首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To explore the function of VIG-1 in Caenorhabditis elegans, we analyzed the phenotypes of two vig-1 deletion mutants: vig-1(tm3383) and vig-1(ok2536). Both vig-1 mutants exhibited phenotypes associated with genome instability, such as a high incidence of males (Him) and increased embryonic lethality. These phenotypes became more evident in succeeding generations, implying that the germline of vig-1 accumulates DNA damage over generations. To examine whether vig-1 causes a defect in the DNA damage response, we treated worms with UV or camptothecin, a specific topoisomerase I inhibitor. We observed that the embryonic survival of the vig-1 mutants was reduced compared with that of the wild-type worms. Our results thus suggest that VIG-1 is required for maintaining genome stability in response to endogenous and exogenous genotoxic stresses.  相似文献   

2.
3.
BACKGROUND: Inhibitor of apoptosis proteins (IAPs) suppress apoptotic cell death in several model systems and are highly conserved between insects and mammals. All IAPs contain at least one copy of the approximately 70 amino-acid baculovirus IAP repeat (BIR), and this domain is essential for the anti-apoptotic activity of the IAPs. Both the marked structural diversity of IAPs and the identification of BIR-containing proteins (BIRPs) in yeast, however, have led to the suggestion that BIRPs might play roles in other, as yet unidentified, cellular processes besides apoptosis. Survivin, a human BIRP, is upregulated 40-fold at G2-M phase and binds to mitotic spindles, although its role at the spindle is still unclear. RESULTS: We have identified and characterised two Caenorhabditis elegans BIRPs,BIR-1 and BIR-2; these proteins are the only BIRPs in C. elegans. The bir-1 gene is highly expressed during embryogenesis with detectable expression throughout other stages of development; bir-2 expression is detectable only in adults and embryos. Overexpression of bir-1 was unable to inhibit developmentally occurring cell death in C. elegans and inhibition of bir-1 expression did not increase cell death. Instead, embryos lacking bir-1 were unable to complete cytokinesis and they became multinucleate. This cytokinesis defect could be partially suppressed by transgenic expression of survivin, the mammalian BIRP most structurally related to BIR-1, suggesting a conserved role for BIRPs in the regulation of cytokinesis. CONCLUSIONS: BIR-1, a C. elegans BIRP, is probably not involved in the general regulation of apoptosis but is required for embryonic cytokinesis. We suggest that BIRPs may regulate cytoskeletal changes in diverse biological processes including cytokinesis and apoptosis.  相似文献   

4.
5.
Youds JL  O'Neil NJ  Rose AM 《Genetics》2006,173(2):697-708
In C. elegans, DOG-1 prevents deletions that initiate in polyG/polyC tracts (G/C tracts), most likely by unwinding secondary structures that can form in G/C tracts during lagging-strand DNA synthesis. We have used the dog-1 mutant to assay the in vivo contribution of various repair genes to the maintenance of G/C tracts. Here we show that DOG-1 and the BLM ortholog, HIM-6, act synergistically during replication; simultaneous loss of function of both genes results in replicative stress and an increase in the formation of small deletions that initiate in G/C tracts. Similarly, we demonstrate that the C. elegans orthologs of the homologous recombination repair genes BARD1, RAD51, and XPF and the trans-lesion synthesis polymerases poleta and polkappa contribute to the prevention of deletions in dog-1 mutants. Finally, we provide evidence that the small deletions generated in the dog-1 background are not formed through homologous recombination, nucleotide excision repair, or nonhomologous end-joining mechanisms, but appear to result from a mutagenic repair mechanism acting at G/C tracts. Our data support the hypothesis that absence of DOG-1 leads to replication fork stalling that can be repaired by deletion-free or deletion-prone mechanisms.  相似文献   

6.
During programmed cell death, the clearance of apoptotic cells is achieved by their phagocytosis and delivery to lysosomes for destruction in engulfing cells. However, the role of lysosomal proteases in cell corpse destruction is not understood. Here we report the identification of the lysosomal cathepsin CPL-1 as an indispensable protease for apoptotic cell removal in Caenorhabditis elegans. We find that loss of cpl-1 function leads to strong accumulation of germ cell corpses, which results from a failure in degradation rather than engulfment. CPL-1 is expressed in a variety of cell types, including engulfment cells, and its mutation does not affect the maturation of cell corpse–containing phagosomes, including phagosomal recruitment of maturation effectors and phagosome acidification. Of importance, we find that phagosomal recruitment and incorporation of CPL-1 occurs before digestion of cell corpses, which depends on factors required for phagolysosome formation. Using RNA interference, we further examine the role of other candidate lysosomal proteases in cell corpse clearance but find that they do not obviously affect this process. Collectively, these findings establish CPL-1 as the leading lysosomal protease required for elimination of apoptotic cells in C. elegans.  相似文献   

7.
For all living organisms, genome stability is important, but is also under constant threat because various environmental and endogenous damaging agents can modify the structural properties of DNA bases. As a defense, organisms have developed different DNA repair pathways. Base excision repair (BER) is the predominant pathway for coping with a broad range of small lesions resulting from oxidation, alkylation, and deamination, which modify individual bases without large effect on the double helix structure. As, in mammalian cells, this damage is estimated to account daily for 10(4) events per cell, the need for BER pathways is unquestionable. The damage-specific removal is carried out by a considerable group of enzymes, designated as DNA glycosylases. Each DNA glycosylase has its unique specificity and many of them are ubiquitous in microorganisms, mammals, and plants. Here, we review the importance of the BER pathway and we focus on the different roles of DNA glycosylases in various organisms.  相似文献   

8.
9.
Data mining in genome sequences can identify distant homologues of known protein families, and is most powerful if solved structures are available to reveal the three-dimensional implications of very dissimilar sequences. Here we describe putative serpin sequences identified with very high statistical significance in the Caenorhabditis elegans genome. When mapped onto vertebrate serpins such as alpha1-antitrypsin, they suggest novel structural features. Some appear complete, some show extensive deletions, and others appear to contain only the C-terminal part of the known serpin fold, probably in partnership with N-terminal regions that have conformations unlike those of known serpins. The observation of such striking sequence similarity, in proteins that must have significantly different overall structures, substantially extends the structural characteristics of the serpin family of proteins.  相似文献   

10.
Genome duplication is tightly controlled in multicellular organisms to ensure the genome stability. Studies in Saccharomyces cerevisiae and Xenopus show that minichromosome maintenance (MCM) proteins are essential for genome duplication. However, the development role of MCM proteins in multicellular organisms is not well known. MCM5 encodes a member of the MCM2-7 protein family involved in the initiation of DNA replication. The sequences of all Mcm5 homologues from yeast to human are highly conserved and suggest that their functions are also conserved. Here, we isolated the first mutant allele of mcm-5 (fw7) in Caenorhabditis elegans. Homozygous mcm-5 (fw7) mutants from heterozygous parents exhibited variable larval lethality and adult sterility. The postembryonically born neuron number was decreased and also showed aberrant axon morphology. Our study revealed that the losses of neurons in mcm-5 (fw7) mutants were caused by cell cycle defects not by programmed cell death. The examination showed that mcm-5 was widely used for postembryonic development in multiple cells such as seam cells, gonad and intestinal cells. Knockdown of mcm-5 by RNAi caused 98.1% embryonic arrest, suggesting that mcm-5 was also required for embryonic development. After RNAi treatment of the other MCM2-7 family members, we found that they all exhibited similar phenotypes as mcm-5, suggesting that the MCM2-7 family in C. elegans might function associated with cell division as its homologues in S. cerevisiae.  相似文献   

11.
Brownlie JC  Whyard S 《Gene》2004,338(1):55-64
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. In the nematode Caenorhabditis elegans, there are eight copies of CemaT1 that are predicted to encode a functional transposase, with five copies being >99% identical. We present evidence, based on searches of publicly available databases and on PCR-based mobility assays, that the CemaT1 transposase is expressed in C. elegans and that the CemaT transposons are capable of excising in both somatic and germline tissues. We also show that the frequency of CemaT1 excisions within the genome of the N2 strain of C. elegans is comparable to that of the Tc1 transposon. However, unlike Tc transposons in mutator strains of C. elegans, maT transposons do not exhibit increased frequencies of mobility, suggesting that maT is not regulated by the same factors that control Tc activity in these strains. Finally, we show that CemaT1 transposons are capable of precise transpositions as well as orientation inversions at some loci, and thereby become members of an increasing number of identified active transposons within the C. elegans genome.  相似文献   

12.
Cell cycle regulation and DNA repair following damage are essential for maintaining genome integrity. DNA damage activates checkpoints in order to repair damaged DNA prior to exit to the next phase of cell cycle. Recently, we have shown the role of Ada3, a component of various histone acetyltransferase complexes, in cell cycle regulation, and loss of Ada3 results in mouse embryonic lethality. Here, we used adenovirus-Cre-mediated Ada3 deletion in Ada3fl/fl mouse embryonic fibroblasts (MEFs) to assess the role of Ada3 in DNA damage response following exposure to ionizing radiation (IR). We report that Ada3 depletion was associated with increased levels of phospho-ATM (pATM), γH2AX, phospho-53BP1 (p53BP1) and phospho-RAD51 (pRAD51) in untreated cells; however, radiation response was intact in Ada3−/− cells. Notably, Ada3−/− cells exhibited a significant delay in disappearance of DNA damage foci for several critical proteins involved in the DNA repair process. Significantly, loss of Ada3 led to enhanced chromosomal aberrations, such as chromosome breaks, fragments, deletions and translocations, which further increased upon DNA damage. Notably, the total numbers of aberrations were more clearly observed in S-phase, as compared with G₁ or G₂ phases of cell cycle with IR. Lastly, comparison of DNA damage in Ada3fl/fl and Ada3−/− cells confirmed higher residual DNA damage in Ada3−/− cells, underscoring a critical role of Ada3 in the DNA repair process. Taken together, these findings provide evidence for a novel role for Ada3 in maintenance of the DNA repair process and genomic stability.  相似文献   

13.
Neutrophil influx into tissues occurs in many diverse diseases and can be associated with both beneficial and injurious effects. We hypothesize that the stimulus for certain neutrophilic inflammatory responses can be reduced to a series of competing reactions for iron, with either a labile or reactive coordination site available, between host chelators and chelators not indigenous to that specific living system. The iron focuses the transport of host phagocytic cells through a metal catalyzed generation of oxidant sensitive mediators including cytokines and eicosanoids. Many of these products are chemotactic for neutrophils. We also postulate that the iron increases the activity of the phagocyte associated NADPH oxidoreductase in the neutrophil. The function of this enzyme is likely to be the generation of superoxide in the hostÕs attempt to chemically reduce and dislodge the iron from its chelate complex. After the reoxidation of Fe in an aerobic environment, Fe will be coordinated by host lactoferrin released by the neutrophil. When complexed by this glycoprotein, the metal does not readily undergo oxidation/reduction and is safely transported to the macrophages of the reticuloendothelial system where it is stored in ferritin. Finally, we propose that the neutrophil will attempt to destroy the chelator not indigenous to the host by releasing granular contents other than lactoferrin. Inability to eliminate the chelator allows this sequence to repeat itself, which can lead to tissue injury. Such persistence of a metal chelate in the host may be associated with biomineralization, fibrosis, and cancer.  相似文献   

14.
Cell cycle regulation and DNA repair following damage are essential for maintaining genome integrity. DNA damage activates checkpoints in order to repair damaged DNA prior to exit to the next phase of cell cycle. Recently, we have shown the role of Ada3, a component of various histone acetyltransferase complexes, in cell cycle regulation, and loss of Ada3 results in mouse embryonic lethality. Here, we used adenovirus-Cre-mediated Ada3 deletion in Ada3fl/fl mouse embryonic fibroblasts (MEFs) to assess the role of Ada3 in DNA damage response following exposure to ionizing radiation (IR). We report that Ada3 depletion was associated with increased levels of phospho-ATM (pATM), γH2AX, phospho-53BP1 (p53BP1) and phospho-RAD51 (pRAD51) in untreated cells; however, radiation response was intact in Ada3?/? cells. Notably, Ada3?/? cells exhibited a significant delay in disappearance of DNA damage foci for several critical proteins involved in the DNA repair process. Significantly, loss of Ada3 led to enhanced chromosomal aberrations, such as chromosome breaks, fragments, deletions and translocations, which further increased upon DNA damage. Notably, the total numbers of aberrations were more clearly observed in S-phase, as compared with G? or G? phases of cell cycle with IR. Lastly, comparison of DNA damage in Ada3fl/fl and Ada3?/? cells confirmed higher residual DNA damage in Ada3?/? cells, underscoring a critical role of Ada3 in the DNA repair process. Taken together, these findings provide evidence for a novel role for Ada3 in maintenance of the DNA repair process and genomic stability.  相似文献   

15.
The potential prostate cancer susceptibility gene ELAC2 has a Caenorhabditis elegans homolog (which we call hoe-1, for homolog of ELAC2). We have explored the biological role of this gene using RNAi to reduce gene activity. We found that worms subjected to hoe-1 RNAi are slow-growing and sterile. The sterility results from a drastic reduction in germline proliferation and cell-cycle arrest of germline nuclei. We found that hoe-1 is required for hyperproliferation phenotypes seen with mutations in three different genes, suggesting hoe-1 may be generally required for germline proliferation. We also found that reduction of hoe-1 by RNAi suppresses the multivulva (Muv) phenotype resulting from activating mutations in ras and that this suppression is likely to be indirect. This is the first demonstration of a biological role for this class of proteins in a complex eukaryote and adds important information when considering the role of ELAC2 in prostate cancer.  相似文献   

16.
ABSTRACT: Caenorhabditis elegans piRNAs promote genome surveillance by triggering siRNA-mediated silencing of nonself DNA in competition with licensing programs that support endogenous gene expression.  相似文献   

17.
Cas9 is an RNA-guided double-stranded DNA nuclease that participates in clustered regularly interspaced short palindromic repeats (CRISPR)-mediated adaptive immunity in prokaryotes. CRISPR–Cas9 has recently been used to generate insertion and deletion mutations in Caenorhabditis elegans, but not to create tailored changes (knock-ins). We show that the CRISPR–CRISPR-associated (Cas) system can be adapted for efficient and precise editing of the C. elegans genome. The targeted double-strand breaks generated by CRISPR are substrates for transgene-instructed gene conversion. This allows customized changes in the C. elegans genome by homologous recombination: sequences contained in the repair template (the transgene) are copied by gene conversion into the genome. The possibility to edit the C. elegans genome at selected locations will facilitate the systematic study of gene function in this widely used model organism.  相似文献   

18.
The Drosophila element Mos1 is a class II transposon, which moves by a 'cut-and-paste' mechanism and can be experimentally mobilized in the Caenorhabditis elegans germ line. Here, we triggered the excision of identified Mos1 insertions to create chromosomal breaks at given sites and further manipulate the broken loci. Double-strand break (DSB) repair could be achieved by gene conversion using a transgene containing sequences homologous to the broken chromosomal region as a repair template. Consequently, mutations engineered in the transgene could be copied to a specific locus at high frequency. This pathway was further characterized to develop an efficient tool--called MosTIC--to manipulate the C. elegans genome. Analysis of DSB repair during MosTIC experiments demonstrated that DSBs could also be sealed by end-joining in the germ line, independently from the evolutionarily conserved Ku80 and ligase IV factors. In conjunction with a publicly available Mos1 insertion library currently being generated, MosTIC will provide a general tool to customize the C. elegans genome.  相似文献   

19.
For modern biology, precise genome annotations are of prime importance, as they allow the accurate definition of genic regions. We employ state-of-the-art machine learning methods to assay and improve the accuracy of the genome annotation of the nematode Caenorhabditis elegans. The proposed machine learning system is trained to recognize exons and introns on the unspliced mRNA, utilizing recent advances in support vector machines and label sequence learning. In 87% (coding and untranslated regions) and 95% (coding regions only) of all genes tested in several out-of-sample evaluations, our method correctly identified all exons and introns. Notably, only 37% and 50%, respectively, of the presently unconfirmed genes in the C. elegans genome annotation agree with our predictions, thus we hypothesize that a sizable fraction of those genes are not correctly annotated. A retrospective evaluation of the Wormbase WS120 annotation [] of C. elegans reveals that splice form predictions on unconfirmed genes in WS120 are inaccurate in about 18% of the considered cases, while our predictions deviate from the truth only in 10%-13%. We experimentally analyzed 20 controversial genes on which our system and the annotation disagree, confirming the superiority of our predictions. While our method correctly predicted 75% of those cases, the standard annotation was never completely correct. The accuracy of our system is further corroborated by a comparison with two other recently proposed systems that can be used for splice form prediction: SNAP and ExonHunter. We conclude that the genome annotation of C. elegans and other organisms can be greatly enhanced using modern machine learning technology.  相似文献   

20.
The UNC-112 protein is required during initial muscle assembly in C. elegans to form dense bodies and M-lines. Loss of this protein results in arrest at the twofold stage of embryogenesis. In contrast, a missense mutation in unc-112 results in viable animals that have disorganized bodywall muscle and are paralyzed as adults. Loss or reduction of dim-1 gene function can suppress the severe muscle disruption and paralysis exhibited by these mutant hermaphrodites. The overall muscle structure in hermaphrodites lacking a functional dim-1 gene is slightly disorganized, and the myofilament lattice is not as strongly anchored to the muscle cell membrane as it is in wild-type muscle. The dim-1 gene encodes two polypeptides that contain three Ig-like repeats. The short DIM-1 protein isoform consists entirely of three Ig repeats and is sufficient for wild-type bodywall muscle structure and stability. DIM-1(S) localizes to the region of the muscle cell membrane around and between the dense bodies, which are the structures that anchor the actin filaments and may play a role in stabilizing the thin rather than the thick filament components of the sarcomere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号