首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eukaryotic DNA polymerase mu of the PolX family can promote the association of the two 3′‐protruding ends of a DNA double‐strand break (DSB) being repaired (DNA synapsis) even in the absence of the core non‐homologous end‐joining (NHEJ) machinery. Here, we show that terminal deoxynucleotidyltransferase (TdT), a closely related PolX involved in V(D)J recombination, has the same property. We solved its crystal structure with an annealed DNA synapsis containing one micro‐homology (MH) base pair and one nascent base pair. This structure reveals how the N‐terminal domain and Loop 1 of Tdt cooperate for bridging the two DNA ends, providing a templating base in trans and limiting the MH search region to only two base pairs. A network of ordered water molecules is proposed to assist the incorporation of any nucleotide independently of the in trans templating base. These data are consistent with a recent model that explains the statistics of sequences synthesized in vivo by Tdt based solely on this dinucleotide step. Site‐directed mutagenesis and functional tests suggest that this structural model is also valid for Pol mu during NHEJ.  相似文献   

2.
Liaw H  Lee D  Myung K 《PloS one》2011,6(6):e21424
Hyperphosphorylation of RPA2 at serine 4 and serine 8 (S4, S8) has been used as a marker for activation of the DNA damage response. What types of DNA lesions cause RPA2 hyperphosphorylation, which kinase(s) are responsible for them, and what is the biological outcome of these phosphorylations, however, have not been fully investigated. In this study we demonstrate that RPA2 hyperphosphorylation occurs primarily in response to genotoxic stresses that cause high levels of DNA double-strand breaks (DSBs) and that the DNA-dependent protein kinase complex (DNA-PK) is responsible for the modifications in vivo. Alteration of S4, S8 of RPA2 to alanines, which prevent phosphorylations at these sites, caused increased mitotic entry with concomitant increases in RAD51 foci and homologous recombination. Taken together, our results demonstrate that RPA2 hyperphosphorylation by DNA-PK in response to DSBs blocks unscheduled homologous recombination and delays mitotic entry. This pathway thus permits cells to repair DNA damage properly and increase cell viability.  相似文献   

3.
One of the quantitative methods used in DNA repair research is a measurement of the size-distribution of DNA fragments at different times following cell irradiation. The aim of the present study was to evaluate the relationship between the experimentally observed size-distributions of DNA fragments and the parameters of doublestrand break (DSB) repair. A biophysical model of DNA DSB repair in chromosomal DNA including DSB clusters repair was proposed. Complex shapes of (1) DNA fragments distribution at different repair times, (2) rejoining kinetics for DNA fragments in different length intervals, (3) total fragments rejoining kinetics were simultaneously described with rates of DSB repair different for active/inactive chromatin compartments.  相似文献   

4.
We analyzed the phenotype of cells derived from SCID patients with different mutations in the Artemis gene. Using clonogenic survival assay an increased sensitivity was found to X-rays (2-3-fold) and bleomycin (2-fold), as well as to etoposide, camptothecin and methylmethane sulphonate (up to 1.5-fold). In contrast, we did not find increased sensitivity to cross-linking agents mitomycin C and cis-platinum. The kinetics of DSB repair assessed by pulsed-field gel electrophoresis and gammaH2AX foci formation after ionizing irradiation, indicate that 15-20% of DSB are not repaired in Artemis-deficient cells. In order to get a better understanding of the repair defect in Artemis-deficient cells, we studied chromosomal damage at different stages of the cell cycle. In contrast to AT cells, Artemis-deficient cells appear to have a normal G(1)/S-block that resulted in a similar frequency of dicentrics and translocations, however, frequency of acentrics fragments was found to be 2-4-fold higher compared to normal fibroblasts. Irradiation in G(2) resulted in a higher frequency of chromatid-type aberrations (1.5-3-fold) than in normal cells, indicating that a fraction of DSB requires Artemis for proper repair. Our data are consistent with a function of Artemis protein in processing of a subset of complex DSB, without G(1) cell cycle checkpoint defects. This type of DSB can be induced in high proportion and persist through S-phase and in part might be responsible for the formation of chromatid-type exchanges in G(1)-irradiated Artemis-deficient cells. Among different human radiosensitive fibroblasts studied for endogenous (in untreated samples) as well as X-ray-induced DNA damage, the ranking order on the basis of higher incidence of spontaneously occurring chromosomal alterations and induced ones was: ligase 4> or =AT>Artemis. This observation implicates that in human fibroblasts following exposure to ionizing radiation a lower risk might be created when cells are devoid of endogenous damage.  相似文献   

5.
Nonhomologous end-joining (NHEJ) and homologous recombination (HR) are two major pathways for repairing DNA double-strand breaks (DSBs); however, their respective roles in human somatic cells remain to be elucidated. Here we show using a series of human gene-knockout cell lines that NHEJ repairs nearly all of the topoisomerase II- and low-dose radiation-induced DNA damage, while it negatively affects survival of cells harbouring replication-associated DSBs. Intriguingly, we find that loss of DNA ligase IV, a critical NHEJ ligase, and Artemis, an NHEJ factor with endonuclease activity, independently contribute to increased resistance to replication-associated DSBs. We also show that loss of Artemis alleviates hypersensitivity of DNA ligase IV-null cells to low-dose radiation- and topoisomerase II-induced DSBs. Finally, we demonstrate that Artemis-null human cells display increased gene-targeting efficiencies, particularly in the absence of DNA ligase IV. Collectively, these data suggest that DNA ligase IV and Artemis act cooperatively to promote NHEJ, thereby suppressing HR. Our results point to the possibility that HR can only operate on accidental DSBs when NHEJ is missing or abortive, and Artemis may be involved in pathway switching from incomplete NHEJ to HR.  相似文献   

6.
Proteins with RNA-binding activity are increasingly being implicated in DNA damage responses (DDR). Additionally, DNA:RNA-hybrids are rapidly generated around DNA double-strand breaks (DSBs), and are essential for effective repair. Here, using a meta-analysis of proteomic data, we identify novel DNA repair proteins and characterise a novel role for DDX17 in DNA repair. We found DDX17 to be required for both cell survival and DNA repair in response to numerous agents that induce DSBs. Analysis of DSB repair factor recruitment to damage sites suggested a role for DDX17 early in the DSB ubiquitin cascade. Genome-wide mapping of R-loops revealed that while DDX17 promotes the formation of DNA:RNA-hybrids around DSB sites, this role is specific to loci that have low levels of pre-existing hybrids. We propose that DDX17 facilitates DSB repair at loci that are inefficient at forming DNA:RNA-hybrids by catalysing the formation of DSB-induced hybrids, thereby allowing propagation of the damage response.  相似文献   

7.
We find that nuclear protein extracts from mammalian cells contain an activity that allows DNA ends to associate with circular pUC18 plasmid DNA. This activity requires the catalytic subunit of DNA-PK (DNA-PKcs) and Ku since it was not observed in mutants lacking Ku or DNA-PKcs but was observed when purified Ku/DNA-PKcs was added to these mutant extracts. Purified Ku/DNA-PKcs alone did not produce association of DNA ends with plasmid DNA suggesting that additional factors in the nuclear extract are necessary for this activity. Competition experiments between pUC18 and pUC18 plasmids containing various nuclear matrix attachment region (MAR) sequences suggest that DNA ends preferentially associate with plasmids containing MAR DNA sequences. At a 1:5 mass ratio of MAR to pUC18, approximately equal amounts of DNA end binding to the two plasmids were observed, while at a 1:1 ratio no pUC18 end binding was observed. Calculation of relative binding activities indicates that DNA end-binding activities to MAR sequences was 7–21-fold higher than pUC18. Western analysis of proteins bound to pUC18 and MAR plasmids indicates that XRCC4, DNA ligase IV and scaffold attachment factor A preferentially associate with the MAR plasmid in the absence or presence of DNA ends. In contrast, Ku and DNA-PKcs were found on the MAR plasmid only in the presence of DNA ends suggesting that binding of these proteins to DNA ends is necessary for their association with MAR DNA. The ability of DNA-PKcs/Ku to direct DNA ends to MAR and pUC18 plasmid DNA is a new activity for DNA-PK and may be important for its function in double-strand break repair. A model for DNA repair based on these observations is presented.  相似文献   

8.
Archaea are expected to be highly repair proficient since they survived the vicious onslaught of radiation damage at the time of their early appearance. The DNA double strand break repairing ability of mesophilic archaea Methanosarcina barkeri (DSM 804) was studied using (7)Li, (12)C and (16)O heavy ions and compared with that of (60)Co gamma-rays. They can repair double strand breaks and, as in eukaryotes, the nature as well as extent of induction and its subsequent repair were dependent on the linear energy transfer of the radiation source.  相似文献   

9.
At the Center for High-Throughput Minimally Invasive Radiation Biodosimetry, we have developed a rapid automated biodosimetry tool (RABiT); this is a completely automated, ultra-high-throughput robotically based biodosimetry workstation designed for use following a large-scale radiological event, to perform radiation biodosimetry measurements based on a fingerstick blood sample. High throughput is achieved through purpose built robotics, sample handling in filter-bottomed multi-well plates and innovations in high-speed imaging and analysis. Currently, we are adapting the RABiT technologies for use in laboratory settings, for applications in epidemiological and clinical studies. Our overall goal is to extend the RABiT system to directly measure the kinetics of DNA repair proteins. The design of the kinetic/time-dependent studies is based on repeated, automated sampling of lymphocytes from a central reservoir of cells housed in the RABiT incubator as a function of time after the irradiation challenge. In the present study, we have characterized the DNA repair kinetics of the following repair proteins: γ-H2AX, 53-BP1, ATM kinase, MDC1 at multiple times (0.5, 2, 4, 7 and 24 h) after irradiation with 4 Gy γ rays. In order to provide a consistent dose exposure at time zero, we have developed an automated capillary irradiator to introduce DNA DSBs into fingerstick-size blood samples within the RABiT. To demonstrate the scalability of the laboratory-based RABiT system, we have initiated a population study using γ-H2AX as a biomarker.  相似文献   

10.
Lundblad V 《Mutation research》2000,451(1-2):227-240
This review focuses on the factors that define the differences between the two types of DNA ends encountered by eukaryotic cells: telomeres and double strand breaks (DSBs). Although these two types of DNA termini are functionally distinct, recent studies have shown that a number of proteins is shared at telomeres and sites of DSB repair. The significance of these common components is discussed, as well as the types of DNA repair events that can compensate for a defective telomere.  相似文献   

11.
12.
Ataxia telangiectasia (ATM) mutated and Artemis, the proteins defective in ataxia telangiectasia and a class of Radiosensitive-Severe Combined Immunodeficiency (RS-SCID), respectively, function in the repair of DNA double strand breaks (DSBs), which arise in heterochromatic DNA (HC-DSBs) following exposure to ionizing radiation (IR). Here, we examine whether they have protective roles against oxidative damage induced and/or endogenously induced DSBs. We show that DSBs generated following acute exposure of G0/G1 cells to the oxidative damaging agent, tert-butyl hydroperoxide (TBH), are repaired with fast and slow components of similar magnitude to IR-induced DSBs and have a similar requirement for ATM and Artemis. Strikingly, DSBs accumulate in ATM(-/-) mouse embryo fibroblasts (MEFs) and in ATM or Artemis-defective human primary fibroblasts maintained for prolonged periods under confluence arrest. The accumulated DSBs localize to HC-DNA regions. Collectively, the results provide strong evidence that oxidatively induced DSBs arise in HC as well as euchromatic DNA and that Artemis and ATM function in their repair. Additionally, we show that Artemis functions downstream of ATM and is dispensable for HC-relaxation and for pKAP-1 foci formation. These findings are important for evaluating the impact of endogenously arising DNA DSBs in ATM and Artemis-deficient patients.  相似文献   

13.
Summary The radiosensitivities and the kinetics for removal of radiation-induced DNA damage were compared for proliferative (P) and quiescent (Q) cells of the lines 66 and 67 derived from a mouse mammary adenocarcinoma. As determined from cell survival assays, the 66 and 67 Q cells were more radiosensitive than their 66 and 67 P counterparts. The rank order of their radiosensitivity was: 67 Q > 66 Q 67 P > 66 P. Induction of radiation damage in the DNA of these cells, as measured by the alkaline elution technique, was identical for 66 and 67 P and Q cells. The repair of this DNA damage was biphasic for 66 and 67 P and Q cells. The half-times for the fast and slow repair phases in 66 Q cells were identical to those previously measured in 67 Q cells. The half-times of the fast and slow repair phases in 66 P cells were also identical to those previously measured in 67 P cells. However, the half-times for the fast and slow repair phases in 66 and 67 Q cells were longer than those measured in their 66 and 67 P counterparts. The 66 cell data are consistent with our previously published hypothesis that Q cells are more radiosensitive than their corresponding P cells because they repair their radiation-induced DNA damage slower. However, our results are not consistent with hypotheses that attempt to explain the radiosensitivity differences between lines 66 and 67 solely on the basis of measurable induction and repair of DNA damage.  相似文献   

14.
Exposure of cells to ionizing radiation or radiomimetic drugs generates DNA double-strand breaks that are processed either by homologous recombination repair (HRR), or by canonical, DNA-PKcs-dependent non-homologous end-joining (C-NHEJ). Chemical or genetic inactivation of factors involved in C-NHEJ or HRR, but also their local failure in repair proficient cells, promotes an alternative, error-prone end-joining pathway that serves as backup (A-EJ). There is evidence for the involvement of Artemis endonuclease, a protein deficient in a human radiosensitivity syndrome associated with severe immunodeficiency (RS-SCID), in the processing of subsets of DSBs by HRR or C-NHEJ. It is thought that within HRR or C-NHEJ Artemis processes DNA termini at complex DSBs. Whether Artemis has a role in A-EJ remains unknown. Here, we analyze using pulsed-field gel electrophoresis (PFGE) and specialized reporter assays, DSB repair in wild-type pre-B NALM-6 lymphocytes, as well as in their Artemis−/−, DNA ligase 4−/− (LIG4−/−), and LIG4−/−/Artemis−/− double mutant counterparts, under conditions allowing evaluation of A-EJ. Our results substantiate the suggested roles of Artemis in C-NHEJ and HRR, but also demonstrate a role for the protein in A-EJ that is confirmed in Artemis deficient normal human fibroblasts. We conclude that Artemis is a nuclease participating in DSB repair by all major repair pathways.  相似文献   

15.
Mice homozygous for the scid (severe combined immune deficiency) mutation are defective in the repair of DNA double-strand breaks (DSBs) and are consequently very X-ray sensitive and defective in the lymphoid V(D)J recombination process. Recently, a strong candidate for the scid gene has been identified as the catalytic subunit of the DNA-dependent protein kinase (DNA-PK) complex. Here, we show that the activity of the DNA-PK complex is regulated in a cell cycle-dependent manner, with peaks of activity found at the G1/early S phase and again at the G2 phase in wild-type cells. Interestingly, only the deficit of the G1/early S phase DNA-PK activity correlated with an increased hypersensitivity to X-irradiation and a DNA DSB repair deficit in synchronized scid pre-B cells. Finally, we demonstrate that the DNA-PK activity found at the G2 phase may be required for exit from a DNA damage-induced G2 checkpoint arrest. These observations suggest the presence of two pathways (DNA-PK-dependent and -independent) of illegitimate mammalian DNA DSB repair and two distinct roles (DNA DSB repair and G2 checkpoint traversal) for DNA-PK in the cellular response to ionizing radiation.  相似文献   

16.
Artemis is a recently identified factor involved in V(D)J recombination and nonhomologous end joining (NHEJ) of DNA double-strand break (DSB) repair. Here, we performed targeted disruption of the Artemis gene (ARTEMIS) in the human pre-B cell line Nalm-6. Unexpectedly, we found that cells lacking Artemis exhibit increased sensitivity to low doses, but not high doses, of ionizing radiation. We also show that ARTEMIS-deficient cells are hypersensitive to the topoisomerase II inhibitor etoposide, but to a much lesser extent than cells lacking DNA ligase IV, a critical component of NHEJ. Unlike DNA ligase IV-deficient cells, ARTEMIS-deficient cells were not hypersensitive to ICRF-193, a topoisomerase II inhibitor that does not stabilize topoisomerase II-DNA cleavable complexes. Collectively, our results suggest that Artemis only partially participates in the NHEJ pathway to repair DSBs in human somatic cells.  相似文献   

17.
Meiosis is an essential process for sexually reproducing organisms, leading to the formation of specialized generative cells. This review intends to highlight current knowledge of early events during meiosis derived from various model organisms, including plants. It will particularly focus on cis- and trans-requirements of meiotic DNA double strand break (DSB) formation, a hallmark event during meiosis and a prerequisite for recombination of genetic traits. Proteins involved in DSB formation in different organisms, emphasizing the known factors from plants, will be introduced and their functions outlined. Recent technical advances in DSB detection and meiotic recombination analysis will be reviewed, as these new tools now allow analysis of early meiotic recombination in plants with incredible accuracy. To anticipate future directions in plant meiosis research, unpublished results will be included wherever possible.  相似文献   

18.
Epigenetic modification is essential for normal development and plays important roles in gene regulation in higher plants. Multiple factors interact to regulate the establishment and maintenance of DNA methylation in plant genome. We had previously cloned and characterized DNA methyltransferase (DNA MTase) gene homologues (OsMET1) from rice. In this present study, determination of DNA MTase activity in different cellular compartments showed that DNA MTase was enriched in nuclei and the activity was remarkably increased during imbibing dry seeds. We had optimized the purification technique for DNA MTase enzyme from shoots of 10-day-old rice seedlings using the three successive chromatographic columns. The Econo-Pac Q, the Hitrap-Heparin and the Superdex-200 columns yielded a protein fraction of a specific activity of 29, 298 and 800 purification folds, compared to the original nuclear extract, respectively. The purified protein preferred hemi-methylated DNA substrate, suggesting the maintenance activity of methylation. The native rice DNA MTase was approximately 160–170 kDa and exhibited a broad pH optimum in the range of 7.6 and 8.0. The enzyme kinetics and inhibitory effects by methyl donor analogs, base analogs, cations, and cationic amines on rice DNA MTase were examined. Global cytosine methylation status of rice genome during development and in various tissue culture systems were monitored and the results suggested that the cytosine methylation level is not directly correlated with the DNA MTase activity. The purification and characterization of rice DNA MTase enzyme are expected to enhance our understanding of this enzyme function and their possible contributions in Gramineae plant development.  相似文献   

19.
Repetitive DNA sequences exhibit complex structural and energy landscapes, populated by metastable, noncanonical states, that favor expansion and deletion events correlated with disease phenotypes. To probe the origins of such genotype–phenotype linkages, we report the impact of sequence and repeat number on properties of (CNG) repeat bulge loops. We find the stability of duplexes with a repeat bulge loop is controlled by two opposing effects; a loop junction‐dependent destabilization of the underlying double helix, and a self‐structure dependent stabilization of the repeat bulge loop. For small bulge loops, destabilization of the underlying double helix overwhelms any favorable contribution from loop self‐structure. As bulge loop size increases, the stabilizing loop structure contribution dominates. The role of sequence on repeat loop stability can be understood in terms of its impact on the opposing influences of junction formation and loop structure. The nature of the bulge loop affects the thermodynamics of these two contributions differently, resulting in unique differences in repeat size‐dependent minima in the overall enthalpy, entropy, and free energy changes. Our results define factors that control repeat bulge loop formation; knowledge required to understand how this helix imperfection is linked to DNA expansion, deletion, and disease phenotypes. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 1–12, 2014.  相似文献   

20.
Two aminopeptidases (I and II), hydrolysing basic termini, were purified to homogeneity (as judged by polyacrylamide gel electrophoresis) from human quadriceps muscle by anion-exchange chromatography and preparative electrophoresis. The electrophoretic migration rate of II was approximately 80% of that of I. Both enzymes had the following properties: optimum activity was at pH 6.5; addition of 0.15 M Cl- or Br- anions resulted in a 20-fold or 10-fold increase in activity respectively. There was little or no increase in activity on the addition of other anions, or divalent cations (0.05-5mM). Approximately 50% inhibition of activity was obtained in the presence of bestatin (0.1 microM), rho-hydroxymercuriphenylsulphonic acid (0.1 microM), EDTA (10 mM), 1,10-phenanthroline (100 microM), N-ethylmaleimide (1 mM) and But-Thr-Phe-Pro (0.5 mM). The molecular mass was 72 000 Da (gel filtration). Only the arginyl and lysyl 7-amino-4-methylcoumarin (Amc) derivatives were appreciably hydrolysed; approximate Km values for the reaction of I and II with these substrates (10-250 microM) were estimated as follows: Arg-Amc, KmI = 70 microM, KmII = 270 microM; Lys-Amc KmI = 280 microM, KmII = 400 microM. Both enzymes hydrolysed dipeptides with Arg or Lys as the NH2-terminal amino acid, however this was not an absolute requirement for dipeptide hydrolysis. The action of I and II on physiologically active oligopeptides was very restricted, with only bradykinin, proangiotensin and neurotensin being appreciably degraded. The breakdown of these peptides did not occur by classical aminopeptidase action (i.e. hydrolysis of the NH2-terminal residues), but via cleavage of internal peptide bonds. These results suggest that I and II may be isoenzymes of a Cl- -requiring, thiol-type aminopeptidase, which hydrolyses basic termini. These enzymes may act primarily as dipeptidases, with a very restricted mode of action in the degradation of naturally occurring oligopeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号