首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Processes putatively dependent on the galactolipid monogalactosyldiacylglycerol (MGDG) were recently studied using the knockdown monogalactosyldiacylglycerol synthase 1 (mgd1-1) mutant (∼40% reduction in MGDG). Surprisingly, targeting of chloroplast proteins was not affected in mgd1-1 mutants, suggesting they retain sufficient MGDG to maintain efficient targeting. However, in dark-grown mgd1-1 plants the photoactive to photoinactive protochlorophyllide (Pchlide) ratio was increased, suggesting that photoprotective responses are induced in them. Nevertheless, mgd1-1 could not withstand high light intensities, apparently due to impairment of another photoprotective mechanism, the xanthophyll cycle (and hence thermal dissipation). This was mediated by increased conductivity of the thylakoid membrane leading to a higher pH in the thylakoid interior, which impaired the pH-dependent activation of violaxanthin de-epoxidase (VDE) and PsbS. These findings suggest that MGDG contribute directly to the regulation of photosynthesis-related processes.Key words: conductivity, galactolipid, light stress, photosynthesis, plastid, xanthophyllThe galactolipid monogalactosyldiacylglycerol (MGDG), the major lipid in plastids,1 is mainly synthesised in inner plastid envelopes,2 where monogalactosyldiacylglycerol synthase 1 (MGD1) catalyses the last step of its production.3 Two MGDG-deficient mutants are known: the knockdown mgd1-1 mutant, which accumulates ∼40% less MGDG than wild type,4 and the null mutant mgd1-2, which displays extremely severe defects in chloroplast and plant development.5 Thus, the mgd1-1 mutant is more suitable for assessing putative roles of MGDG in processes such as protein targeting and photoprotection.There are conflicting indications regarding the involvement of galactolipids in chloroplast protein targeting: some suggest they play an important role,610 but not all.11,12 The data recently collected for mgd1-1 do not support MGDG''s involvement in protein targeting, since (inter alia) the level of MGDG in mgd1-1 mutants is clearly sufficient for efficient targeting.13 Further, the galactolipid associated with the TOC complex12 is digalactosyldiacylglycerol (DGDG) and the digalactosyldiacylglycerol synthase 1 (dgd1) mutant,14 which has ∼10% of wild-type levels of DGDG, has impaired import efficiency.15,16 Hence, this may indicate that DGDG is relatively more important for chloroplast import than MGDG.The prolamellar bodies (PLBs) of etioplasts have high lipid-to-protein ratios compared to thylakoids. Their major lipid and protein are MGDG and NADPH:Pchlide oxidoreductase (POR), respectively,17 and MGDG putatively plays an important role, interactively with POR, in the formation of PLBs.1820 The transformation of PLBs into thylakoids involves phototransformation of photoactive Pchlide (F656), a precursor of chlorophyll. Non-photoactive Pchlide (F631) is susceptible to photooxidative damage, but POR is believed to suppress this.21,22 After excitation at 440 nm, mgd1-1 mutants display distinctly higher fluorescence emission peaks corresponding to photoactive Pchlide than wild type counterparts and (hence) higher photoactive:non-photoactive Pchlide ratios.13 These changes may be photoprotective responses that favour formation of photoactive Pchlide and optimize the plants'' opportunities to use light for chlorophyll production, enabling the transformation of etioplasts into chloroplasts.Interestingly,the xanthophyll cycle, another photoprotective mechanism, is impaired in mgd1-1.13 Normally, the xanthophyll cycle pigment violaxanthin is de-epoxidized into antheraxanthin, and then into zeaxanthin, by the enzyme VDE (Fig. 1), which is dependent on MGDG.23 MGDG is also an integral component of photosynthetic complexes.2426 Thus, since mgd1-1 mutants have reduced total amounts of xanthophyll and chlorophyll pigments, but increased chlorophyll a/b ratios, their photosynthesis capacity is unsurprisingly reduced, even though the organization of their electron transport chains is not strongly affected by the MGDG deficiency.13Open in a separate windowFigure 1Reactions of the xanthophyll cycle (adapted from ref. 29). VDE, violaxanthin de-epoxidase; ZE, zeaxanthin epoxidase.During short-term high light stress, antheraxanthin and zeaxanthin are thought to facilitate dissipation of excess light energy in the PSII antenna bed by non-photochemical quenching.27,28 Upon high light stress the pH decreases, triggering photoprotective mechanisms via changes in the PSII antenna system. The PsbS protein, which is involved in thermal dissipation, is protonated and initiates a conformational change in the PSII antenna bed. This change is further stabilized by the de-epoxidation of violaxanthin to zeaxanthin by the luminal VDE.28 However, the thermal dissipation is impaired in mgd1-1 mutants at high light intensities (>1000 µmol m−2 s−1) making them more susceptible to light stress. Surprisingly, this is not mediated by direct effects on VDE and PsbS activities, but by changes in the proton conductivity of the thylakoid membrane.13The steady-state capacity of the xanthophyll cycle is reduced in mgd1-1 mutants, due to a ∼40% reduction in the proton motive force (pmf) across their thylakoid membranes, indicating that they have impaired capacities to energize these membranes. Nevertheless, the pmf is more or less equal to wild type under light-limited conditions (200 µmol m−2 s−1 light); it is only the increase in pmf in high light intensities that is impaired in the mutants.13 This leads to the thylakoid lumen being less acidic in mgd1-1 than in wild type, hampering full activation of VDE and PsbS. Thus, the thylakoid lumen pH is above the threshold level required for full activation of PsbS and VDE under steady-state conditions and so de-epoxidation rates are retarded and the equilibrium between zeaxanthin and violaxanthin starts to shift slightly towards violaxanthin (Fig. 2).13 Thus, increased conductivity of the thylakoid membranes is probably responsible for the diminished non-photochemical quenching in mgd1-1, and the findings strongly indicate that MGDG is required for efficient photosynthesis and photoprotection, in addition to being a physical membrane constituent.Open in a separate windowFigure 2Schematic diagram illustrating the normal mode of action of the xanthophyll cycle. In standard light conditions, V is bound to the photosynthetic complexes and harvests light. In strong light, V is released from the complexes and converted to Z by VDE, which is unable to access V when it is associated with the photosynthetic complexes. The newly formed Z then binds to the photosynthetic complexes (at the PsbS protein), where it dissipates excess energy through NPQ. V, violaxanthin; A, antheraxanthin; Z, zeaxanthin; VDE, violaxanthin de-epoxidase; ZE, zeaxanthin epoxidase. Arrows indicate the directions of reactions.  相似文献   

3.
Long chain bases or sphingoid bases are building blocks of complex sphingolipids that display a signaling role in programmed cell death in plants. So far, the type of programmed cell death in which these signaling lipids have been demonstrated to participate is the cell death that occurs in plant immunity, known as the hypersensitive response. The few links that have been described in this pathway are: MPK6 activation, increased calcium concentrations and reactive oxygen species (ROS) generation. The latter constitute one of the more elusive loops because of the chemical nature of ROS, the multiple possible cell sites where they can be formed and the ways in which they influence cell structure and function.Key words: hydrogen peroxide, long chain bases, programmed cell death, reactive oxygen species, sphinganine, sphingoid bases, superoxideA new transduction pathway that leads to programmed cell death (PCD) in plants has started to be unveiled.1,2 Sphingoid bases or long chain bases (LCBs) are the distinctive elements in this PCD route that naturally operates in the entrance site of a pathogen as a way to contend its spread in the plant tissues.2,3 This defense strategy has been known as the hypersensitive response (HR).4,5As a lately discovered PCD signaling circuit, three connected transducers have been clearly identified in Arabidopsis: the LCB sphinganine (also named dihydrosphingosine or d18:0); MPK6, a mitogen activated kinase and superoxide and hydrogen peroxide as reactive oxygen species (ROS).1,2 In addition, calcium transients have been recently allocated downstream of exogenously added sphinganine in tobacco cells.6Contrary to the signaling lipids derived from complex glycerolipid degradation, sphinganine, a metabolic precursor of complex sphingolipids, is raised by de novo synthesis in the endoplasmic reticulum to mediate PCD.1,2 Our recent work demonstrated that only MPK6 and not MPK3 (commonly functionally redundant kinases) acts in this pathway and is positioned downstream of sphinganine elevation.2 Although ROS have been identified downstream of LCBs in the route towards PCD,1 the molecular system responsible for this ROS generation, their cellular site of formation and their precise role in the pathway have not been unequivocally identified. ROS are produced in practically all cell compartments as a result of energy transfer reactions, leaks from the electron transport chains, and oxidase and peroxidase catalysis.7Similar to what is observed in pathogen defense,3 increases in endogenous LCBs may be elicited by addition of fumonisin B1 (FB1) as well; FB1 is a mycotoxin that inhibits ceramide synthase. This inhibition results in an accumulation of its substrate, sphinganine and its modified forms, leading to the activation of PCD.1,2,8 The application of FB1 is a commonly used approach for the study of PCD elicitation in Arabidopsis.1,2,911An early production of ROS has been linked to an increase of LCBs. For example, an H2O2 burst is found in tobacco cells after 2–20 min of sphinganine supplementation,12 and superoxide radical augmented in the medium 60 min after FB1 or sphinganine addition to Arabidopsis protoplasts (Fig. 1A). In consonance with this timing, both superoxide and H2O2 were detected in Arabidopsis leaves after 3–6 h exposure to FB1 or LCBs.1 However, the source of ROS generation associated with sphinganine elevation seems to not be the same in both species: in tobacco cells, ROS formation is apparently dependent on a NADPH oxidase activity, a ROS source consistently implicated in the HR,13,14 while in Arabidopsis, superoxide formation was unaffected by diphenyliodonium (DPI), a NADPH oxidase inhibitor (Fig. 1A). It is possible that the latter oxidative burst is due to an apoplastic peroxidase,15 or to intracellular ROS that diffuse outwards.16,17 These results also suggest that both tobacco and Arabidopsis cells could produce ROS from different sources.Open in a separate windowFigure 1ROS are produced at early and long times in the FB1-induced PCD in Arabidopsis thaliana (Col-0). (A) Superoxide formation by Arabidopsis protoplasts is NADPH oxidase-independent and occurs 60 min after FB1 or sphinganine (d18:0) exposure. Protoplasts were obtained from a cell culture treated with cell wall lytic enzymes. Protoplasts were incubated with 10 µM FB1 or 10 µM sphinganine for 1 h. Then, cells were vacuum-filtered and the filtrate was used to determine XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide, disodium salt] reduction as described in references 28 and 29. DPI was used at 50 µM. (B) H2O2 formation in Arabidopsis wt and lcb2a-1 mutant in the presence and absence of FB1. Arabidopsis seedlings were exposed to 10 µM FB1 and after 48 h seedlings were treated with DA B (3,3-diaminobencidine) to detect H2O2 according to Thordal-Christensen et al.30It has been suggested that the H2O2 burst associated with the sphinganine signaling pathway leads to the expression of defense-related genes but not to the PCD itself in tobacco cells.12 It is possible that ROS are involved in the same way in Arabidopsis, since defense gene expression is also induced by FB1 in Arabidopsis.9 In this case, it will be important to define how the early ROS that are DPI-insensitive could contribute to the PCD manifestation mediated by sphinganine.The generation of ROS (4–60 min) found in Arabidopsis was associated to three conditions: the addition of sphinganine (Fig. 1A), FB1 (Fig. 1A) or pathogen elicitors.15 This is consistent with the MPK6 activation time, which is downstream of sphinganine elevation and occurs as early as 15 min of FB1 or sphinganine exposure.2 All of them are events that appear as initial steps in the relay pathway that produces PCD.In order to explore a possible participation of ROS at more advanced times of PCD progression, we detected in situ H2O2 formation in Arabidopsis seedlings previously exposed to FB1 for 48 h. As shown in Figure 1B, formation of the brown-reddish precipitate corresponding to the reaction of H2O2 with 3,3′-diaminobenzidine (DAB) was only visible in the FB1-exposed wild type plants, as compared to the non-treated plants. However, when lcb2a-1 mutant seedlings were used, FB1 exposure had a subtle effect in ROS formation. This mutant has a T-DNA insertion in the gene encoding subunit LCB2a from serine palmitoyltransferase (SPT), which catalyzes the first step in sphingolipid synthesis18 and the mutant has a FB1-resistant phenotype.2 These results indicate that mutations in the LCB11 and LCB2a2 genes (coding for the subunits of the heterodimeric SPT) that lead to a non-PCD phenotype upon the FB1 treatment, are unable to produce H2O2. In addition, they suggest that high levels of hydrogen peroxide are produced at advanced times in the PCD mediated by LCBs in Arabidopsis.Exposure of Arabidopsis to an avirulent strain of Pseudomonas syringae produces an endogenous elevation of LCBs as a way to implement defense responses that include HR-PCD.3 In this condition, we clearly detected H2O2 formation inside chloroplasts (Fig. 2A). When ultrastructure of the seedlings tissues exposed to FB1 for 72 h was analyzed, integrity of the chloroplast membrane system was severely affected in Arabidopsis wild-type seedlings exposed to FB1.2 Therefore, we suggest that ROS generation-LCB induced in the chloroplast could be responsible of the observed membrane alteration, as noted by Liu et al. who found impairment in chloroplast function as a result of H2O2 formation in this organelle from tobacco plants. Interestingly, these plants overexpressed a MAP kinase kinase that activated the kinase SIPK, which is the ortholog of the MPK6 from Arabidopsis, a transducer in the PCD instrumented by LCBs.2Open in a separate windowFigure 2Conditions of LCBs elevation produce H2O2 formation in the chloroplast and perturbation in the membrane morphology of mitochondria. (A) Exposure of Arabidopsis leaves to the avirulent strain Pseudomonas syringae pv. tomato DC3000 (avrRPM1) (or Pst avrRPM1) induces H2O2 formation in the chloroplast. Arabidopsis leaves were infiltrated with 1 × 108 UFC/ml Pst avrRPM1 and after 18 h, samples were treated to visualize H2O2 formation with the DAB reaction. Controls were infiltrated with 10 mM MgCl2 and then processed for DAB staining. Then, samples were analyzed in an optical photomicroscope Olympus Provis Model AX70. (B) Effect of FB1 on mitochondria ultrastructure. Wild type Arabidopsis seedlings were treated with FB1 for 72 h and tissues were processed and analyzed according to Saucedo et al.2 Ch, chloroplast; M, mitochondria; PM, plasma membrane. Arrows show mitochondrial cisternae. Bars show the correspondent magnification.In addition, we have detected alterations in mitochondria ultrastructure as a result of 72 h of FB1 exposure (Fig. 2B). These alterations mainly consist in the reduced number of cristae, the membrane site of residence of the electron transport complexes. In this sense, it has been shown that factors that induce PCD such as the victorin toxin, methyl jasmonate and H2O2 produce alterations in mitochondrial morphology.2022 In fact, some of these studies propose that ROS are formed in the mitochondria and then diffuse to the chloroplasts.2224It is reasonable to envisage that damage of the membrane integrity of these two organelles reflects the effects of vast amounts of ROS produced by the electron transport chains.25,26 Recent evidence supports the destruction of the photosynthetic apparatus associated to the generation of ROS in the HR.26 At this time of PCD progression, ROS could be contributing to shut down the energy machinery in the cell, which ultimately would become the point of no-return of PCD27 as part of the execution program of the cell death mediated by LCBs.In conclusion, we propose that ROS can display two different functional roles in the PCD process driven by LCBs. These roles depend on the time of ROS expression, the cellular site where they are generated, the enzymes that produce them, and the magnitude in which they are formed.  相似文献   

4.
5.
Organelle movement in plants is dependent on actin filaments with most of the organelles being transported along the actin cables by class XI myosins. Although chloroplast movement is also actin filament-dependent, a potential role of myosin motors in this process is poorly understood. Interestingly, chloroplasts can move in any direction and change the direction within short time periods, suggesting that chloroplasts use the newly formed actin filaments rather than preexisting actin cables. Furthermore, the data on myosin gene knockouts and knockdowns in Arabidopsis and tobacco do not support myosins'' XI role in chloroplast movement. Our recent studies revealed that chloroplast movement and positioning are mediated by the short actin filaments localized at chloroplast periphery (cp-actin filaments) rather than cytoplasmic actin cables. The accumulation of cp-actin filaments depends on kinesin-like proteins, KAC1 and KAC2, as well as on a chloroplast outer membrane protein CHUP1. We propose that plants evolved a myosin XI-independent mechanism of the actin-based chloroplast movement that is distinct from the mechanism used by other organelles.Key words: actin, Arabidopsis, blue light, kinesin, myosin, organelle movement, phototropinOrganelle movement and positioning are pivotal aspects of the intracellular dynamics in most eukaryotes. Although plants are sessile organisms, their organelles are quickly repositioned in response to fluctuating environmental conditions and certain endogenous signals. By and large, plant organelle movements and positioning are dependent on actin filaments, although microtubules play certain accessory roles in organelle dynamics.1,2 Actin inhibitors effectively retard the movements of mitochondria,36 peroxisomes,5,711 Golgi stacks,12,13 endoplasmic reticulum (ER),14,15 and nuclei.1618 These organelles are co-aligned and associated with actin filaments.5,7,8,1012,15,18 Recent progress in this field started to reveal the molecular motility system responsible for the organelle transport in plants.19Chloroplast movement is among the most fascinating models of organelle movement in plants because it is precisely controlled by ambient light conditions.20,21 Weak light induces chloroplast accumulation response so that chloroplasts can capture photosynthetic light efficiently (Fig. 1A). Strong light induces chloroplast avoidance response to escape from photodamage (Fig. 1B).22 The blue light-induced chloroplast movement is mediated by the blue light receptor phototropin (phot). In some cryptogam plants, the red light-induced chloroplast movement is regulated by a chimeric phytochrome/phototropin photoreceptor neochrome.2325 In a model plant Arabidopsis, phot1 and phot2 function redundantly to regulate the accumulation response,26 whereas phot2 alone is essential for the avoidance response.27,28 Several additional factors regulating chloroplast movement were identified by analyses of Arabidopsis mutants deficient in chloroplast photorelocation.2932 In particular, identification of CHUP1 (chloroplast unusual positioning 1) revealed the connection between chloroplasts and actin filaments at the molecular level.29 CHUP1 is a chloroplast outer membrane protein capable of interacting with F-actin, G-actin and profilin in vitro.29,33,34 The chup1 mutant plants are defective in both the chloroplast movement and chloroplast anchorage to the plasma membrane,22,29,33 suggesting that CHUP1 plays an important role in linking chloroplasts to the plasma membrane through the actin filaments. However, how chloroplasts move using the actin filaments and whether chloroplast movement utilizes the actin-based motility system similar to other organelle movements remained to be determined.Open in a separate windowFigure 1Schematic distribution patterns of chloroplasts in a palisade cell under different light conditions, weak (A) and strong (B) lights. Shown as a side view of mid-part of the cell and a top view with three different levels (i.e., top, middle and bottom of the cell). The cell was irradiated from the leaf surface shown as arrows. Weak light induces chloroplast accumulation response (A) and strong light induces the avoidance response (B).Here, we review the recent findings pointing to existence of a novel actin-based mechanisms for chloroplast movement and discuss the differences between the mechanism responsible for movement of chloroplasts and other organelles.  相似文献   

6.
7.
The prion hypothesis13 states that the prion and non-prion form of a protein differ only in their 3D conformation and that different strains of a prion differ by their 3D structure.4,5 Recent technical developments have enabled solid-state NMR to address the atomic-resolution structures of full-length prions, and a first comparative study of two of them, HET-s and Ure2p, in fibrillar form, has recently appeared as a pair of companion papers.6,7 Interestingly, the two structures are rather different: HET-s features an exceedingly well-ordered prion domain and a partially disordered globular domain. Ure2p in contrast features a very well ordered globular domain with a conserved fold, and—most probably—a partially ordered prion domain.6 For HET-s, the structure of the prion domain is characterized at atomic-resolution. For Ure2p, structure determination is under way, but the highly resolved spectra clearly show that information at atomic resolution should be achievable.Key words: prion, NMR, solid-state NMR, MAS, structure, Ure2p, HET-sDespite the large interest in the basic mechanisms of fibril formation and prion propagation, little is known about the molecular structure of prions at atomic resolution and the mechanism of propagation. Prions with related properties to the ones responsible for mammalian diseases were also discovered in yeast and funghi8,9 which provide convenient model system for their studies. Prion proteins described include the mammalian prion protein PrP, Ure2p,10 Rnq1p,11 Sup35,12 Swi1,13 and Cyc8,14 from bakers yeast (S. cervisiae) and HET-s from the filamentous fungus P. anserina. The soluble non-prion form of the proteins characterized in vitro is a globular protein with an unfolded, dynamically disordered N- or C-terminal tail.1518 In the prion form, the proteins form fibrillar aggregates, in which the tail adopts a different conformation and is thought to be the dominant structural element for fibril formation.Fibrills are difficult to structurally characterize at atomic resolution, as X-ray diffraction and liquid-state NMR cannot be applied because of the non-crystallinity and the mass of the fibrils. Solid-state NMR, in contrast, is nowadays well suited for this purpose. The size of the monomer, between 230 and 685 amino-acid residues for the prions of Figure 1, and therefore the number of resonances in the spectrum—that used to be large for structure determination—is now becoming tractable by this method.Open in a separate windowFigure 1Prions identified today and characterized as consisting of a prion domain (blue) and a globular domain (red).Prion proteins characterized so far were found to be usually constituted of two domains, namely the prion domain and the globular domain (see Fig. 1). This architecture suggests a divide-and-conquer approach to structure determination, in which the globular and prion domain are investigated separately. In isolation, the latter, or fragments thereof, were found to form β-sheet rich structures (e.g., Ure2p(1-89),6,19 Rnq1p(153-405)20 and HET-s(218-289)21). The same conclusion was reached by investigating Sup35(1-254).22 All these fragements have been characterized as amyloids, which we define in the sense that a significant part of the protein is involved in a cross-beta motif.23 An atomic resolution structure however is available presently only for the HET-s prion domain, and was obtained from solid-state NMR24 (vide infra). It contains mainly β-sheets, which form a triangular hydrophobic core. While this cross-beta structure can be classified as an amyloid, its triangular shape does deviate significantly from amyloid-like structures of smaller peptides.23Regarding the globular domains, structures have been determined by x-ray crystallography (Ure2p25,26 and HET-s27), as well as NMR (mammal prions15,2830). All reveal a protein fold rich in α-helices, and dimeric structures for the Ure2 and HET-s proteins. The Ure2p fold resembles that of the β-class glutathione S-transferases (GST), but lacks GST activity.25It is a central question for the structural biology of prions if the divide-and-conquer approach imposed by limitations in current structural approaches is valid. Or in other words: can the assembly of full-length prions simply be derived from the sum of the two folds observed for the isolated domains?  相似文献   

8.
9.
10.
11.
There is increasing evidence that immunophilins function as key regulators of plant development. One of the best investigated members, the multi-domain FKBP TWISTED DWARF1 (TWD1)/FKBP42, has been shown to reside on both the vacuolar and plasma membranes where it interacts in mirror image with two pairs of ABC transporters, MRP1/ MRP2 and PGP1/PGP19(MDR1), respectively. Twisted dwarf1 and pgp1/pgp19 mutants display strongly overlapping phenotypes, including reduction and disorientation of growth, suggesting functional interaction.In a recent work using plant and heterologous expression systems, TWD1 has been demonstrated to modulate PGP-mediated export of the plant hormone auxin, which controls virtually all plant developmental processes. Here we summarize recent molecular models on TWD1 function in plant development and PGP-mediated auxin tranport and discuss open questions.Key Words: Twisted Dwarf1, plant development, auxin, immunophilin, P-glycoprotein, ABC transporterFK506-binding Proteins (FKBPs), together with unrelated cyclophilins, belong to the immunophilins, an ancient and ubiquitous protein family.1,4,5 They were first described as receptors for immunosuppressive drugs in animal and human cells, FK506 and cyclosporin A, respectively.1 All FKBP-type immunophilins share a characteristic peptidyl-prolyl cis-trans isomerase domain (PPIase domain or FKBD, Fig. 2A) making protein folding a key feature among immunophilins.2 The best investigated example, the human cytosolic single-domain FKBP12, modulates Ca2+ release channels6,7 and associates with the cell cycle regulator TGF-β.8 Furthermore, the human FKBP12/FK506 complex is known to bind and inhibit calcineurin activity,9 leading to immune response inhibition. However, not all single- and multiple-domain FKBPs own folding activity and, interestingly, many form distinct protein complexes with diverse functions.35Open in a separate windowFigure 2Model of TWISTED DWARF 1 interacting proteins. (A) Domain structure of TWD1 and putative interacting proteins. FKBD, FK506-binding domain: TPR, tetratricopeptide repeat; CaM(-BD, calmodulin-binding domain; MA, membrane anchor. For details, see text. (B) Functional TWD1-ABC transporter complexes on both the vacuolar and plasma membrane. While for TWD1/PGP pairs, the positive regulatory role on auxin transport was demonstrated,18 the modulation of MRP-mediated vacuolar import of glutathion conjugates (GS-X) was established using mammalian test substrates17 because the in vivo substrates are unknown. Note that C-terminal nucleotide binding folds of MRP- and PGP-like ABC transporters interact with distinct functional domains of TWD1, the TPR and FKBD, respectively. The native auxin, IAAH, gets trapped by deprotonization upon uptake into the cell. Export is catalyzed by secondary active export via PIN-like efflux carriers15 and/or by primary active, ATP-driven P-glycoproteins (PGPs, right panel); loss-of TWD1 function abolishes PGP-mediated auxin export (left panel).  相似文献   

12.
Aphids ingest from the sieve tubes and by doing so they are confronted with sieve-tube occlusion mechanisms, which are part of the plant defense system. Because aphids are able to feed over longer periods, they must be able to prevent occlusion of the sieve plates induced by stylet penetration. Occlusion probably depends upon Ca2+-influx into the sieve element (SE) lumen. Aphid behavior, biochemical tests and in vitro experiments demonstrated that aphid''s watery saliva, injected during initial phase of a stylet penetration into the SE lumen, contains proteins that are able to bind calcium and prevent calcium-induced SE occlusion. In this addendum, we speculate on the consequences of saliva secretion for plant resistance. (a) The release of elicitors (e.g., oligogalacturonides) due to cell wall digestion by gel saliva enzymes may increase the resistance of cortex, phloem parenchyma cells and companion cells (CC) around the puncture site. (b) Ca2+-binding by aphid watery saliva may suppress the local defense responses in the SEs. (c) Signaling cascades triggered in CCs may lead to systemic resistance.Key words: aphid saliva, calcium binding, elicitor, oligogalacturonides, local plant defense, systemic plant defense, phloem translocation, aphid/plant-interactionAfter having penetrated the sieve-element (SE) plasma membrane, aphids encounter unspecific wound-induced occlusion reactions to prevent sap leakage.14 Occlusion mechanisms by callose, structural P-proteins and forisomes are likely induced by a sudden calcium influx into the sieve-tube lumen.5 Calcium possibly enters the sieve-tube lumen through the stylet wounding-site in the plasma membrane and/or stretch-activated calcium-channels.68 After SE penetration, aphids secrete watery saliva that contains calcium-binding proteins presumed to sabotage sieve-plate occlusion.9,10We demonstrated that Megoura viciae (Buckton) is most likely able to prevent or reduce sieve-tube occlusion in Vicia faba by secretion of watery saliva. By in vitro confrontation of isolated forisomes, protein bodies responsible for sieve-tube occlusion in Fabaceaen,5 and watery saliva concentrate, we were able to show that salivary proteins convey forisomes from a dispersed (+Ca2+) into a condensed (−Ca2+) state.10 The dispersed forisome functions in vivo as a plug, leading to stoppage of mass flow.5This in vitro evidence was corroborated by aphid behavior in response to leaf tip burning, which triggers an electrical potential wave (EPW) along the sieve tubes. Such an EPW induces Ca2+-influx and corresponding SE occlusion along the pathway.11 The passage of the EPW is associated with a prolonged secretion of watery saliva of aphids. This is interpreted as an attempt to unplug the SEs by calcium binding.10 Similar behavioral changes in response to leaf-tip burning were observed in an extended set of aphid/plant species combinations, indicating that attempted sabotage of sieve-tube occlusion by aphid saliva is a widespread phenomenon (unpublished).Aphid feeding was reported to induce local (on the same leaf) and systemic (in distant leaves) reactions of the host plant. The local response led to enhanced feeding,1214 while the systemic response showed reduced ingestion and extended periods of watery saliva secretion in sieve tubes distant from previous feeding sites.1214 These contrasting observations were described to be independent of the aphid species.13 The question arises how aphids induce these seemingly opposite plant responses?The aphid stylet pushing forward through cortical and vascular tissue is surrounded by a sheath of gel saliva, secreted into the apoplast.15,16 Gel saliva contains cellulase and pectinase that amongst others produce oligogalacturonides (OGs) along the stylet sheath by digestion of cell wall material.17,18 Usually, OGs act as elicitors, triggering a variety of plant responses against pathogens and insects in which the activation of calcium channels is involved.19,20 This seems to conflict with a suppression of resistance as observed for the impact of watery saliva in SEs.10 We will make an attempt to explain this paradoxon.OG induced defense responses may be triggered in all cell types adjacent to the salivary sheath (Fig. 1). Because watery saliva is only secreted briefly into these cells, which are punctured for orientation purposes (Hewer et al., unpublished), it seems unlikely that OG induced defense is suppressed here by saliva-mediated calcium binding.15 The diffusion range of OGs may be restricted to the close vicinity of the stylet sheath leading to an enhanced regional defense with a limited sphere of action (Fig. 1). Because the settling distance of aphids is restricted by their body size (1–10 mm),21 aphids feeding on the same leaf are probably hardly confronted with the regional defense induced by another aphid (Fig. 1). Otherwise, they would show an increased number of test probes before first phloem activity, as described for volatile mediated plant defense in cortex cells.13 Circumstantial support in favor of our hypothesis is provided by production of hydrogen peroxide in the apoplast,22 which is most likely associated with the action of OGs.22 Observations of hydrogen peroxide production during aphid (Macrosiphum euphorbiae) infestation of tomato in a limited area along the leaf veins, the preferred feeding sites of this species, indicate a locally restricted defense response (Fig. 1 and and22).4 The question arises why the cell signals are not spread via plasmodesmata to adjacent cells to induce resistance in a more extended leaf area? Dissemination of the signals may be prevented by closure of plasmodesmata (Fig. 1) through callose deposition,23,24 which is most likely directly coupled with calcium influx induced by OGs,25 by apoplastic hydrogen peroxide and to a minor extent by stylet puncture (Fig. 2).7,26Open in a separate windowFigure 1Hypothetical model on how stylet penetration induces and suppresses plant defense. Sheath saliva (light blue) that envelopes the stylet during propagation through the apoplast contains cellulase and pectinase,17,18 enzymes producing elicitors (e.g., oligogalacturonides (oGs)) by local cell wall digestion.19 Parenchyma cells adjacent to the sheath may develop a defense response owing to signaling cascades triggered by oG-mediated Ca2+-influx.19 Together with a Ca2+-dependent transient closure of plasmodesmata by callose (black crosses),23,24 the focused production of oGs may cause a defense response with a limited sphere of action (red—strong, brown—light, green—none). This restricted domain of defense may not be perceived by other aphids, since the settling distance is limited by the aphid body size. Nearby aphids do not show any sign of defense perception in their probing and feeding behavior.14 Signaling cascade compounds may be channeled from parenchyma cells to CCs (dashed yellow arrows), where they are subsequently released into the SEs. There they may act as long-distance systemic defense components (grey arrows). In contrast to the parenchyma domain (where only minor amounts of watery saliva are secreted), Ca2+-mediated reactions such as defense cascades and sieve-plate (SP) occlusion are suppressed in SEs by large amounts of watery saliva. The left aphid penetrates an SE and injects watery saliva (red cloud; ws) that inhibits local sieve-plate occlusion and,10 most likely, is transported by mass flow (black arrow) to adjacent SEs,27 where occlusion is impeded as well. A short-distance systemic spread over a few centimeters may explain local suppression of plant defense resulting in a higher rate of colonization. Salivary proteins or their degradation products may serve as systemic defense signals as well (grey arrows), but may also diffuse via the PPUs into CCs where additional systemic signals are induced (yellow arrows).Open in a separate windowFigure 2Hypothetical involvement of Ca2+-channels in aphid-induced cell defense (detail). During probing with its stylet the aphid secretes gel saliva as a lubrication substance (light blue) into the apoplast.15 on the way to the sieve tubes, aphids briefly puncture most non-phloem cells (red) after which the puncturing sites are sealed with gel saliva.7,16 Gel saliva also most likely prevents the influx of apoplastic calcium into pierced sieve elements (green) by sealing the penetration site.7 Watery saliva (red cloud), injected into the SE lumen,9 contains proteins which bind calcium ions (marked by X) that enter the SE via e.g., mechano sensitive Ca2+-channels activated by stylet penetration (blue tons).10 In this way, aphids suppress SE occlusion and activation of local defense cascades. In the parenchyma cells around the gel saliva sheath, a small cylindrical zone of defense may be induced by oligogalacturonides (oGs; brown triangles) produced by cell wall (grey) digestion.1719 Perceived by unknown receptor proteins (R; e.g., a receptor like protein kinase)34 and kinase mediation (black dotted and dashed arrows), oGs lead to a Ca2+-influx through kinase activated calcium channels (orange tons).25 Around the probing site, aphids apparently induce the production of superoxide by Ca2+-induced activation of the NADPH oxidase (violet box) and its following conversion to hydrogen peroxide (red spots) is mediated by superoxide dismutase (SoD).4 Hydrogen peroxide activates Ca2+-channels (violet tons) and diffuses through plasma membrane (curled arrows) therefore potentially acting as a intracellular signal.26By contrast, Ca2+-influx into SEs, induced by presence of OGs or stylet insertion (Fig. 2), is not expected to trigger local defense given the abundant excretion of Ca2+-binding watery saliva.7,10,25 Watery saliva may spread to down-stream and adjacent SEs through transverse and lateral sieve plates (Fig. 1).7,27 Aphids puncturing nearby SEs may therefore encounter less severe sieve-plate occlusion which results in facilitated settling and thus in increased population growth. Aggregation of feeding aphids would self-amplify population growth until a certain density is attained. Farther from the colonization site, this effect may be lost due to dilution. Stimulation of aphid feeding by aphid infestation was observed locally on potato by Myzus persicae and M. euphorbiae, respectively, 96 h after infestation.13 However, a similar effect was not observed for M. persicae on Arabidopsis thaliana where aphids induced premature leaf senescence and resistance 12 h after infestation,28 possibly induced by OGs.19As a speculation, OG induced Ca2+-influx into parenchyma cells adjacent to the salivary sheath activate Ca2+-induced signaling cascades via CaM,26,29 CDPKs,30,31 MAPKinases and reactive oxygen species (Fig. 2).32 Systemic resistance, induced by aphid infestation,1214 is mediated by unknown compounds such as, e.g., salivary proteins, their degradation products, signal cascade products or volatiles.13 Compounds produced in CCs first have to pass the PPUs, while SE signaling elements can be directly transported via mass flow (Fig. 1).The question arises if aphids profit from induced resistance on local (cortex and parenchyma cells) and systemic (distant plant organs) levels as holds for suppression of defense in SEs. Possibly settling and subsequent spread of competing pathogens/herbivores (e.g., fungi or other piercing-sucking insects) are suppressed by induced defense. In this context it is intriguing to understand how aphids cope with the self-induced systemic resistance, which probably lasts over weeks.33  相似文献   

13.
14.
15.
Junctional Adhesion Molecule A (JAM-A) is a member of the Ig superfamily of membrane proteins expressed in platelets, leukocytes, endothelial cells and epithelial cells. We have previously shown that in endothelial cells, JAM-A regulates basic fibroblast growth factor, (FGF-2)-induced angiogenesis via augmenting endothelial cell migration. Recently, we have revealed that in breast cancer cells, downregulation of JAM-A enhances cancer cell migration and invasion. Further, ectopic expression of JAM-A in highly metastatic MDA-MB-231 cells attenuates cell migration, and downregulation of JAM-A in low-metastatic T47D cells enhance migration. Interestingly, JAM-A expression is greatly diminished as breast cancer disease progresses. The molecular mechanism of this function of JAM-A is beyond its well-characterized barrier function at the tight junction. Our results point out that JAM-A differentially regulates migration of endothelial and cancer cells.Key words: JAM-A, integrin, αvβ3, FGF-2, breast cancer, cell migration and invasion, T47D, MDA-MB-231, siRNAEndothelial and epithelial cells exhibit cell polarity and have characteristic tight junctions (TJs) that separate apical and basal surfaces. TJs are composed of both transmembrane and cytoplasmic proteins. The three major families of transmembrane proteins include claudins, occludin and JAM family members.13 Additionally, interaction between the peripheral proteins such as PDS-95/Discs large/ZO family (PDZ) domain-containing proteins in TJs plays an important role in maintaining the junctional integrity.2,4,5JAMs are type I membrane proteins (Fig. 1) predominately expressed in endothelial and epithelial cell TJs, platelets and some leukocytes.68 The classical JAMs are JAM-A, JAM-B and JAM-C, which can all regulate leukocyte-endothelial cell interaction through their ability to undergo heterophilic binding with integrins αLβ2 or αvβ3, α4β1 and αMβ2 respectively. The cytoplasmic tail of JAMs contains a type II PDZ-domain-binding motif (Fig. 1) that can interact with the PDZ domain containing cytoplasmic molecules such as ZO-1, ASIP/PAR-3 or AF-6.9,10 Additionally, consistant with their junctional localization and their tendency to be involved in homophilic interactions, JAMs have been shown to modulate paracellular permeability and thus may play an important role in regulating the epithelial and endothelial barrier.11,12 In addition, ectopic expression of JAM-A in CHO cells promotes localization of ZO-1 and occludin at points of cell contacts, which suggests a role for JAM-A in TJ assembly.10,13,14 Recently, it has been shown that JAM-A regulates epithelial cell morphology by modulating the activity of small GTPase Rap1 suggesting a role for JAM-A in intracellular signaling.15Open in a separate windowFigure 1Schematic representation of the domain structure of JAM family proteins. V, variable Ig domain; C2, constant type 2 Ig domain; TM, transmembrane domain; T-II, Type II PDZ-domain binding motif.We have previously shown that JAM-A is a positive regulator of fibroblast growth factor-2 (FGF-2) induced angiogenesis.16 Evidence was provided to support the notion that JAM-A forms a complex with integrin αvβ3 at the cell-cell junction in quiescent human umbilical cord vein endothelial cells (HUVECs) and FGF-2 dissociates this complex.16 It was further established that inhibition of JAM-A using a function-blocking antibody also inhibits FGF-2 induced HUVECs migration in vitro and angiogenesis in vivo. Overexpression of JAM-A induced a change in HUVECs morphology similar to that observed when treated with FGF-2.17 Furthermore, overexpression of JAM-A, but not its cytoplasmic domain deletion mutant, augmented cell migration in the absence of FGF-2.17 In addition, downregulation of JAM-A in HUVECs using specific siRNA, resulted in reduced FGF-2-induced cell migration and inhibition of mitogen activated protein (MAP) kinase activation.18 These findings clearly suggested that JAM-A positively regulates FGF-2-induced endothelial cell migration. This was further confirmed in vivo by using JAM-A null mouse in which FGF-2 failed to support angiogenesis.19It is known that JAM-C, a JAM family member, is involved in the process of tumor cell metastasis.20 However, little is known about JAM-A''s role in cancer progression. We recently found that JAM-A is expressed in breast cancer tissues and cell lines.21 Based on our studies with endothelial cells it was felt that JAM-A expression in breast cancer cells may also enhance the migratory ability of these cells. Surprisingly, we found an inverse relation between the expression of JAM-A and the metastatic ability of breast cancer cells. T47D cells, which express high levels of JAM-A, are the least migratory; whereas MDA-MB-231 cells, which are highly migratory, are found to express the least amount of JAM-A.21 We also found that overexpression of JAM-A in MDA-MB-231 cells caused a change in cell morphology from spindle-like to rounded shape and formed cobblestone-like clusters.21 This is consistent with the previous report, that downregulation of JAM-A expression from epithelial cells using siRNA results in the change of epithelial cell morphology.15 This change in cell morphology by knockdown of JAM-A was attributed to the disruption of epithelial cell barrier function.15 It was further shown that knockdown of JAM-A affects epithelial cell morphology through reduction of β1integrin expression due to decreased Rap1 activity.15 Our observed effect of JAM-A downregulation in T47D cells, however, is not due to downregulation of β1integrin, since the level of this integrin was not affected in these cells. Interestingly, overexpression of JAM-A significantly affected both the cell migration and invasion of MDA-MB-231 cells. Furthermore, knockdown of JAM-A using siRNA enhanced invasiveness of MDA-MB-231 cells, as well as T47D cells.21 The ability of JAM-A to attenuate cell invasion was found to be due to the formation of functional tight junctions as observed by distinct accumulation of JAM-A and ZO-1 at the TJs and increased transepithelial resistance. These results identify, for the first time, a tight junctional cell adhesion protein as a key negative regulator of breast cancer cell migration and invasion.21JAM-A has been shown to be important in maintaining TJ integrity.15,2225 Disruption of TJs has been implicated to play a role in cancer cell metastasis by inducing epithelial mesenchymal transition.26 Several laboratories, including ours, have shown that cytokines and growth factors redistribute JAM-A from TJs.16,27,28 Consistent with this finding, it has been shown that hepatocyte growth factor (HGF) disrupts TJs in human breast cancer cells and downregulates expression of several TJ proteins.29 It is therefore conceivable that the loss of JAM-A in highly metastatic cells is a consequence of disruption of TJs. This was further supported by the findings that overexpression of JAM-A forms functional TJs in MDA-MB-231 cells and attenuates their migratory behavior. Our result is the first report correlating an inverse relationship of JAM-A expression in breast cancer cells to their invasive ability.21Using cDNA microarray technology, it has been revealed how genes involved in cell-cell adhesion, including those of the TJ, are under or overexpressed in different carcinomas.15,30 Cell-cell adhesion molecules have been well documented to regulate cancer cell motility and invasion. Of these, the cadherin family have been studied the most.31,32 It was proposed that a cadherin switch, that is, the loss of E-cadherin and subsequent expression of N-cadherin, may be responsible for breast cancer cell invasion.33,34 Although the role of cadherins is well-documented, it remains controversial since some breast cancer cell lines that do not express these proteins still posses highly invasive characteristics.33,34 However, the observed effect of overexpression of JAM-A does not appear to be simply due to the formation of TJs, since individual cells that express increased JAM-A show reduced migration.21 This is not surprising, considering the fact that JAM-A in addition to its function of regulating TJ integrity is also shown to participate in intracellular signaling. JAM-A is capable of interacting homotypically as well as heterotypically on the cell surface.35,36 It has also been shown that it interacts with several cytoplasmic proteins through its PDZ domain-binding motif and recruits signaling proteins at the TJs.37 Recent findings using site-directed mutagenesis suggest that cis-dimerization of JAM-A is necessary for it to carry out its biological functions.38 Our own observations suggest that a JAM-A function-blocking antibody inhibits focal adhesion formation in endothelial cells (unpublished data), whereas overexpresion of JAM-A in MDA-MB-231 cells show increased and stable focal adhesions.21 It is therefore conceivable that in quiescent endothelial/epithelial cells JAM-A associates with integrin to form an inactive complex at the TJ (Fig. 2). Growth factors such as FGF-2 signaling dissociates this complex thus allowing dimerization of JAM-A and activation of integrin augmenting cell migration (Fig. 2). On the contrary, in MDA-MB-231 cancer cells, which express low levels of JAM-A and do not form tight junctions, there may not be efficient inactive complex formation between JAM-A and integrin. Overexpression of JAM-A in these cells however, may promote such inactive complex formation leading to inhibition of integrin activation and JAM-A dimerization, both necessary events for cell migration. We are currently in the process of determining the specificity of interaction of JAM-A with integrins. Further experimentation is ongoing to determine the contribution of JAM-A dependent signaling in cell migration.Open in a separate windowFigure 2Schematic representation of JAM-A regulation of cell migration. JAM-A forms an inactive complex with the integrin and sequesters it at the TJs. Growth factor signaling dissociates this complex, promoting integrin activation and JAM-A dimerization leading to cell migration via MAP kinase activation. Ectopic expression of JAM-A in cancer cells may induce its association with integrin, forming an inactive complex and hence attenuation of migration.JAM-A differentially regulates cell migration in endothelial and cancer cells due to its ability to form inactive complex with integrin, making it a metastasis suppressor. The downregulation of JAM-A in carcinoma cells may be detrimental to the survival of breast cancer patients. It is therefore very important to determine the molecular determinants that are responsible for the downregulation of JAM-A during cancer progression. Thus, JAM-A, a molecule that dictates breast cancer cell invasion, could be used as a prognostic marker for metastatic breast cancer.  相似文献   

16.
17.
18.
Cellulose Synthase Like (CSL) proteins are a group of plant glycosyltransferases that are predicted to synthesize β-1,4-linked polysaccharide backbones. CSLC, CSLF and CSLH families have been confirmed to synthesize xyloglucan and mixed linkage β-glucan, while CSLA family proteins have been shown to synthesize mannans. The polysaccharide products of the five remaining CSL families have not been determined. Five CSLD genes have been identified in Arabidopsis thaliana and a role in cell wall biosynthesis has been demonstrated by reverse genetics. We have extended past research by producing a series of double and triple Arabidopsis mutants and gathered evidence that CSLD2, CSLD3 and CSLD5 are involved in mannan synthesis and that their products are necessary for the transition between early developmental stages in Arabidopsis. Moreover, our data revealed a complex interaction between the three glycosyltransferases and brought new evidence regarding the formation of non-cellulosic polysaccharides through multimeric complexes.Key words: mannan, mannose, plant cell wall, glycosyltransferase, cellulose synthase like, CSL, biosynthesis, hemicelluloseThe plant cell wall is mainly composed of polysaccharides, which are often grouped into cellulose, hemicelluloses and pectin. Since the discovery of the first cellulose synthase (CESA) genes in cotton fibers,1 the synthesis of cellulose has been extensively studied.2 In contrast, the glycosyltransferases responsible for synthesizing hemicelluloses and pectin are still largely unidentified.3,4,5 The CESA genes are members of a superfamily that includes genes with a high sequence similarity with CESA genes and are named Cellulose Synthase Like (CSL).6 The CSL genes have themselves been grouped into nine families designated CSLA, -B, -C, -D, -E, -F, -G, -H and -J (Figure 1A).5,6 Mannan and glucomannan synthase activity has been demonstrated in the CSLA family,7,8,9 while members of the CSLC family have been implicated in synthesis of the xyloglucan backbone.10 CSLF and CSLH, which are found only in grasses, are involved in synthesis of mixed linkage glucan.11,12 The function of the remaining CSL families has not been determined. We have reported our research on the CSLD family in a recent publication.13 Of all the CSL families, CSLD possesses the most ancient intron/exon structure and is the most similar to the CESA family.6 CSLD genes are found in all sequenced genomes of terrestrial plants including Physcomitrella and Selaginella suggesting a highly conserved function throughout the plant kingdom (Figure 1A). Five genes (CSLD1 to CSLD5) and one apparent pseudogene (CSLD6) have been identified in Arabidopsis thaliana.14 Bernal et al.14,15 studied knock-out mutants of the individual genes and presented evidence for a role in cell wall biosynthesis for each Arabidopsis CSLD. To elucidate the activity of the CSLD proteins and obtain further understanding of their biological role, we generated double mutants csld2/csld3, csld2/csld5, csld3/csld5 and the triple mutant csld2/csld3/csld5. Immunochemical, biochemical and complementation assays brought evidence that CSLD5 or CSLD2 in concomitance with CSLD3 act as mannan synthases.Open in a separate windowFigure 1(A) Schematic representation of the CESA superfamily phylogeny. The inset on the right is a detailed phylogenetic tree of CSLDs from Selaginella moellendorffii, Arabidopsis thaliana and Oryza sativa. The figure is modified from Ulvskov and Scheller.5 (B) Comparison of csld2, csld3, csld5 with Col-0 20 days after germination. The inflorescences of csld2 and csld3 were similar to Col-0 whereas csld5 had a delayed growth. Scale bar: 1 cm. (C) Col-0 and csld2/csld3/csld5 (triple mutant, TM) 40 days after germination. After 40 days, the triple mutant was barely developed and, as shown in the magnified inset, displayed purple coloration indicating accumulation of anthocyanins, a typical stress response. Scale bar: 2 mm.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号