首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The mammalian DNA glycosylase, NEIL1, specific for repair of oxidatively damaged bases in the genome via the base excision repair pathway, is activated by reactive oxygen species and prevents toxicity due to radiation. We show here that the Werner syndrome protein (WRN), a member of the RecQ family of DNA helicases, associates with NEIL1 in the early damage-sensing step of base excision repair. WRN stimulates NEIL1 in excision of oxidative lesions from bubble DNA substrates. The binary interaction between NEIL1 and WRN (K(D) = 60 nM) involves C-terminal residues 288-349 of NEIL1 and the RecQ C-terminal (RQC) region of WRN, and is independent of the helicase activity WRN. Exposure to oxidative stress enhances the NEIL-WRN association concomitant with their strong nuclear co-localization. WRN-depleted cells accumulate some prototypical oxidized bases (e.g. 8-oxoguanine, FapyG, and FapyA) indicating a physiological function of WRN in oxidative damage repair in mammalian genomes. Interestingly, WRN deficiency does not have an additive effect on in vivo damage accumulation in NEIL1 knockdown cells suggesting that WRN participates in the same repair pathway as NEIL1.  相似文献   

2.
Humans have five RecQ helicases, whereas simpler organisms have only one. Little is known about whether and how these RecQ helicases co-operate and/or complement each other in response to cellular stress. Here we show that RECQL5 associates longer at laser-induced DNA double-strand breaks in the absence of Werner syndrome (WRN) protein, and that it interacts physically and functionally with WRN both in vivo and in vitro. RECQL5 co-operates with WRN on synthetic stalled replication fork-like structures and stimulates its helicase activity on DNA fork duplexes. Both RECQL5 and WRN re-localize from the nucleolus into the nucleus after replicative stress and significantly associate with each other during S-phase. Further, we show that RECQL5 is essential for cell survival in the absence of WRN. Loss of both RECQL5 and WRN severely compromises DNA replication, accumulates genomic instability and ultimately leads to cell death. Collectively, our results indicate that RECQL5 plays both co-operative and complementary roles with WRN. This is an early demonstration of a significant functional interplay and a novel synthetic lethal interaction among the human RecQ helicases.  相似文献   

3.
RECQ1 is the most abundant RecQ homolog in humans but its functions have remained mostly elusive. Biochemically, RECQ1 displays distinct substrate specificities from WRN and BLM, indicating that these RecQ helicases likely perform non-overlapping functions. Our earlier work demonstrated that RECQ1-deficient cells display spontaneous genomic instability. We have obtained key evidence suggesting a unique role of RECQ1 in repair of oxidative DNA damage. We show that similar to WRN, RECQ1 associates with PARP-1 in nuclear extracts and exhibits direct protein interaction in vitro. Deficiency in WRN or BLM helicases have been shown to result in reduced homologous recombination and hyperactivation of PARP under basal condition. However, RECQ1-deficiency did not lead to PARP activation in undamaged cells and nor did it result in reduction in homologous recombination repair. In stark contrast to what is seen in WRN-deficiency, RECQ1-deficient cells hyperactivate PARP in a specific response to H2O2 treatment. RECQ1-deficient cells are more sensitive to oxidative DNA damage and exposure to oxidative stress results in a rapid and reversible recruitment of RECQ1 to chromatin. Chromatin localization of RECQ1 precedes WRN helicase, which has been shown to function in oxidative DNA damage repair. However, oxidative DNA damage-induced chromatin recruitment of these RecQ helicases is independent of PARP activity. As other RecQ helicases are known to interact with PARP-1, this study provides a paradigm to delineate specialized and redundant functions of RecQ homologs in repair of oxidative DNA damage.  相似文献   

4.
Human RECQL5 is a member of the RecQ helicase family which is implicated in genome maintenance. Five human members of the family have been identified; three of them, BLM, WRN and RECQL4 are associated with elevated cancer risk. RECQL1 and RECQL5 have not been linked to any human disorder yet; cells devoid of RECQL1 and RECQL5 display increased chromosomal instability. Here, we report the physical and functional interaction of the large isomer of RECQL5, RECQL5β, with the human flap endonuclease 1, FEN1, which plays a critical role in DNA replication, recombination and repair. RECQL5β dramatically stimulates the rate of FEN1 cleavage of flap DNA substrates. Moreover, we show that RECQL5β and FEN1 interact physically and co-localize in the nucleus in response to DNA damage. Our findings, together with the previous literature on WRN, BLM and RECQL4’s stimulation of FEN1, suggests that the ability of RecQ helicases to stimulate FEN1 may be a general feature of this class of enzymes. This could indicate a common role for the RecQ helicases in the processing of oxidative DNA damage.  相似文献   

5.
6.
Analysis of helicase activity and substrate specificity of Drosophila RECQ5   总被引:2,自引:1,他引:1  
RecQ5 is one of five RecQ helicase homologs identified in humans. Three of the human RecQ homologs (BLM, WRN and RTS) have been linked to autosomal recessive human genetic disorders (Bloom syndrome, Werner syndrome and Rothmund–Thomson syndrome, respectively) that display increased genomic instability and cause elevated levels of cancers in addition to other symptoms. To understand the role of RecQ helicases in maintaining genomic stability, the WRN, BLM and Escherichia coli RecQ helicases have been characterized in terms of their DNA substrate specificity. However, little is known about other members of the RecQ family. Here we show that Drosophila RECQ5 helicase is a structure-specific DNA helicase like the other RecQ helicases biochemically characterized so far, although the substrate specificity is not identical to that of WRN and BLM helicases. Drosophila RECQ5 helicase is capable of unwinding 3′ Flap, three-way junction, fork and three-strand junction substrates at lower protein concentrations compared to 5′ Flap, 12 nt bubble and synthetic Holliday junction structures, which can be unwound efficiently by WRN and BLM.  相似文献   

7.
Bloom (BLM) and Werner (WRN) syndrome proteins are members of the RecQ family of SF2 DNA helicases. In this paper, we show that restricting the rotational DNA backbone flexibility, by introducing vinylphosphonate internucleotide linkages in the translocating DNA strand, inhibits efficient duplex unwinding by these enzymes. The human single-stranded DNA binding protein replication protein A (RPA) fully restores the unwinding activity of BLM and WRN on vinylphosphonate-containing substrates while the heterologous single-stranded DNA binding protein from Escherichia coli (SSB) restores the activity only partially. Both RPA and SSB fail to restore the unwinding activity of the SF1 PcrA helicase on modified substrates, implying specific interactions of RPA with the BLM and WRN helicases. Our data highlight subtle differences between SF1 and SF2 helicases and suggest that although RecQ helicases belong to the SF2 family, they are mechanistically more similar to the SF1 PcrA helicase than to other SF2 helicases that are not affected by vinylphosphonate modifications.  相似文献   

8.
The human DNA glycosylase NEIL1, activated during the S-phase, has been shown to excise oxidized base lesions in single-strand DNA substrates. Furthermore, our previous work demonstrating functional interaction of NEIL1 with PCNA and flap endonuclease 1 (FEN1) suggested its involvement in replication-associated repair. Here we show interaction of NEIL1 with replication protein A (RPA), the heterotrimeric single-strand DNA binding protein that is essential for replication and other DNA transactions. The NEIL1 immunocomplex isolated from human cells contains RPA, and its abundance in the complex increases after exposure to oxidative stress. NEIL1 directly interacts with the large subunit of RPA (Kd ~20 nM) via the common interacting interface (residues 312–349) in NEIL1's disordered C-terminal region. RPA inhibits the base excision activity of both wild-type NEIL1 (389 residues) and its C-terminal deletion CΔ78 mutant (lacking the interaction domain) for repairing 5-hydroxyuracil (5-OHU) in a primer-template structure mimicking the DNA replication fork. This inhibition is reduced when the damage is located near the primer-template junction. Contrarily, RPA moderately stimulates wild-type NEIL1 but not the CΔ78 mutant when 5-OHU is located within the duplex region. While NEIL1 is inhibited by both RPA and Escherichia coli single-strand DNA binding protein, only inhibition by RPA is relieved by PCNA. These results showing modulation of NEIL1's activity on single-stranded DNA substrate by RPA and PCNA support NEIL1's involvement in repairing the replicating genome.  相似文献   

9.
8-Oxo-2′-deoxyguanosine (8-oxodG) is one of the most important oxidative DNA lesions, and G-rich telomeric DNA is especially susceptible to oxidative DNA damage. RecQ helicases WRN and BLM and telomere-binding protein POT1 are thought to play roles in telomere maintenance. This study examines the ability of WRN, BLM, and RecQ5 to unwind and POT1 to bind telomeric D-loops containing 8-oxodG. The results demonstrate that WRN and BLM preferentially unwind telomeric D-loops containing 8-oxodG and that POT1 binds with higher affinity to telomeric D-loops with 8-oxodG but shows no preference for telomeric single-stranded DNA with 8-oxodG. We speculate that telomeric D-loops with 8-oxodG may have a greater tendency to form G-quadruplex DNA structures than telomeric DNA lacking 8-oxodG.  相似文献   

10.
Repair of oxidized base lesions in the human genome, initiated by DNA glycosylases, occurs via the base excision repair pathway using conserved repair and some non-repair proteins. However, the functions of the latter noncanonical proteins in base excision repair are unclear. Here we elucidated the role of heterogeneous nuclear ribonucleoprotein-U (hnRNP-U), identified in the immunoprecipitate of human NEIL1, a major DNA glycosylase responsible for oxidized base repair. hnRNP-U directly interacts with NEIL1 in vitro via the NEIL1 common interacting C-terminal domain, which is dispensable for its enzymatic activity. Their in-cell association increases after oxidative stress. hnRNP-U stimulates the NEIL1 in vitro base excision activity for 5-hydroxyuracil in duplex, bubble, forked, or single-stranded DNA substrate, primarily by enhancing product release. Using eluates from FLAG-NEIL1 immunoprecipitates from human cells, we observed 3-fold enhancement in complete repair activity after oxidant treatment. The lack of such enhancement in hnRNP-U-depleted cells suggests its involvement in repairing enhanced base damage after oxidative stress. The NEIL1 disordered C-terminal region binds to hnRNP-U at equimolar ratio with high affinity (Kd = ∼54 nm). The interacting regions in hnRNP-U, mapped to both termini, suggest their proximity in the native protein; these are also disordered, based on PONDR (Predictor of Naturally Disordered Regions) prediction and circular dichroism spectra. Finally, depletion of hnRNP-U and NEIL1 epistatically sensitized human cells at low oxidative genome damage, suggesting that the hnRNP-U protection of cells after oxidative stress is largely due to enhancement of NEIL1-mediated repair.  相似文献   

11.
Bacteria and yeast possess one RecQ helicase homolog whereas humans contain five RecQ helicases, all of which are important in preserving genome stability. Three of these, BLM, WRN and RECQL4, are mutated in human diseases manifesting in premature aging and cancer. We are interested in determining to which extent these RecQ helicases function cooperatively. Here, we report a novel physical and functional interaction between BLM and RECQL4. Both BLM and RECQL4 interact in vivo and in vitro. We have mapped the BLM interacting site to the N-terminus of RECQL4, comprising amino acids 361-478, and the region of BLM encompassing amino acids 1-902 interacts with RECQL4. RECQL4 specifically stimulates BLM helicase activity on DNA fork substrates in vitro. The in vivo interaction between RECQL4 and BLM is enhanced during the S-phase of the cell cycle, and after treatment with ionizing radiation. The retention of RECQL4 at DNA double-strand breaks is shortened in BLM-deficient cells. Further, depletion of RECQL4 in BLM-deficient cells leads to reduced proliferative capacity and an increased frequency of sister chromatid exchanges. Together, our results suggest that BLM and RECQL4 have coordinated activities that promote genome stability.  相似文献   

12.
The WRN gene defective in the premature aging disorder Werner syndrome encodes a helicase/exonuclease. We examined the ability of WRN to rescue DNA damage sensitivity of a yeast mutant defective in the Rad50 subunit of Mre11-Rad50-Xrs2 nuclease complex implicated in homologous recombination repair. Genetic studies revealed WRN operates in a yEXO1-dependent pathway to rescue rad50 sensitivity to methylmethane sulfonate (MMS). WRN helicase, but not exonuclease, is required for MMS resistance. WRN missense mutations in helicase or RecQ C-terminal domains interfered with the ability of WRN to rescue rad50 MMS sensitivity. WRN does not rescue rad50 ionizing radiation (IR) sensitivity, suggesting that WRN, in collaboration with yEXO1, is tailored to relieve replicational stress imposed by alkylated base damage. WRN and yEXO1 are associated with each other in vivo. Purified WRN stimulates hEXO1 nuclease activity on DNA substrates associated with a stalled or regressed replication fork. We propose WRN helicase operates in an EXO1-dependent pathway to help cells survive replicational stress. In contrast to WRN, BLM helicase defective in Bloom's syndrome failed to rescue rad50 MMS sensitivity, but partially restored IR resistance, suggesting a delineation of function by the human RecQ helicases.  相似文献   

13.
RECQ1 possesses DNA branch migration activity   总被引:3,自引:0,他引:3  
RecQ helicases are essential for the maintenance of genome stability. Five members of the RecQ family have been found in humans, including RECQ1, RECQ5, BLM, WRN, and RECQ4; the last three are associated with human diseases. At this time, only BLM and WRN helicases have been extensively characterized, and the information on the other RecQ helicases has only started to emerge. Our current paper is focused on the biochemical properties of human RECQ1 helicase. Recent cellular studies have shown that RECQ1 may participate in DNA repair and homologous recombination, but the exact mechanisms of how RECQ1 performs its cellular functions remain largely unknown. Whereas RECQ1 possesses poor helicase activity, we found here that the enzyme efficiently promotes DNA branch migration. Further analysis revealed that RECQ1 catalyzes unidirectional three-stranded branch migration with a 3' --> 5' polarity. We show that this RECQ1 activity is instrumental in specific disruption of joint molecules (D-loops) formed by a 5' single-stranded DNA invading strand, which may represent dead end intermediates of homologous recombination in vivo. The newly found enzymatic properties of the RECQ1 helicase may have important implications for the function of RECQ1 in maintenance of genomic stability.  相似文献   

14.
Two new human DNA helicase genes,RecQ4andRecQ5,that belong to the RecQ helicase family were cloned and characterized. The addition of these genes increases the total to five helicase genes in the human RecQ family, which includes helicases involved in Bloom and Werner syndromes, the genetic diseases manifesting the distinctive but overlapping clinical phenotypes of immunodeficiency, premature aging, and an enhanced risk of cancer. The RecQ4 helicase is as large as the Bloom (BLM) and Werner (WRN) helicases, and its gene expression profile is organ-specific, resembling that of BLM helicase. In contrast, the RecQ5 helicase has a low molecular weight, similar to the human progenitor RecQ1 helicase, and is expressed in all the organs examined. All five human helicase genes are expressed in cultured K562 leukemia and fibroblast cells. Synchronized K562 cell cultures showed that the genesRecQ4andBLM,andRecQ1andWRN,seem to be upregulated at the G1/S and G2/M phases, respectively, of the cell cycle. The biological significance of multiple species of human RecQ helicases, which are apparently nonessential for life but may be related to distinct diseases, is discussed in light of the fact that unicellular organisms, likeEscherichia coliand yeast, contain only one species of helicase of this particular family.  相似文献   

15.
Werner and Bloom syndromes are genetic RecQ helicase disorders characterized by genomic instability. Biochemical and genetic data indicate that an important protein interaction of WRN and Bloom syndrome (BLM) helicases is with the structure-specific nuclease Flap Endonuclease 1 (FEN-1), an enzyme that is implicated in the processing of DNA intermediates that arise during cellular DNA replication, repair and recombination. To acquire a better understanding of the interaction of WRN and BLM with FEN-1, we have mapped the FEN-1 binding site on the two RecQ helicases. Both WRN and BLM bind to the extreme C-terminal 18 amino acid tail of FEN-1 that is adjacent to the PCNA binding site of FEN-1. The importance of the WRN/BLM physical interaction with the FEN-1 C-terminal tail was confirmed by functional interaction studies with catalytically active purified recombinant FEN-1 deletion mutant proteins that lack either the WRN/BLM binding site or the PCNA interaction site. The distinct binding sites of WRN and PCNA and their combined effect on FEN-1 nuclease activity suggest that they may coordinately act with FEN-1. WRN was shown to facilitate FEN-1 binding to its preferred double-flap substrate through its protein interaction with the FEN-1 C-terminal binding site. WRN retained its ability to physically bind and stimulate acetylated FEN-1 cleavage activity to the same extent as unacetylated FEN-1. These studies provide new insights to the interaction of WRN and BLM helicases with FEN-1, and how these interactions might be regulated with the PCNA–FEN-1 interaction during DNA replication and repair.  相似文献   

16.
RecQ helicases are critical for maintaining genomic integrity. In this study, we show that three RecQ members (WRN, deficient in the Werner syndrome; BLM, deficient in the Bloom syndrome; and Drosophila melanogaster RecQ5b (dmRecQ5b)) possess a novel strand pairing activity. Furthermore, each of these enzymes combines this strand pairing activity with its inherent DNA unwinding capability to perform coordinated strand exchange. In this regard, WRN and BLM are considerably more efficient than dmRecQ5b, apparently because dmRecQ5b lacks conserved sequences C-terminal to the helicase domain that contribute to DNA binding, strand pairing, and strand exchange. Based on our findings, we postulate that certain RecQ helicases are structurally designed to accomplish strand exchange on complex replication and recombination intermediates. This is highly consistent with proposed roles for RecQ members in DNA metabolism and the illegitimate recombination and cancer-prone phenotypes associated with RecQ defects.  相似文献   

17.
Poly(ADP-ribose) (PAR) polymerase 1 (PARP1) catalyzes the poly(ADP-ribosyl)ation (PARylation) of proteins, a posttranslational modification which forms the nucleic acid-like polymer PAR. PARP1 and PAR are integral players in the early DNA damage response, since PARylation orchestrates the recruitment of repair proteins to sites of damage. Human RecQ helicases are DNA unwinding proteins that are critical responders to DNA damage, but how their recruitment and activities are regulated by PARPs and PAR is poorly understood. Here we report that all human RecQ helicases interact with PAR noncovalently. Furthermore, we define the effects that PARP1, PARylated PARP1, and PAR have on RECQL5 and WRN, using both in vitro and in vivo assays. We show that PARylation is involved in the recruitment of RECQL5 and WRN to laser-induced DNA damage and that RECQL5 and WRN have differential responses to PARylated PARP1 and PAR. Furthermore, we show that the loss of RECQL5 or WRN resulted in increased sensitivity to PARP inhibition. In conclusion, our results demonstrate that PARP1 and PAR actively, and in some instances differentially, regulate the activities and cellular localization of RECQL5 and WRN, suggesting that PARylation acts as a fine-tuning mechanism to coordinate their functions in time and space during the genotoxic stress response.  相似文献   

18.
Of the five human RecQ family helicases, RecQ4, BLM, and WRN suppress distinct genome instability-linked diseases with severe phenotypes, often with indeterminate etiologies. Here, we functionally define Hrq1, a novel orthologue of RecQ4 from fission yeast. Biochemical analysis of Hrq1 reveals a DEAH box- and ATP-dependent 3'-5' helicase activity on various DNA substrates, including bubbles but not blunt duplexes, characteristic of the RecQ family. Cells lacking Hrq1 suffer spontaneous genomic instability and, consequently, require homologous recombination repair and the DNA damage checkpoint for viability. Hrq1 supports the nucleotide excision repair of DNA damage caused by the chemotherapeutic agent cisplatin and, in certain genetic contexts, UV light. Genetic epistasis analyses reveal that Hrq1 acts parallel to the PCNA/Ubc13/Mms2-dependent postreplication repair (PRR) pathway. Thus, in hrq1Δ cells, lesions are channeled through the PRR pathway, yielding hyper-recombinant and mutator phenotypes; analogous defects may underlie the genetic instability and diseases associated with RecQ4 dysfunction.  相似文献   

19.
RecQ helicases maintain chromosome stability by resolving a number of highly specific DNA structures that would otherwise impede the correct transmission of genetic information. Previous studies have shown that two human RecQ helicases, BLM and WRN, have very similar substrate specificities and preferentially unwind noncanonical DNA structures, such as synthetic Holliday junctions and G-quadruplex DNA. Here, we extend this analysis of BLM to include new substrates and have compared the substrate specificity of BLM with that of another human RecQ helicase, RECQ1. Our findings show that RECQ1 has a distinct substrate specificity compared with BLM. In particular, RECQ1 cannot unwind G-quadruplexes or RNA-DNA hybrid structures, even in the presence of the single-stranded binding protein, human replication protein A, that stimulates its DNA helicase activity. Moreover, RECQ1 cannot substitute for BLM in the regression of a model replication fork and is very inefficient in displacing plasmid D-loops lacking a 3'-tail. Conversely, RECQ1, but not BLM, is able to resolve immobile Holliday junction structures lacking an homologous core, even in the absence of human replication protein A. Mutagenesis studies show that the N-terminal region (residues 1-56) of RECQ1 is necessary both for protein oligomerization and for this Holliday junction disruption activity. These results suggest that the N-terminal domain or the higher order oligomer formation promoted by the N terminus is essential for the ability of RECQ1 to disrupt Holliday junctions. Collectively, our findings highlight several differences between the substrate specificities of RECQ1 and BLM (and by inference WRN) and suggest that these enzymes play nonoverlapping functions in cells.  相似文献   

20.
Werner syndrome (WS) is a human premature aging disorder characterized by chromosomal instability. The cellular defects of WS presumably reflect compromised or aberrant function of a DNA metabolic pathway that under normal circumstances confers stability to the genome. We report a novel interaction of the WRN gene product with the human 5' flap endonuclease/5'-3' exonuclease (FEN-1), a DNA structure-specific nuclease implicated in DNA replication, recombination and repair. WS protein (WRN) dramatically stimulates the rate of FEN-1 cleavage of a 5' flap DNA substrate. The WRN-FEN-1 functional interaction is independent of WRN catalytic function and mediated by a 144 amino acid domain of WRN that shares homology with RecQ DNA helicases. A physical interaction between WRN and FEN-1 is demonstrated by their co-immunoprecipitation from HeLa cell lysate and affinity pull-down experiments using a recombinant C-terminal fragment of WRN. The underlying defect of WS is discussed in light of the evidence for the interaction between WRN and FEN-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号