首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for the simultaneous determination of 1-octacosanol and 1-triacontanol and their main metabolites in rat plasma was developed. The procedure involved ethanolic NaOH saponification of the sample, acidification, liquid–liquid extraction, and derivatization of the analytes to its trimethylsilylether/ester, followed analysis by gas chromatography–mass spectrometry (GC–MS) in selected ion monitoring (SIM) mode. Quantification was performed by the internal standard method using betulin. The method had a good linearity over the range 8.4–540 ng/ml (r  0.998) and showed an excellent intra-day (R.S.D. = 0.59–3.06%) and inter-day (R.S.D. = 2.99–5.22%) precision according to the acceptance criteria. The detection limits ranged between 1.32 and 3.47 ng/ml. The method was applied successfully to study the total plasmatic concentration of 1-octacosanol, octacosanoic acid, 1-triacontanol, and triacontanoic acid, after an oral dose of policosanols mixture, using plasma samples of 100 μl.  相似文献   

2.
A quantitative assay for simultaneous measurement of individual human neutrophil peptide-1, -2 and -3 concentrations will aid in exploring the potential of these antimicrobial peptides as biomarkers for various diseases. Therefore, a liquid chromatography–tandem mass spectrometry method has been developed and validated to allow separate quantification of the three human neutrophil peptides in human plasma and serum. Plasma and serum samples (100 μl) were deproteinized by precipitation, followed by chromatographic separation on a Symmetry 300 C18 column (50 mm × 2.1 mm I.D., particle size 3.5 μm), using a water–methanol gradient containing 0.25% (v/v) formic acid and human alpha-defensin 5 as internal standard. Tandem mass spectrometric detection was performed on a triple quadrupole mass spectrometer equipped with electrospray ionization. Despite low fragmentation efficiency of the antimicrobial peptides, multiple reaction monitoring was used for detection, though selecting the quaternary charged ions as both precursor and product. The method was linear for concentrations between 5 and 1000 ng/ml with a limit of detection around 3 ng/ml for all peptides. Intra- and inter-assay precisions were 14.8 and 19.1%, respectively, at the lowest measured endogenous concentration (6.4 ng/ml of HNP-1 in plasma), representing the lower limit of quantification of the assay. Recoveries of HNP-1, -2 and -3 from plasma and serum ranged between 85 and 128%. Analysis of serum samples from intensive care patients showed average concentrations of 362, 570 and 143 ng/ml for HNP-1, -2 and -3, respectively.  相似文献   

3.
A high-performance liquid chromatographic method with fluorescence detection for the determination of itopride in human plasma is reported. The sample preparation was based on liquid–liquid extraction of itopride from plasma with t-butylmethylether and dichloromethane (70:30, v/v) mixture followed by a back extraction of the analyte to the phosphate buffer (pH 3.2). Liquid chromatography was performed on an octadecylsilica column (55 mm × 4 mm, 3 μm particles), the mobile phase consisted of acetonitrile–triethylamine–15 mM dihydrogenpotassium phosphate (14.5:0.5:85, v/v/v), pH of the mobile phase was adjusted to 4.8. The run time was 3 min. The fluorimetric detector was operated at 250/342 nm (excitation/emission wavelength). Naratriptan was used as the internal standard. The limit of quantitation was 9.5 ng/ml using 0.5 ml of plasma. The method precision and inaccuracy were less than 8%. The assay was applied to the analysis of samples from a bioequivalence study.  相似文献   

4.
A new method using high performance liquid chromatography coupled with electrospray mass spectrometry is described for the quantification of plasma concentration of tyrosine kinase inhibitors imatinib, dasatinib and nilotinib. A simple protein precipitation extraction procedure was applied on 250 μl of plasma aliquots. Chromatographic separation of drugs and Internal Standard (quinoxaline) was achieved with a gradient (acetonitrile and water + formic acid 0.05%) on a C18 reverse phase analytical column with 20 min of analytical run, at flow rate of 1 ml/min. Mean intra-day and inter-day precision for all compounds were 4.3 and 11.4%; mean accuracy was 1.5%; extraction recovery ranged within 95 and 114%. Calibration curves ranged from 10,000 to 62.5 ng/ml. The limit of quantification was set at 78.1 ng/ml for imatinib and at 62.5 ng/ml for dasatinib and nilotinib. This novel developed methodology allows a specific, sensitive and reliable simultaneous determination of the three tyrosine kinase inhibitors imatinib, dasatinib and nilotinib in a single chromatographic run, useful for drugs estimation in plasma of patients affected by chronic myeloid leukemia.  相似文献   

5.
This paper describes a rapid and sensitive method for the quantitation of 20(S)-protopanaxadiol (PPD) in human plasma based on high-performance liquid chromatography–tandem mass spectrometry (LC–MS/MS). The analyte and internal standard (I.S.), ginsenoside Rh2, were extracted from plasma by liquid–liquid extraction and separated on a Zorbax extend C18 analytical column using methanol–acetonitrile-10 mM ammonium acetate (47.5:47.5:5, v/v/v) as mobile phase. Detection was by tandem mass spectrometry using electrospray ionization in the positive ion mode and multiple reaction monitoring (MRM). The assay was linear over the concentration range 0.1–100.0 ng/ml with a limit of detection of 0.05 ng/ml. The method was successfully applied to a clinical pharmacokinetic study in healthy volunteers after a single oral administration of a PPD 25 mg capsule.  相似文献   

6.
A rapid, specific and sensitive liquid chromatography–electrospray ionization-tandem mass spectrometry method was developed and validated for determination of cymipristone in human plasma. Mifepristone was used as the internal standard (IS). Plasma samples were deproteinized using methanol. The compounds were separated on a ZORBAX SB C18 column (50 mm × 2.1 mm i.d., dp 1.8 μm) with gradient elution at a flow-rate of 0.3 ml/min. The mobile phase consisted of 10 mM ammonium acetate and acetonitrile. The detection was performed on a triple-quadruple tandem mass spectrometer by selective reaction monitoring (SRM) mode via electrospray ionization. Target ions were monitored at [M+H]+ m/z 498  416 and 430  372 in positive electrospray ionization (ESI) mode for cymipristone and IS, respectively. Linearity was established for the range of concentrations 0.5–100 ng/ml with a coefficient correlation (r) of 0.9996. The lower limit of quantification (LLOQ) was identifiable and reproducible at 0.5 ng/ml. The validated method was successfully applied to study the pharmacokinetics of cymipristone in healthy Chinese female subjects.  相似文献   

7.
A rapid and simple liquid chromatography–fluorescence detection (LC–FD) method was developed and validated for the simultaneous quantification of irinotecan (CPT11) and SN38 in sheep plasma. Camptothecin (CPT) was used as the internal standard. A single step protein precipitation with acetonitrile was used for sample preparation. The separation was achieved using a 5 μm C18 column (250 mm × 4.5 mm, 5 μm) with a mobile phase composed of 36 mM sodium dihydrogen phosphate dehydrate and 4 mM sodium 1 heptane sulfonate–acetonitrile (72:28), the pH of the mobile phase was adjusted to 3. The flow rate was 1.45 mL/min and the fluorescence detection was operated at 355/515 nm (excitation/emission wavelengths). The run time was 13 min. The method was validated with respect to selectivity, extraction recovery, linearity, intra- and inter-day precision and accuracy, limit of quantification and stability. The method has a limit of quantification of 5 ng/mL for both CPT11 and SN38. The assay was linear over concentrations ranging from 5 to 5000 ng/mL and to 240 ng/mL for CPT11 and SN38, respectively. This method was used successfully to perform plasma pharmacokinetic studies of CPT11 after pulmonary artery embolization (PACE) in a sheep model. It was also validated for CPT11 and SN38 analysis in sheep lymph and human plasma.  相似文献   

8.
An improved and easy to use method for the determination of thiamin diphosphate (TDP) in 100 μl of whole blood was developed. The small sample volume makes it possible to assess the nutritional status of vitamin B1 in infants and even in preterm infants. Sample preparation comprises the extraction of TDP from whole blood by hemolysis, protein precipitation with trichloroacetic acid, and subsequent centrifugation. Potassium ferricyanide is used for pre-column derivatization of TDP to its fluorescent thiochrome derivative. Chromatographic separation was carried out using a reversed-phase column and an isocratic elution which consisted of a phosphate buffer and acetonitrile. TDP was detected fluorimetrically and quantified by external standardization. Method validation showed a high precision, almost complete recovery, and a high sensitivity. The lower limit of detection and the lower limit of quantification were 0.2 ng/ml and 4 ng/ml, respectively. Linearity was demonstrated over the expected concentration range of 4–400 ng/ml. In conclusion, we present a convenient HPLC method for the determination of TDP which is precise, sensitive and suitable for pediatric diagnostics.  相似文献   

9.
A reversed-phase liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) method was developed and validated for simultaneous determination of ABT-888 and its major metabolite (M8) in human plasma. Sample preparation involved a liquid–liquid extraction by the addition of 0.25 ml of plasma with 10 μl of 1 M NaOH and 1.0 ml ethyl acetate containing 50 ng/ml of the internal standard zileuton. The analytes were separated on a Waters XBridge C18 column using a gradient mobile phase consisting of methanol/water containing 0.45% formic acid at the flow rate of 0.2 ml/min. The analytes were monitored by tandem mass spectrometry with electrospray positive ionization. Linear calibration curves were generated over the ABT-888 and M8 concentration ranges of 1–2000 ng/ml in human plasma. The lower limits of quantitation (LLOQ) were 1 ng/ml for both ABT-888 and M8 in human plasma. The accuracy and within- and between-day precisions were within the generally accepted criteria for bioanalytical method (<15%). This method was successfully employed to characterize the plasma concentration–time profile of ABT-888 after its oral administration in cancer patients.  相似文献   

10.
A rapid liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for the determination of picamilon concentration in human plasma. Picamilon was extracted from human plasma by protein precipitation. High performance liquid chromatography separation was performed on a Venusil ASB C18 column with a mobile phase consisting of methanol ?10 mM ammonium acetate–formic acid (55:45:01, v/v/v) at a flow rate of 0.65 ml/min. Acquisition of mass spectrometric data was performed in selected reaction monitoring mode, using the transitions of m/z 209.0  m/z (78.0 + 106.0) for picamilon and m/z 152.0  m/z (93.0 + 110.0) for paracetamol (internal standard). The method was linear in the concentration range of 1.00–5000 ng/ml for the analyte. The lower limit of quantification was 1.00 ng/ml. The intra- and inter-assay precision were below 13.5%, and the accuracy was between 99.6% and 101.6%. The method was successfully applied to characterize the pharmacokinetic profiles of picamilon in healthy volunteers. This validated LC–MS/MS method was selective and rapid, and is suitable for the pharmacokinetic study of picamilon in humans.  相似文献   

11.
Taxifolin has been widely used in the treatment of cerebral infarction and sequelae, cerebral thrombus, coronary heart disease and angina pectoris. A reliable sensitive reversed-phase high-performance liquid chromatography (RP-HPLC) method with UV detection for the pharmacokinetic study of taxifolin in rabbit plasma after enzymatic hydrolysis was developed and validated for the first time. Taxifolin, with biochanin A as the internal standard, was extracted from plasma samples by liquid/liquid extraction after hydrolysis with β-glucuronidase and sulfatase. Chromatographic separation was conducted on a Luna C18 column (4.6 mm×150 mm, 5 μm particle size) and pre-column (2.0 mm, the same sorbent). Two-step linear gradient elution with acetonitrile and 0.03% water solution of trifluoroacetic acid as mobile phase at a flow rate of 1.0 ml/min was used. The UV detector is set at 290 nm. The elution time for taxifolin and biochanin A was approximately 7.9 and 18.3 min, respectively. The calibration curve of taxifolin was linear (r>0.9997) over the range of 0.03–5.0 μg/ml in rabbit plasma. The limit of detection (LOD) and limit of quantification (LOQ) for taxifolin were 0.03 and 0.11 μg/ml, respectively. The present method was successfully applied for the estimation of the pharmacokinetic parameters of taxifolin following intravenous and oral administration of lipid solution to rabbits. The absolute bioavailability of taxifolin after oral administration of lipid solution was 36%.  相似文献   

12.
A precise and accurate high-performance liquid chromatography (HPLC) method with photodiode array detection has been developed and validated for raltegravir, a human immunodeficiency virus integrase strand transfer inhibitor (HIV-1 INSTI). Plasma (300 μL) was extracted with dichloromethane/hexane 50:50 (v/v) after addition of the internal standard, 6,7-dimethyl-2,3-di(2-pyridyl) quinoxaline. The compounds were separated using a dC18 column and detected with ultraviolet detection at 320 nm. The limit of quantification was 10 ng/mL for raltegravir. The method was linear and validated over a concentration range of 0–10,000 ng/mL. The intra-day precision ranged from 3.1 to 12.3%, while the intra-day accuracy ranged from ?15.0 to ?0.5%, the inter-day precision and accuracy were less than 7%. The mean recovery was 76.8%. Application to clinical samples taken from patients treated with raltegravir indicated that the method is suitable for measuring plasma concentrations of raltegravir in pharmacokinetic studies of clinical trials.  相似文献   

13.
Remoxipride is a selective dopamine D2 receptor antagonist, and useful as a model compound in mechanism-based pharmacological investigations. To that end, studies in small animals with serial sampling over time are needed. For these small volume samples currently no suitable analytical methods are available. We propose analytical methods for the detection of low concentrations remoxipride in small sample volumes of plasma, brain homogenate, and brain microdialysate, using online solid phase extraction with liquid chromatography–tandem mass spectrometry. Method development, optimization and validation are described in terms of calibration curves, extraction yield, lower limit of quantification (LLOQ), precision, accuracy, inter-day- and intra-day variability. The 20 μl plasma samples showed an extraction yield of 76%, with a LLOQ of 0.5 ng/ml. For 0.6 ml brain homogenate samples the extraction yield was 45%, with a LLOQ of 1.8 ng/ml. The 20 μl brain microdialysate samples, without pre-treatment, had a LLOQ of 0.25 ng/ml. The precision and accuracy were well within the acceptable 15% range. Considering the small sample volumes, the high sensitivity and good reproducibility, the analytical methods are suitable for analyzing small sample volumes with low remoxipride concentrations.  相似文献   

14.
A sensitive and specific liquid chromatography–tandem mass spectrometry method was developed and validated for the first time for the estimation of Tenacissoside A in the rats’ plasma, which is the major active constituent in Marsdenia tenacissima. Tenacissoside A was extracted from the rats’ plasma by using liquid–liquid extraction (LLE), medroxyprogesterone acetate was used as the internal standard. An Alltech C18 column (250 mm × 4.6 mm, 5 μm) was used to provide chromatographic separation by detection with mass spectrometry operating in selected ion monitoring (SIM) mode. The method was validated over the concentration range of 1–250 ng/mL for Tenacissoside A. The precisions within and between-batch (CV%) were both less than 15% and accuracy ranged from 90 to 102%. The lower limit of quantification was 1 ng/mL and extraction recovery was 88.3% on average. The validated method was used to study the pharmacokinetic profile of Tenacissoside A in rat after administration.  相似文献   

15.
A rapid, sensitive and specific high performance liquid chromatography–tandem mass spectrometric (HPLC–MS/MS) method has been developed for quantification of mitoxantrone in rat plasma. The analyte and palmatine (internal standard) were extracted from plasma samples with diethyl ether–dichloromethane (3:2, v/v) and separated on a C18 column. The chromatographic separation was achieved within 2.5 min using methanol–10 mM ammonium acetate containing 0.1% acetic acid as the mobile phase at a flow rate of 0.2 mL/min. The method was linear over the range of 0.5–500 ng/mL. The lower limit of quantification (LLOQ) was 0.5 ng/mL. Finally, the method was successfully applied to a pharmacokinetic study of mitoxantrone in rats following intravenous administration.  相似文献   

16.
A new simple, rapid, sensitive and accurate quantitative detection method using liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) for the measurement of formononetin (FMN) and daidzein (DZN) levels in rat plasma is described. Analytes were separated on a Supelco Discovery C18 (4.6 × 50 mm, 5.0 μm) column with acetonitrile: methanol (50:50, v/v) and 0.1% acetic acid in the ratio of 90:10 (v/v) as a mobile phase. The method was proved to be accurate and precise at linearity range of 5–100 ng/mL with a correlation coefficient (r) of ≥0.996. The intra- and inter-day assay precision ranged from 1.66–6.82% and 1.87–6.75%, respectively; and intra- and inter-day assay accuracy was between 89.98–107.56% and 90.54–105.63%, respectively for both the analytes. The lowest quantitation limit for FMN and DZN was 5.0 ng/mL in 0.1 mL of rat plasma. Practical utility of this new LC–MS/MS method was demonstrated in a pharmacokinetic study in rats following intravenous administration of FMN.  相似文献   

17.
A simple and sensitive method is proposed for the determination of seven low-molecular mass aldehydes in human urine samples using liquid chromatography with tandem mass spectrometric detection. Urine samples diluted twofold with 0.3 M hydrochloric acid are aspirated into a LiChrolut EN solid-phase extraction column impregnated with 2,4-dinitrophenylhydrazine for cleanup, derivatization and preconcentration of the aldehydes. After elution of the hydrazones with acetonitrile, an aliquot is injected directly into the chromatograph. Identification and quantification of aldehydes was performed with electrospray in negative ion mode by selected reaction monitoring. By using synthetic urine samples, linearity is established over the concentration range 0.1–30 μg/l and limits of detection from 15 to 65 ng/l. The intra- and inter-day precision (RSD, %) of the aldehydes ranged from 2.9% to 6.4% and 3.6% to 9.3%, respectively, and specific uncertainties were ca. 5.0 ± 0.3 ng for all aldehydes. Average recoveries performed on two levels by enriching synthetic urine samples ranged between 92% and 100%. The method was also validated in terms of study sample stability including long-term and short-term analyte stability, freeze–thaw and extract stability. In summary, the method proposed surpasses other recent chromatographic alternatives in terms of the limit of detection and sample requirements for analysis.  相似文献   

18.
A rapid and sensitive bioassay based on liquid chromatography–tandem mass spectrometry (LC–MS/MS) for the simultaneous determination of four isomeric escin saponins (escin Ia, escin Ib, isoescin Ia and isoescin Ib) in human plasma has been developed and validated. Sample preparation of plasma after addition of telmisartan as internal standard (I.S.) involved solid-phase extraction (SPE) on C18 cartridges. Separation was based on reversed phase chromatography using gradient elution with methanol–acetonitrile (50:50, v/v) and 10 mM ammonium acetate solution (pH 6.8). MS/MS detection in the positive ion mode used multiple reaction monitoring of the transition at m/z 1113.8  807.6. Stability issues with the four saponins required the addition of formic acid to plasma samples prior to storage at ?80 °C and analysis within 30 days. The method was linear at concentrations up to 10 ng/mL with correlation coefficients > 0.996 for all analytes. The lower limit of quantitation (LLOQ) for all four saponins was 33 pg/mL. Intra- and inter-day precisions (as relative standard deviation) were all <15% and accuracies (as relative error) in the range ?5.3% to 6.1%. The method was successfully applied to a pharmacokinetic study of escins in healthy volunteers after oral administration of sodium aescinate tablets containing 60 mg escin saponins.  相似文献   

19.
This paper describes the development and validation of a novel GC-FID method for the determination of α-tocopherol concentration in human plasma which does not requires derivatization. The standard solutions and the plasma working solutions were prepared in absolute ethanol. To determine the concentration of α-tocopherol in human plasma, an aliquot of the plasma sample was deproteinized with ethanol. α-tocopherol was extracted with a mixture of hexane and dichloromethane (9:1). GC separation was performed using a HP-5 capillary column. Nitrogen was used as carrier gas at a flow-rate of 2 ml min 1. Calibration curves were linear over the concentration range 1–30 μg ml 1 (for standard solutions and solutions without endogenous α-tocopherol in plasma) and 5–34 μg ml 1 (for solutions with endogenous α-tocopherol in plasma). Absolute recovery, precision, sensitivity and accuracy assays were carried out. The analytical recovery of α-tocopherol from plasma averaged 97.44%. The limit of quantification (LOQ) and the limit of detection (LOD) of method for standard samples were 0.35 μg.ml 1 and 0.30 μg.ml 1, respectively. Within-day and between-day precision, expressed as the relative standard deviation (RSD) were less than 4%, and accuracy (relative error) was better than 8%. This novel method, developed and validated in our laboratory, could be successfully applied to the in-vivo determination of α-tocopherol. The endogenous α-tocopherol amounts in blood of twelve healthy volunteers with no vitamin drug usage were measured with this method.  相似文献   

20.
A reverse-phase liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) method was developed and validated for determination of aminoflavone (AF) in human plasma. Sample preparation involved a liquid–liquid extraction by the addition of 0.25 mL of plasma with 1.0 mL ethyl acetate containing 50 ng/mL of the internal standard zileuton. The analytes were separated on a Waters X-Terra? MS C18 column using a mobile phase consisting of methanol/water containing 0.45% formic acid (70:30, v/v) and isocratic flow at 0.2 mL/min for 6 min. The analytes were monitored by tandem mass spectrometry with electrospray positive ionization. Linear calibration curves were generated over the AF concentration range of 5–2000 ng/mL in human plasma. The lower limit of quantitation (LLOQ) was 5 ng/mL for AF in human plasma. The accuracy and within- and between-day precisions were within the generally accepted criteria for bioanalytical method (<15%). This method was successfully applied to characterize AF plasma concentration-time profile in the cancer patients in a phase I trial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号