首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Partially crosslinked and sulfonated poly(vinyl alcohol) (s-PVA) membranes were prepared as ion-conductive matrices of Ionic Polymer-Metal Composite (IPMC) and a new IPMC based on the s-PVA membrane was fabricated via an electroless plating procedure of platinum. PVA was reacted with sulfosuccinic acid (SSA) as a crosslinking agent with a sulfonic group and 4-(2-hydroxyethyl)piperazine-1-propanesulfonic acid (EPPS) as a side chain with a sulfonic group. The crosslinked s-PVA membranes were characterized using a FT-IR spectroscope and a scanning electron microscope-combined energy-dispersive X-ray spectrometer and were assessed in terms of water absorption, proton conductivity, and the feasibility of electroless plating, Among the prepared ionomers, the s-PVA membrane obtained at 20 wt.% SSA and 10 wt.% EPPS (S20E10 membrane) registered the highest proton conductivity of 2.9 × 10~(-2) S·m~(-1), which corresponds to one third of that of Nafion series, and only the S20E10 membrane was successfully plated via the electroless plating method without any crack and broken part. The s-PVA-based IPMC showed the one-directional displacement with 1-minute-long time-lapse comparable to typical Nafion-based IPMCs. However, the displacement under an AC potential was very limited due to its slow deformation response and the actuation performance was severely varied with actuation time including the short service life of several minutes in air. The short and variable actuation of the s-PVA-based IPMC was attributed to its large variation of surface and ionic resistances during air-operation, which is induced by the low ratio of bound to free water.  相似文献   

2.
An advanced electro-active dry adhesive,which was composed of a mushroom-shaped fibrillar dry adhesive array actuated by an Ionic Polymer Metal Composite (IPMC) artificial muscle reinforced with nitrogen-doped carbon nanocages (NCNCs),was developed to imitate the actuation of a gecko's toe.The properties of the NCNC-reinforced Nafion membrane,the electromechanical properties of the NCNC-reinforced IPMC,and the related electro-active adhesion ability were investigated.The NCNCs were uniformly dispersed in the 0.1 wt% NCNC/Nafion membrane,and there was a seamless connection with no clear interface between the dry adhesive and the IPMC.Our 0.1 wt% NCNC/Nafion-IPMC actuator shows a displacement and force that are 1.6-2 times higher than those of the recast Nafion-IPMC.This is due to the increased water uptake (25.39%) and tensile strength (24.5 MPa) of the specific 3D hollow NCNC-reinforced Nafion membrane,as well as interactions between the NCNCs and the sulfonated groups of the Nafion.The NCNC/Nafion-IPMC was used to effectively actuate the mushroom-shaped dry adhesive.The normal adhesion forces were 7.85 mN,12.1 mN,and 51.7 mN at sinusoidal voltages of 1.5 V,2.5 V,and 3.5 V,respectively,at 0.1 Hz.Under the bionic leg trail,the normal and shear forces were approximately 713.5 mN (159 mN·cm-2) and 1256.6 mN (279 mN·cm-2),respectively,which satisfy the required adhesion.This new electro-active dry adhesive can be applied for active,distributed actuation and flexible grip in robots.  相似文献   

3.
A typical ionic polymer-metal composite consists of a thin perfluorinated ionomer membrane and noble metal electrodes plated on both surfaces. It undergoes a large bending motion when an electric field is applied hence exhibits deformation by a certain amount of cation. With proper arrangement and package, a great number of "smart devices" are anticipated. In this study, a solution-cast route was used to prepare the electro-active polymer membrane and platinum electrodes were fabricated onto the membrane through electro-less plating. The ionic polymer used is the commercial Nafion, the perfluoro-sulfonated ionomer membrane, developed by DuPont Co. Nafion membrane was cast by the solution-casting route and then loaded with different weights simultaneously. The optimized processing conditions, membrane properties and electrodes behaviors were investigated. The results of shift in WAXD peaks showed that weights delineated the crystallinity of the solution-cast membranes. The number and size of the crystalline domains of solution-cast membrane decrease as studied by SAXS. The Young's modulus of solution-cast membrane decreases as increasing weight because of the loss of crystallinity (180-140 MPa). A finely dispersed platinum particle deeper and gradient penetrating within the near-boundary region with a smaller average particle size and more uniform distribution could be obtained through a reverse electro-less plating. Its surface roughness is 3 nm comparing to 52 nm of a typical process. But its surface resistance is too high (3.5 Omega) to activate the bending motion. To solve this problem, we coated the second Pt electrodes by a typical electro-less plating, and the resistance decreased to 0.7 Omega. The results depicted that the fabricated IPMC shows longer bending lifetime than typical IPMC. In a 0.09% NaCl solution, the device was able to vibrate for 8h under a 5 V, 0.1 Hz actuation.  相似文献   

4.
Ionic Polymer Metal Composite (IPMC) can be used as an electrically activated actuator,which has been widely used in artificial muscles,bionic robotic actuators,and dynamic sensors since it has the advantages of large deformation,light weight,flexibility,and low driving voltage,etc.To further improve the mechanical properties of IPMC,this paper reports a new method for preparing organic-inorganic hybrid Nafion/SiO2 membranes.Beginning from cast Nation membranes,IPMCs with various tetraethyl orthosilicate (TEOS) contents were fabricated by electroless plating.The elastic moduli of cast Nation membranes were measured with nano indenters,the water contents were calculated,and the cross sections of Nafion membranes were observed by scanning electron microscopy.The blocking force,the displacement,and the electric current of IPMCs were then measured on a test apparatus.The results show that the blocking force increases as the TEOS content gradually increases,and that both the displacement and the electric current initially decrease,then increase.When the TEOS content is 1.5%,the IPMC shows the best improved mechanical properties.Finally,the IPMC with the best improved performance was used to successfully actuate the artificial eye and tested.  相似文献   

5.
Summary Highly viable protoplasts were isolated in large numbers from in vitro-grown leaf and stem tissues of a haploid clone of the apple scion cultivar Golden Delicious (Malus Xdomestica Borkh.). Protoplasts from both sources divided rapidly to give microcallus, when cultured in a modified Kao and Michayluk-based medium. Following two successive subcultures for callusing, shoot buds were regenerated from such calli, on half-strength Murashige and Skoog medium with an increased concentration of group B vitamins and containing 5.0 mg.l-1 6-benzyl-aminopurine and 0.1 mg.l-1 l-naphthaleneacetic acid (for the leaf protoplast-derived calli) or 4-indole-3yl-butyric acid (for stem protoplast-derived calli). The mesophyll protoplast-derived shoots were enfeebled and vitrified, in time with their ultimate death. Conversely, for those shoots deriving from the stem protoplasts, in vitro propagation was successfully achieved. This is the first report on the successful isolation, culture and organogenesis from stem protoplasts of a woody plant genotype.Abbreviations BAP 6-benzylaminopurine - FPE final plating efficiency - IBA 4-indole-3yl-butyric acid - IPE initial plating efficiency - f wt fresh weight - KM Kao and Michayluk (1975) - MES 2-N-morpholino ethane sulfonic acid - MPE intermediate plating efficiency - MS Murashige and Skoog (1962) - NAA l-naphthaleneacetic acid - PVP-10 polyvinylpyrrolidone (Av MW 10,000)  相似文献   

6.
Leaf protoplasts of axenic shoot cultures of Pyrus communis L. cv. Williams' Bon Chretien (syn. Bartlett) underwent cell wall regeneration and division to give multicellular colonies in a modified Murashige and Skoog medium which lacked ammonium ions, but supplemented with 1-naphthaleneacetic acid (NAA), 4-indole-3yl-acetic acid, 6-benzylaminopurine (BAP) and casein hydrolysate. Protoplast-derived colonies gave callus on Murashige and Skoog salts medium with NAA and BAP and exhibited shoot regeneration on half-strength Murashige and Skoog medium supplemented with 0.2 mg 1–1 4-indole-3yl-butyric acid, 2.0 mg 1–1 BAP, 0.2 mg 1–1 gibberellic acid, 50 mg 1–1 casein hydrolysate and 10 mg 1–1 Ca-pantothenate. Following rooting, protoplast-derived plants of pear were transferred to the glasshouse where they completed acclimatization.Abbreviations BAP 6-benzylaminopurine - FPE final plating efficiency - GA3 gibberellic acid - IAA 4-indole-3yl-acetic acid - IBA 4-indole-3yl-but yric acid - IPE initial plating efficiency - NAA 1-naphthaleneacetic acid - f.wt. fresh weight - MES 2-N-morpholinoethane sulfonic acid - MS Murashige and Skoog (1962) - %PE % plating efficiency - PVP-10 polyvinylpyrrolidone (Av. MW 10,000) - FDA fluorescein diacetate  相似文献   

7.
Leaf protoplasts of axenic shoot cultures of Lonicera nitida cv Maigrun underwent sustained division to give multicellular colonies (microcalli) on a modified, ammonium-free MS (Murashige & Skoog) medium containing 0.5 mg l-1 NAA (1-naphthaleneacetic acid), 1.0 mg l-1 BAP (6-benzylaminopurine) and 150 mg l-1 casein enzymatic hydrolysate. Callus was produced upon transfer of cell colonies to MS medium with 2.0 mg l-1 NAA and 0.2 mg l-1 BAP. About 110 days from isolation protoplast-derived shoots were regenerated on a half-strength MS medium with 0.01 mg l-1 NAA, 5.0 mg l-1 BAP, 0.5 mg l-1 zeatin and a complex mixture of group B vitamins. The replacement of such mixture by 250 mg l-1 casein enzymatic hydrolysate promoted rhizogenesis in calli, with shoot buds being subsequently regenerated from the protoplast-derived roots. Micropropagation of protoplast-derived shoots (of either origin) was difficult, due to a strong apical dominance, but could be accomplished by transferring single-node explants to half-strength MS medium with 1.5 mg l-1 BAP. Such shoots were, in turn, successfully rooted and transferred to the glasshouse where they completed acclimatization.Abbreviations BAP 6-benzylaminopurine - CPW Power et al. (1989) medium - 2,4-D 2,4-dichlorophenoxyacetic acid - FDA fluorescein diacetate - F.P.E. final plating efficiency - f.wt. fresh weight - IAA 4-indole-3yl-acetic acid - IBA 4-indole-3yl-butyric acid - I.P.E. initial plating efficiency - MES 2-N-morpholinoethane sulfonic acid - M.P.E. intermediate plating efficiency - MS Murashige & Skoog (1962) medium - NAA 1-naphthaleneacetic acid - PVP-10 polyvinylpirrolidone - Av MW 10,000, TIBA 2,3,5-tri-iodobenzoic acid - Z zeatin  相似文献   

8.
Multiblock copoly(arylene ether sulfone)s with different block lengths and ionic contents are tailored for durable and proton‐conducting electrolyte membranes. Two series of fully aromatic copolymers are prepared by coupling reactions between non‐sulfonated hydrophobic precursor blocks and highly sulfonated hydrophilic precursor blocks containing either fully disulfonated diarylsulfone or fully tetrasulfonated tetraaryldisulfone segments. The sulfonic acid groups are exclusively introduced in ortho positions to the sulfone bridges to impede desulfonation reactions and give the blocks ion exchange capacities (IECs) of 4.1 and 4.6 meq. g?1, respectively. Solvent cast block copolymer membranes show well‐connected hydrophilic nanophase domains for proton transport and high decomposition temperatures above 310 °C under air. Despite higher IEC values, membranes containing tetrasulfonated tetraaryldisulfone segments display a markedly lower water uptake than the corresponding ones with disulfonated diarylsulfone segments when immersed in water at 100 °C, presumably because of the much higher chain stiffness and glass transition temperature of the former segments. The former membranes have proton conductivities in level of a perfluorosulfonic acid membrane (NRE212) under fully humidified conditions. A membrane with an IEC of 1.83 meq. g?1 reaches above 6 mS cm?1 under 30% relative humidity at 80 °C, to be compared with 10 mS cm?1 for NRE212 under the same conditions.  相似文献   

9.
Mayak  Shimon  Legge  Raymond L.  Thompson  John E. 《Planta》1981,153(1):49-55
Isolated membranes from the petals of senescing carnation flowers (Dianthus caryophyllus L. cv. White-Sim) catalyze the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. A microsomal membrane fraction obtained by centrifugation at 131,000 g for 1 h proved to be more active than the membrane pellet isolated by centrifugation at 10,000 g for 20 min. The ethylene-producing activity of the microsomal membranes is oxygen-dependent, heat-denaturable, sensitive to n-propyl gallate, and saturable with ACC. Corresponding cytosol fractions from the petals are incapable of converting ACC to ethylene. Moreover, the addition of soluble fraction back to the membrane fraction strongly inhibits the ACC to ethylene conversion activity of the membranes. The efficiency with which isolated membranes convert ACC to ethylene is lower than that exhibited by intact flowers based on the relative yield of membranes per flower. This may be due to the presence of the endogenous soluble inhibitor of the reaction, for residual soluble fraction inevitably remains trapped in membrane vesicles isolated from a homogenate.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AOA aminoxyacetic acid - AVG aminoethoxyvinylglycine - EPPS N-2-hydroxyethylpiperazine propane sulfonic acid  相似文献   

10.
Molecules of influenza matrix protein 2 (M2) are organized in tetramers that constitute a well-conserved virion component and also form proton channels in the plasma membrane of infected cells. In this report we demonstrate that influenza M2 protein is cytopathic in vitro for mammalian cells. An M2 point-mutant (M2pm) protein was constructed that contained amino acid changes designed to block the proton channel via introduction of large hydrophobic residues. This mutant was significantly less toxic upon transient transfection in vitro than the wild-type M2 (M2wt). To assess the possible correlation between M2 cytotoxicity and its proton channel activity, we monitored changes in mitochondria membrane potential induced by M2wt and M2pm. M2wt rapidly decreased mitochondria membrane potential reflecting the transmembrane proton gradient, while M2pm was markedly less efficient. Thus, M2 is cytotoxic for mammalian cells, likely via its proton channel activity and may therefore contribute to influenza pathogenesis through this previously unknown mechanism.  相似文献   

11.
The performance of Ionic Polymer Metal Composite (IPMC) actuator was significantly enhanced by incorporating surfactant-assisted processable Multi-Walled Carbon Nanotubes (MWCNTs) into a Nafion solution. Cationic surfactant Cetyl Trimethyl Ammonium Bromide (CTAB) was employed to disperse MWCNTs in the Nafion matrix, forming a homogeneous and stable dispersion of nanotubes. The processing did not involve any strong acid treatment and thus effectively preserved the excellent electronic properties associated with MWCNT. The as-obtained MWCNT/Nafion-IPMC actuator was tested in terms of conductivity, bulk and surface morphology, blocking force and electric current. It was shown that the blocking force and the current of the new IPMC are 2.4 times and 1.67 times higher compared with a pure Nafion-based IPMC. Moreover, the MWCNT/IPMC performance is much better than previously reported Nafion-IPMC doped by acid-treated MWCNT. Such significantly improved performance should be attributed to the improvement of electrical property associated with the addition of MWCNTs without acid treatment.  相似文献   

12.
Chanson A  Taiz L 《Plant physiology》1985,78(2):232-240
Corn (Zea mays L. cv Trojan T929) coleoptile membranes were fractionated on sucrose density gradients, and ATP-dependent proton pumping activity was localized by the techniques of [14C]methylamine uptake and quinacrine fluorescence quenching. Two peaks of proton pumping activity were detected: a light peak (1.07 grams/cubic centimeter) corresponding to the previously characterized tonoplast-type H+-ATPase, and a second peak (1.13 grams/cubic centimeter) which coincided with the Golgi markers, latent UDPase, and glucan synthase I. The second peak was lighter than that of the plasma membrane marker, uridine diphosphoglucose-sterol glucosyltransferase (1.16 grams/cubic centimeter) and was not inhibited by vanadate, an inhibitor of the plasma membrane ATPase. The activity was also better correlated with the Golgi cisternae marker, glucan synthase I, than with latent UDPase, a secretory vesicle marker, but a secretory vesicle location cannot be ruled out. The tonoplast-type and Golgi proton pumps were similar in several respects, including a pH optimum at 7.2, stimulation by chloride, inhibition by diethylstilbestrol and N,N′-dicyclohexylcarbodiimide (DCCD), insensitivity to oligomycin and azide, and nucleotide specificity for Mg2+-ATP. However, the Golgi H+ pump was much less sensitive to nitrate and iodide, and more sensitive to the anion channel blockers, 4-acetamido-4′-isothiocyano-2,2′-stilbene sulfonic acid (SITS) and 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid (DIDS) than the tonoplast-type H+-pump. The Golgi pump, but not the tonoplast-type pump, was stimulated by valinomycin in the presence of KCl. It is concluded that the Golgi of corn coleoptiles contains a KCl-stimulated H+-ATPase which can acidify the interior of Golgi cisternae and associated vesicles.  相似文献   

13.
Ionic Polymer-Metal Composite (IPMC) can work as an actuator by applying a few voltages.A thick IPMC actuator,whereNafion-117 membrane was synthesized with polypyrrole/alumina composite filler,was analyzed to verify the equivalent beamand equivalent bimorph beam models.The blocking force and tip displacement of the IPMC actuator were measured with a DCpower supply and Young’s modulus of the IPMC strip was measured by bending and tensile tests respectively.The calculatedmaximum tip displacement and the Young’s modulus by the equivalent beam model were almost identical to the correspondingmeasured data.Finite element analysis with thermal analogy technique was utilized in the equivalent bimorph beam model tonumerically reproduce the force-displacement relationship of the IPMC actuator.The results by the equivalent bimorph beammodel agreed well with the force-displacement relationship acquired by the measured data.It is confirmed that the equivalentbeam and equivalent bimorph beam models are practically and effectively suitable for predicting the tip displacement,blockingforce and Young’s modulus of IPMC actuators with different thickness and different composite of ionic polymer membrane.  相似文献   

14.
The effects of indole-3-acetic acid (IAA), abscisic acid (ABA), gibberellic acid (GA3) and kinetin on the hydrolytic activity of proton pumps (adenosine triphosphatase, H+-ATPase, pyrophosphatase, H+-PPase) of tonoplasts isolated from stored red beet (Beta vulgaris L. cv. Bordo) roots were studied. Results suggest that the phytohormones can regulate the hydrolytic activities of H+-ATPase and H+-PPase of the vacuolar membrane. Each of the proton pumps of the tonoplast has its own regulators in spite of similar localization and functions. IAA and kinetin seem to be regulators of the hydrolytic activity for H+-PPase whereas for H+-ATPase it may be GA3. Stimulation of enzyme activity by all hormones occurred at concentrations of 10–6 to 10–7 M.Abbreviations IAA indole-3-acetic acid - ABA abscisic acid - GA3 gibberellic acid - H+-ATPase adenosine triphosphatase - H+-PPase pyrophosphatase - ATP adenosine triphosphate - Tris Tris (hydroxymethyl)-aminomethane - MES (2[N-Morpholino]) ethane sulfonic acid - EDTA ethylene diamine tetraacetic acid - Pi inorganic phosphate  相似文献   

15.
Apart from the symptoms of poisoning which the fluorinated arylalkylsulphonamides share with the classical protonphore and uncoupler of oxidative phosphorylation, carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP), the direct correlation between the lipophilic weak acid properties of these chemicals and their biological activity suggests that permeation of the inner mitochondrial membrane could be the initial step in the molecular mechanism of their biological activity. Mitochondria isolated from the livers of rats intraperitoneally exposed to varying doses (0–80 mg/kg body wt.) of perfluidone (1,1,1-trifluoro-N-(2 methyl-4-(phenylsulphonyl)phenyl methanesulphonamide), a fluorinated arylalkylsulphonamide pesticide, exhibit the following dose-dependent features: (i) increased state-4 respiration: stimulation being maximal (≥400%) at 80 mg perfluidone per kg body wt.), (ii) release of respiratory control by ADP: least respiratory control ratios (RCRs) (≤1.2) were obtained at 80 mg perfluidone per kg body wt., (iii) reduced ADP/O ratios, (iv) increased mitochondrial passive swelling, (vi) reduced rates of mitochondrial proton ejection during succinate oxidation, (vi) reduced rates of respiration-dependent Ca2+ accumulation and (vii) an enhanced oligomycin-sensitive ATPase action. These features which are qualitatively identical to those of the classical protonophore FCCP, suggest that permeation of the inner mitochondrial membrane by perfluidone is accompanied by a movement of protons into the matrix such that the proton motive force required for ATP synthesis and ion transport becomes small or not formed at all.  相似文献   

16.
A series of polymer electrolytes composed of corn starch (CS), lithium bis(trifluoromethanesulfonyl)imide (LITFSI) and deep eutectic solvent (DES) were fabricated by solution casting technique. The DES was synthesized from a mixture of choline chloride and urea at a molar ratio of 1:2. The addition of DES is crucial in enhancing the room temperature ionic conductivity by increasing the amorphous elastomeric phase in CS:LITFSI matrix. The ionic transport mechanism is improved and appreciable amount of ion conducting polymer electrolytes is produced. The highest ionic conductivity achieved for the polymer electrolyte composition CS:LiTFSI:DES (14 wt.%:6 wt.%:80 wt.%) is 1.04 × 10−3 S cm−1. The anomalies that were observed with the addition of DES upon formation of neutral ion multiples were visually revealed by the SEM micrographs. The possible dipole-dipole interaction between the constituents was visualized by the FTIR spectroscopy upon change in cage peaks.  相似文献   

17.
Hydrocarbon ionomers bear the potential to significantly lower the material cost and increase the efficiency of proton‐exchange membrane water electrolyzers (PEMWE). However, no fully hydrocarbon membrane electrode assembly (MEA) with a performance comparable to Nafion‐MEAs has been reported. PEMWE‐MEAs are presented comprising sPPS as membrane and electrode binder reaching 3.5 A cm?2 at 1.8 V and thus clearly outperforming state‐of‐the‐art Nafion‐MEAs (N115 as membrane, 1.5 A cm?2 at 1.8 V) due to a significantly lower high frequency resistance (57 ± 4 mΩ cm² vs 161 ± 7 mΩ cm²). Additionally, pure sPPS‐membranes show a three times lower gas crossover (<0.3 mA cm?2) than Nafion N115‐membranes (>1.1 mA cm?2) in a fully humidified surrogate test. Furthermore, more than 80 h of continuous operation is shown for sPPS‐MEAs in a preliminary durability test (constant current hold at 1 A cm?2 at 80 °C). These results rely on the unique transport properties of sulfonated poly(phenylene sulfone) (sPPS) that combines high proton conductivity with low gas crossover.  相似文献   

18.
Succinic semialdehyde dehydrogenases (SSADHs) are ubiquitous enzymes that catalyze the NAD(P)+-coupled oxidation of succinic semialdehyde (SSA) to succinate, the last step of the γ-aminobutyrate shunt. Mycobacterium tuberculosis encodes two paralogous SSADHs (gabD1 and gabD2). Here, we describe the first mechanistic characterization of GabD1, using steady-state kinetics, pH-rate profiles, 1H NMR, and kinetic isotope effects. Our results confirmed SSA and NADP+ as substrates and demonstrated that a divalent metal, such as Mg2+, linearizes the time course. pH-rate studies failed to identify any ionizable groups with pKa between 5.5 and 10 involved in substrate binding or rate-limiting chemistry. Primary deuterium, solvent and multiple kinetic isotope effects revealed that nucleophilic addition to SSA is very fast, followed by a modestly rate-limiting hydride transfer and fast thioester hydrolysis. Proton inventory studies revealed that a single proton is associated with the solvent-sensitive rate-limiting step. Together, these results suggest that product dissociation and/or conformational changes linked to it are rate-limiting. Using structural information for the human homolog enzyme and 1H NMR, we further established that nucleophilic attack takes place at the Si face of SSA, generating a thiohemiacetal with S stereochemistry. Deuteride transfer to the Pro-R position in NADP+ generates the thioester intermediate and [4A-2H, 4B-1H] NADPH. A chemical mechanism based on these data and the structural information available is proposed.  相似文献   

19.
Low electron/proton conductivities of electrochemical catalysts, especially earth‐abundant nonprecious metal catalysts, severely limit their ability to satisfy the triple‐phase boundary (TPB) theory, resulting in extremely low catalyst utilization and insufficient efficiency in energy devices. Here, an innovative electrode design strategy is proposed to build electron/proton transport nanohighways to ensure that the whole electrode meets the TPB, therefore significantly promoting enhance oxygen evolution reactions and catalyst utilizations. It is discovered that easily accessible/tunable mesoporous Au nanolayers (AuNLs) not only increase the electrode conductivity by more than 4000 times but also enable the proton transport through straight mesopores within the Debye length. The catalyst layer design with AuNLs and ultralow catalyst loading (≈0.1 mg cm?2) augments reaction sites from 1D to 2D, resulting in an 18‐fold improvement in mass activities. Furthermore, using microscale visualization and unique coplanar‐electrode electrolyzers, the relationship between the conductivity and the reaction site is revealed, allowing for the discovery of the conductivity‐determining and Debye‐length‐determining regions for water splitting. These findings and strategies provide a novel electrode design (catalyst layer + functional sublayer + ion exchange membrane) with a sufficient electron/proton transport path for high‐efficiency electrochemical energy conversion devices.  相似文献   

20.
The work described in this paper is a novel design of a robotic Venus flytrap (VFT) (Dionaea muscipula Ellis) by means of ionic polymeric metal composite (IPMC) artificial muscles as distributed nanosensors and nanoactuators. Rapid muscular movements in carnivorous plants, such as VFT, which are triggered by antenna-like sensors (trigger hair), present a golden key to study distributed biomolecular motors. Carnivorous plants, such as VFT, possess built-in intelligence (trigger hairs), as a strategy to capture prey, that can be turned on in a controlled manner. In the case of the VFT, the prey that is lured by the sweet nectar in the VFT pair of jaw-like lobes has to flip and move the trigger hairs, which are colorless, bristle-like and pointed. The dynamically moved trigger hairs then electro-elastically send an electric signal to the internal ions in the lobe to migrate outwardly for the jaw-like lobes to close rapidly to capture the prey. The manner in which the VFT lobes bend inward to capture the prey shows a remarkable similarity with typical IPMCs bending in an electric field. Furthermore, the mechano-electrical sensing characteristics of IPMCs also show a remarkable resemblance to mechano-electrical trigger hairs on the lobes of the VFT. The reader is referred to a number of papers in connection with sensing and actuation of IPMCs in particular. Thus, one can integrate IPMC lobes with a common electrode in the middle of one end of the lobes to act like a spine and use IPMC bristles as trigger finger to sense the intrusion of a fly or insect to send a sensing signal to a solid state relay which then triggers the actuation circuit of the IPMC lobes to rapidly bend toward each other and close. The two lobes, which form the trap, are attached to the midrib common electrode which is conveniently termed the spine. The upper surface of each lobe is dished, and spaced along the free margins of the lobes with some 15-20 prong-like teeth. These are tough and pointed, and are inclined at an inward angle so that when the trap is sprung shut they will interlock. We have been experimenting with the VFT closing of its jaw-like lobes that close in about 0.3 s and have gained a lot of knowledge to report on the ionic and electrical mechanisms involved in the operation of such intelligent distributed biomolecular motors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号