7195 on experimental allergic reactions in airway and skin were compared to that of ONO-1078. BAY-x-7195 showed an antagonistic action to LTD4-induced bronchoconstriction in vitro and in vivo. In in vitro experiments, BAY-x-7195 inhibited LTD4-induced contraction of isolated guinea pig tracheal muscle (pA2=8.03). BAY-x-7195 at doses of 3 – 30 mg/kg clearly inhibited LTD4-induced increases in respiratory resistance (Rrs) in guinea pigs. In contrast, BAY-x-7195 inhibited significantly U-46619-induced increases in Rrs at a dose of 30 mg/kg in guinea pigs. BAY-x-7195 at doses of 3 — 30 mg/kg inhibited the aerosolized antigen-induced biphasic increase in Rrs in guinea pigs. Moreover BAY-x-7195 inhibited repeated aeroantigen-induced airway hyperreactivity in guinea pigs. In mice, aeroantigen-induced airway inflammation were clearly inhibited by BAY-x-7195. These results show the efficacy of BAY-x-7195 against the antigen-induced increase in airway resistance and antigen-induced airway hyperreactivity in guinea pigs and mice, probably due to anti-LTD4 antagonistic action and the inhibition of antigen-induced airway inflammation.  相似文献   

19.
In swine, the nasal turbinate epithelium is both a site of swine herpesvirus 1 (pseudorabies virus, PRV) replication and a tissue affected by toxin fromPasteurella multocida serogroup D. We examined the effects of exposure to PRV and exposure to toxin in mice, swine, and nasal turbinate cell cultures. Increased mortality in mice was observed when nonlethal doses of PRV (1000 or 100 plaque-forming units, PFU) were administered along with nonlethal doses (60–200 ng/kg) of toxin. In swine, clinical disease and death in adult pigs was observed after an intradermal injection of toxin (20 ng/kg) and intranasal exposure to 1000 PFU/kg of PRV. Nasal turbinate cell cultures incubated with toxin and PRV had increased protein synthesis, DNA synthesis, and increased recovery of virus particles. These findings indicate that a toxin fromP. multocida serogroup D enhances swine herpesvirus 1 replication and lethality in cell cultures and animal models.  相似文献   

20.
Ten influenza virus isolates were obtained from infected pigs from different places in Shandong province showing clinical symptoms from October 2002 to January 2003. All 10 isolates were identified in China's National Influenza Research Center as influenza A virus of H9N2 subtype. The complete genome of one isolate, designated A/Swine/Shandong/1/2003(H9N2), was sequenced and compared with sequences available in GenBank. The results of analyses indicated that the sequence of A/Swine/Shandong/1/2003(H9N2) was similar to those of several chicken influenza viruses and duck influenza viruses recently prevalent in South China. According to phylogenetic analysis of the complete gene sequences, A/Swine/Shandong/1/2003(H9N2) possibly originated from the reassortment of chicken influenza viruses and duck influenza viruses. It was found that the amino acid sequence at the HA cleavage site in Sw/SD/1/2003 is R-S-L-R-G, differing clearly from that of other H9N2 subtype isolates of swine influenza and avian influenza, which is R-S-S-R-G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号