首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mitochondrial genome is highly susceptible to damage by reactive oxygen species (ROS) generated endogenously as a byproduct of respiration. ROS-induced DNA lesions, including oxidized bases, abasic (AP) sites, and oxidized AP sites, cause DNA strand breaks and are repaired via the base excision repair (BER) pathway in both the nucleus and mitochondria. Repair of damaged bases and AP sites involving 1-nucleotide incorporation, named single nucleotide (SN)-BER, was observed with mitochondrial and nuclear extracts. During SN-BER, the 5'-phosphodeoxyribose (dRP) moiety, generated by AP-endonuclease (APE1), is removed by the lyase activity of DNA polymerase gamma (pol gamma) and polymerase beta in the mitochondria and nucleus, respectively. However, the repair of oxidized deoxyribose fragments at the 5' terminus after strand break would require 5'-exo/endonuclease activity that is provided by the flap endonuclease (FEN-1) in the nucleus, resulting in multinucleotide repair patch (long patch (LP)-BER). Here we show the presence of a 5'-exo/endonuclease in the mitochondrial extracts of mouse and human cells that is involved in the repair of a lyase-resistant AP site analog via multinucleotide incorporation, upstream and downstream to the lesion site. We conclude that LP-BER also occurs in the mitochondria requiring the 5'-exo/endonuclease and pol gamma with 3'-exonuclease activity. Although a FEN-1 antibody cross-reacting species was detected in the mitochondria, it was absent in the LP-BER-proficient APE1 immunocomplex isolated from the mitochondrial extract that contains APE1, pol gamma, and DNA ligase 3. The LP-BER activity was marginally affected in FEN-1-depleted mitochondrial extracts, further supporting the involvement of an unidentified 5'-exo/endonuclease in mitochondrial LP-BER.  相似文献   

2.
Mitochondria are highly specialised organelles required for key cellular processes including ATP production through cellular respiration and controlling cell death via apoptosis. Unlike other organelles, mitochondria contain their own DNA genome which encodes both protein and RNA required for cellular respiration. Each cell may contain hundreds to thousands of copies of the mitochondrial genome, which is essential for normal cellular function – deviation of mitochondrial DNA (mtDNA) copy number is associated with cellular ageing and disease. Furthermore, mtDNA lesions can arise from both endogenous or exogenous sources and must either be tolerated or corrected to preserve mitochondrial function. Importantly, replication of damaged mtDNA can lead to stalling and introduction of mutations or genetic loss, mitochondria have adapted mechanisms to repair damaged DNA. These mechanisms rely on nuclear-encoded DNA repair proteins that are translocated into the mitochondria.Despite the presence of many known nuclear DNA repair proteins being found in the mitochondrial proteome, it remains to be established which DNA repair mechanisms are functional in mammalian mitochondria. Here, we summarise the existing and emerging research, alongside examining proteomic evidence, demonstrating that mtDNA damage can be repaired using Base Excision Repair (BER), Homologous Recombination (HR) and Microhomology-mediated End Joining (MMEJ). Critically, these repair mechanisms do not operate in isolation and evidence for interplay between pathways and repair associated with replication is discussed. Importantly, characterising non-canonical functions of key proteins and understanding the bespoke pathways used to tolerate, repair or bypass DNA damage will be fundamental in fully understanding the causes of mitochondrial genome mutations and mitochondrial dysfunction.  相似文献   

3.
4.
The mitochondrial genome is a matrilineally inherited DNA that encodes numerous essential subunits of the respiratory chain in all metazoans. As such mitochondrial DNA (mtDNA) sequence integrity is vital to organismal survival, but it has a limited cadre of DNA repair activities, primarily base excision repair (BER). We have known that the mtDNA is significantly oxidized by both endogenous and exogenous sources, but this does not lead to the expected preferential formation of transversion mutations, which suggest a robust base excision repair (BER) system. This year, two different groups reported compelling evidence that what was believed to be exclusively nuclear DNA repair polymerase, POLB, is located in the mitochondria and plays a significant role in mitochondrial BER, mtDNA integrity and mitochondrial function. In this commentary, we review the findings and highlight remaining questions for the field.  相似文献   

5.
Mitochondrial DNA encodes a set of 13 polypeptides and is subjected to constant oxidative stress due to ROS production within the organelle. It has been shown that DNA repair in the mitochondrion proceeds through both short- and long-patch base excision repair (BER). In the present article, we have used the natural competence of mammalian mitochondria to import DNA and study the sub-mitochondrial localization of the repair system in organello. Results demonstrate that sequences corresponding to the mtDNA non-coding region interact with the inner membrane in a rapid and saturable fashion. We show that uracil containing import substrates are taken into the mitochondrion and are used as templates for damage driven DNA synthesis. After further sub-fractionation, we show that the length of the repair synthesis patch differs in the soluble and the particulate fraction. Bona fide long patch BER synthesis occurs on the DNA associated with the particulate fraction, whereas a nick driven DNA synthesis occurs when the uracil containing DNA accesses the soluble fraction. Our results suggest that coordinate interactions of the different partners needed for BER is only found at sites where the DNA is associated with the membrane.  相似文献   

6.
7.
8.
The major DNA repair pathway for coping with spontaneous forms of DNA damage, such as natural hydrolytic products or oxidative lesions, is base excision repair (BER). In particular, BER processes mutagenic and cytotoxic DNA lesions such as non-bulky base modifications, abasic sites, and a range of chemically distinct single-strand breaks. Defects in BER have been linked to cancer predisposition, neurodegenerative disorders, and immunodeficiency. Recent data indicate a large degree of sequence variability in DNA repair genes and several studies have associated BER gene polymorphisms with disease risk, including cancer of several sites. The intent of this review is to describe the range of BER capacity among individuals and the functional consequences of BER genetic variants. We also discuss studies that associate BER deficiency with disease risk and the current state of BER capacity measurement assays.  相似文献   

9.
10.
A role for p53 in base excision repair   总被引:22,自引:0,他引:22  
Wild-type p53 protein can markedly stimulate base excision repair (BER) in vitro, either reconstituted with purified components or in extracts of cells. In contrast, p53 with missense mutations either at hot-spots in the core domain or within the N-terminal transactivation domain is defective in this function. Stimulation of BER by p53 is correlated with its ability to interact directly both with the AP endonuclease (APE) and with DNA polymerase beta (pol beta). Furthermore, p53 stabilizes the interaction between DNA pol beta and abasic DNA. Evidence that this function of p53 is physiologically relevant is supported by the facts that BER activity in human and murine cell extracts closely parallels their levels of endogenous p53, and that BER activity is much reduced in cell extracts immunodepleted of p53. These data suggest a novel role for p53 in DNA repair, which could contribute to its function as a key tumor suppressor.  相似文献   

11.
Liu X  Liu J 《DNA Repair》2005,4(11):1295-1305
Repair of damaged DNA is of great importance in maintaining genome integrity, and there are several pathways for repair of damaged DNA in almost all organisms. Base excision repair (BER) is a main process for repairing DNA carrying slightly damaged bases. Several proteins are required for BER; these include DNA glycosylases, AP endonuclease, DNA polymerase, and DNA ligase. In some bacteria the single-stranded specific exonuclease, RecJ, is also involved in BER. In this research, six Chlamydiophila pneumoniae (C. pneumoniae) genes, encoding uracil DNA glycosylase (CpUDG), endonuclease IV (CpEndoIV), DNA polymerase I (CpDNApolI), endonuclease III (CpEndoIII), single-stranded specific exonuclease RecJ (CpRecJ), and DNA ligase (CpDNALig), were inserted into the expression vector pET28a. All proteins, except for CpDNALig, were successfully expressed in E. coli, and purified proteins were characterized in vitro. C. pneumoniae BER was reconstituted in vitro with CpUDG, CpEndoIV, CpDNApolI and E. coli DNA ligase (EcDNALig). After uracil removal by CpUDG, the AP site could be repaired by two BER pathways that involved in the replacement of either one (short patch BER) or multiple nucleotides (long patch BER) at the lesion site. CpEndoIII promoted short patch BER via its 5'-deoxyribophosphodiesterase (5'-dRPase) activity, while CpRecJ had little effect on short patch BER. The flap structure generated during DNA extension could be removed by the 5'-exonuclease activity of CpDNApolI. Based on these observations, we propose a probable mechanism for BER in C. pneumoniae.  相似文献   

12.
Mammalian mitochondria contain several 16.5 kb circular DNAs (mtDNA) encoding electron transport chain proteins. Reactive oxygen species formed as byproducts from oxidative phosphorylation in these organelles can cause oxidative deamination of cytosine and lead to uracil in mtDNA. Upon mtDNA replication, these lesions, if unrepaired, can lead to mutations. Until recently, it was thought that there was no DNA repair in mitochondria, but lately there is evidence that some lesions are efficiently repaired in these organelles. In the study of nuclear DNA repair, the in vitro repair measurements in cell extracts have provided major insights into the mechanisms. The use of whole-cell extract based DNA repair methods has revealed that mammalian nuclear base excision repair (BER) diverges into two pathways: the single-nucleotide replacement and long patch repair mechanisms. Similar in vitro methods have not been available for the study of mitochondrial BER. We have established an in vitro DNA repair system supported by rat liver mitochondrial protein extract and DNA substrates containing a single uracil opposite to a guanine. Using this approach, we examined the repair pathways and the identity of the DNA polymerase involved in mitochondrial BER (mtBER). Employing restriction analysis of in vitro repaired DNA to map the repair patch size, we demonstrate that only one nucleotide is incorporated during the repair process. Thus, in contrast to BER in the nucleus, mtBER of uracil in DNA is solely accomplished by single-nucleotide replacement.  相似文献   

13.
Neurodegeneration can occur as a result of endogenous oxidative stress. Primary cerebellar granule cells were used in this study to determine if mitochondrial DNA (mtDNA) repair deficiencies correlate with oxidative stress-induced apoptosis in neuronal cells. Granule cells exhibited a significantly higher intracellular oxidative state compared with primary astrocytes as well as increases in reductants, such as glutathione, and redox sensitive signaling molecules, such as AP endonuclease/redox effector factor-1. Cerebellar granule cultures also exhibited an increased susceptibility to exogenous oxidative stress. Menadione (50 μM) produced twice as many lesions in granule cell mtDNA compared with astrocytes, and granule cell mtDNA repair was significantly less efficient. A decreased capacity to repair oxidative mtDNA damage correlates strongly with mitochondrial initiated apoptosis in these neuronal cultures. Interestingly, the mitochondrial activities of initiators for base excision repair (BER), the bifunctional glycosylase/AP lyases as well as AP endonuclease, were significantly higher in cerebellar granule cells compared with astrocytes. The increased mitochondrial AP endonuclease activity in combination with decreased polymerase γ activity may cause an imbalance in oxidative BER leading to an increased production and persistence of mtDNA damage in neurons when treated with menadione. This study provides evidence linking neuronal mtDNA repair capacity with oxidative stress-related neurodegeneration.  相似文献   

14.
Mitochondrial DNA (mtDNA) contains high levels of oxidative damage relative to nuclear DNA. A full, functional DNA base excision repair (BER) pathway is present in mitochondria, to repair oxidative DNA lesions. However, little is known about the organization of this pathway within mitochondria. Here, we provide evidence that the mitochondrial BER proteins are not freely soluble, but strongly associated with an inner membrane-containing particulate fraction. Uracil DNA glycosylase, oxoguanine DNA glycosylase and DNA polymerase γ activities all co-sedimented with this particulate fraction and were not dissociated from it by detergent (0.1% or 1.0% NP40) treatment. The particulate associations of these activities were not due to their binding mtDNA, which is itself associated with the inner membrane, as they also localized to the particulate fraction of mitochondria from 143B (TK) ρ0 cells, which lack mtDNA. However, all of the BER activities were at least partially solubilized from the particulate fraction by treatment with 150–300 mM NaCl, suggesting that electrostatic interactions are involved in the association. The biological implications of the apparent immobilization of BER proteins are discussed.  相似文献   

15.
16.
17.
Mitochondrial DNA (mtDNA) contains higher steady-state levels of oxidative damage and mutates at rates significantly greater than nuclear DNA. Oxidative lesions in mtDNA are removed by a base excision repair (BER) pathway. All mtDNA repair proteins are nuclear encoded and imported. Most mtDNA repair proteins so far discovered are either identical to nuclear DNA repair proteins or isoforms of nuclear proteins arising from differential splicing. Regulation of mitochondrial BER is therefore not expected to be independent of nuclear BER, though the extent to which mitochondrial BER is regulated with respect to mtDNA amount or damage is largely unknown. Here we have measured DNA BER activities in lysates of mitochondria isolated from human 143B TK osteosarcoma cells that had been depleted of mtDNA (ρ0) or not (wt). Despite the total absence of mtDNA in the ρ0 cells, a complete mitochondrial BER pathway was present, as demonstrated using an in vitro assay with synthetic oligonucleotides. Measurement of individual BER protein activities in mitochondrial lysates indicated that some BER activities are insensitive to the lack of mtDNA. Uracil and 8-oxoguanine DNA glycosylase activities were relatively insensitive to the absence of mtDNA, only about 25% reduced in ρ0 relative to wt cells. Apurinic/apyrimidinic (AP) endonuclease and polymerase γ activities were more affected, 65 and 45% lower, respectively, in ρ0 mitochondria. Overall BER activity in lysates was also about 65% reduced in ρ0 mitochondria. To identify the limiting deficiencies in BER of ρ0 mitochondria we supplemented the BER assay of mitochondrial lysates with pure uracil DNA glycosylase, AP endonuclease and/or the catalytic subunit of polymerase γ. BER activity was stimulated by addition of uracil DNA glycosylase and polymerase γ. However, no addition or combination of additions stimulated BER activity to wt levels. This suggests that an unknown activity, factor or interaction important in BER is deficient in ρ0 mitochondria. While nuclear BER protein levels and activities were generally not altered in ρ0 cells, AP endonuclease activity was substantially reduced in nuclear and in whole cell extracts. This appeared to be due to reduced endogenous reactive oxygen species (ROS) production in ρ0 cells, and not a general dysfunction of ρ0 cells, as exposure of cells to ROS rapidly stimulated increases in AP endonuclease activities and APE1 protein levels.  相似文献   

18.
Sobol RW 《Molecular cell》2008,29(4):413-415
In this issue of Molecular Cell, Parsons et al. (2008) report that the E3 ubiquitin ligase CHIP regulates the stability of the base excision repair (BER) proteins XRCC1 and DNA Pol beta, adding a new level of regulation for BER.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号