首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four children in three unrelated families (one consanguineous) presented with lethargy, hyperlactatemia, and hyperammonemia of unexplained origin during the neonatal period and early childhood. We identified and validated three different CA5A alterations, including a homozygous missense mutation (c.697T>C) in two siblings, a homozygous splice site mutation (c.555G>A) leading to skipping of exon 4, and a homozygous 4 kb deletion of exon 6. The deleterious nature of the homozygous mutation c.697T>C (p.Ser233Pro) was demonstrated by reduced enzymatic activity and increased temperature sensitivity. Carbonic anhydrase VA (CA-VA) was absent in liver in the child with the homozygous exon 6 deletion. The metabolite profiles in the affected individuals fit CA-VA deficiency, showing evidence of impaired provision of bicarbonate to the four enzymes that participate in key pathways in intermediary metabolism: carbamoylphosphate synthetase 1 (urea cycle), pyruvate carboxylase (anaplerosis, gluconeogenesis), propionyl-CoA carboxylase, and 3-methylcrotonyl-CoA carboxylase (branched chain amino acids catabolism). In the three children who were administered carglumic acid, hyperammonemia resolved. CA-VA deficiency should therefore be added to urea cycle defects, organic acidurias, and pyruvate carboxylase deficiency as a treatable condition in the differential diagnosis of hyperammonemia in the neonate and young child.  相似文献   

2.
Glycogen storage disease type II is a lysosomal storage disorder due to mutations of the GAA gene, which causes lysosomal alpha-glucosidase deficiency. Clinically, glycogen storage disease type II has been classified in infantile and late-onset forms. Most late-onset patients share the leaky splicing mutation c.-32-13T>G. To date, the mechanism by which the c.-32-13T>G mutation affects the GAA mRNA splicing is not fully known. In this study, we demonstrate that the c.-32-13T>G mutation abrogates the binding of the splicing factor U2AF65 to the polypyrimidine tract of exon 2 and that several splicing factors affect exon 2 inclusion, although the only factor capable of acting in the c.-32-13 T>G context is the SR protein family member, SRSF4 (SRp75). Most importantly, a preliminary screening using small molecules described to be able to affect splicing profiles, showed that resveratrol treatment resulted in a significant increase of normal spliced GAA mRNA, GAA protein content and activity in cells transfected with a mutant minigene and in fibroblasts from patients carrying the c-32-13T>G mutation. In conclusion, this work provides an in-depth functional characterization of the c.-32-13T>G mutation and, most importantly, an in vitro proof of principle for the use of small molecules to rescue normal splicing of c.-32-13T>G mutant alleles.  相似文献   

3.
Disorders of Golgi homeostasis form an emerging group of genetic defects. The highly heterogeneous clinical spectrum is not explained by our current understanding of the underlying cell-biological processes in the Golgi. Therefore, uncovering genetic defects and annotating gene function are challenging. Exome sequencing in a family with three siblings affected by abnormal Golgi glycosylation revealed a homozygous missense mutation, c.92T>C (p.Leu31Ser), in coiled-coil domain containing 115 (CCDC115), the function of which is unknown. The same mutation was identified in three unrelated families, and in one family it was compound heterozygous in combination with a heterozygous deletion of CCDC115. An additional homozygous missense mutation, c.31G>T (p.Asp11Tyr), was found in a family with two affected siblings. All individuals displayed a storage-disease-like phenotype involving hepatosplenomegaly, which regressed with age, highly elevated bone-derived alkaline phosphatase, elevated aminotransferases, and elevated cholesterol, in combination with abnormal copper metabolism and neurological symptoms. Two individuals died of liver failure, and one individual was successfully treated by liver transplantation. Abnormal N- and mucin type O-glycosylation was found on serum proteins, and reduced metabolic labeling of sialic acids was found in fibroblasts, which was restored after complementation with wild-type CCDC115. PSI-BLAST homology detection revealed reciprocal homology with Vma22p, the yeast V-ATPase assembly factor located in the endoplasmic reticulum (ER). Human CCDC115 mainly localized to the ERGIC and to COPI vesicles, but not to the ER. These data, in combination with the phenotypic spectrum, which is distinct from that associated with defects in V-ATPase core subunits, suggest a more general role for CCDC115 in Golgi trafficking. Our study reveals CCDC115 deficiency as a disorder of Golgi homeostasis that can be readily identified via screening for abnormal glycosylation in plasma.  相似文献   

4.
5.
6.
7.
The majority of the genetic causes of autosomal-recessive (ar) cone-rod dystrophy (CRD) are currently unknown. A combined approach of homozygosity mapping and exome sequencing revealed a homozygous nonsense mutation (c.565C>T [p.Glu189]) in RAB28 in a German family with three siblings with arCRD. Another homozygous nonsense mutation (c.409C>T [p.Arg137]) was identified in a family of Moroccan Jewish descent with two siblings affected by arCRD. All five affected individuals presented with hyperpigmentation in the macula, progressive loss of the visual acuity, atrophy of the retinal pigment epithelium, and severely reduced cone and rod responses on the electroretinogram. RAB28 encodes a member of the Rab subfamily of the RAS-related small GTPases. Alternative RNA splicing yields three predicted protein isoforms with alternative C-termini, which are all truncated by the nonsense mutations identified in the arCRD families in this report. Opposed to other Rab GTPases that are generally geranylgeranylated, RAB28 is predicted to be farnesylated. Staining of rat retina showed localization of RAB28 to the basal body and the ciliary rootlet of the photoreceptors. Analogous to the function of other RAB family members, RAB28 might be involved in ciliary transport in photoreceptor cells. This study reveals a crucial role for RAB28 in photoreceptor function and suggests that mutations in other Rab proteins may also be associated with retinal dystrophies.  相似文献   

8.
Congenital generalized lipodystrophy (CGL) is a rare autosomal recessive disorder characterized by extreme reduction of white adipose tissue (WAT) mass. CGL type 1 is the most frequent form and is caused by mutations in AGPAT2. Genetic and clinical studies were performed in two affected sisters of a Chilean family. These patients have notoriously dissimilar metabolic abnormalities that correlate with differential levels of circulating leptin and soluble leptin receptor fraction. Sequencing of AGPAT2 exons and exon-intron boundaries revealed two homozygous mutations in both sisters. Missense mutation c.299G>A changes a conserved serine in the acyltransferase NHX4D motif of AGPAT2 (p.Ser100Asn). Intronic c.493-1G>C mutation destroy a conserved splicing site that likely leads to exon 4 skipping and deletion of whole AGPAT2 substrate binding domain. In silico protein modeling provided insights of the mechanisms of lack of catalytic activity owing to both mutations.  相似文献   

9.
10.
Germ-line mutations in BRCA1 breast cancer susceptibility gene account for a large proportion of hereditary breast cancer families and show considerable ethnic and geographical variations. The contribution of BRCA1 mutations to hereditary breast cancer has not yet been thoroughly investigated in Middle Eastern and North African populations. In this study, 16 Tunisian high-risk breast cancer families were screened for germline mutations in the entire BRCA1 coding region and exon?Cintron boundaries using direct sequencing. Six families were found to carry BRCA1 mutations with a prevalence of 37.5%. Four different deleterious mutations were detected. Three truncating mutations were previously described: c.798_799delTT (916 delTT), c.3331_3334delCAAG (3450 delCAAG), c.5266dupC (5382 insC) and one splice site mutation which seems to be specific to the Tunisian population: c.212?+?2insG (IVS5?+?2insG). We also identified 15 variants of unknown clinical significance. The c.798_799delTT mutation occurred at an 18% frequency and was shared by three apparently unrelated families. Analyzing five microsatellite markers in and flanking the BRCA1 locus showed a common haplotype associated with this mutation. This suggests that the c.798_799delTT mutation is a Tunisian founder mutation. Our findings indicate that the Tunisian population has a spectrum of prevalent BRCA1 mutations, some of which appear as recurrent and founding mutations.  相似文献   

11.
12.
Dihydropyrimidine dehydrogenase (DPD) is the initial enzyme acting in the catabolism of the widely used antineoplastic agent 5-fluorouracil (5FU). DPD deficiency is known to cause a potentially lethal toxicity following administration of 5FU. Here, we report novel genetic mechanisms underlying DPD deficiency in patients presenting with grade III/IV 5FU-associated toxicity. In one patient a genomic DPYD deletion of exons 21–23 was observed. In five patients a deep intronic mutation c.1129–5923C>G was identified creating a cryptic splice donor site. As a consequence, a 44 bp fragment corresponding to nucleotides c.1129–5967 to c.1129–5924 of intron 10 was inserted in the mature DPD mRNA. The deleterious c.1129–5923C>G mutation proved to be in cis with three intronic polymorphisms (c.483 + 18G>A, c.959–51T>G, c.680 + 139G>A) and the synonymous mutation c.1236G>A of a previously identified haplotype. Retrospective analysis of 203 cancer patients showed that the c.1129–5923C>G mutation was significantly enriched in patients with severe 5FU-associated toxicity (9.1%) compared to patients without toxicity (2.2%). In addition, a high prevalence was observed for the c.1129–5923C>G mutation in the normal Dutch (2.6%) and German (3.3%) population. Our study demonstrates that a genomic deletion affecting DPYD and a deep intronic mutation affecting pre-mRNA splicing can cause severe 5FU-associated toxicity. We conclude that screening for DPD deficiency should include a search for genomic rearrangements and aberrant splicing.  相似文献   

13.
Cone-rod dystrophy (CRD) and retinitis pigmentosa (RP) are clinically and genetically overlapping heterogeneous retinal dystrophies. By using homozygosity mapping in an individual with autosomal-recessive (ar) RP from a consanguineous family, we identified three sizeable homozygous regions, together encompassing 46 Mb. Next-generation sequencing of all exons, flanking intron sequences, microRNAs, and other highly conserved genomic elements in these three regions revealed a homozygous nonsense mutation (c.497T>A [p.Leu166]) in C8orf37, located on chromosome 8q22.1. This mutation was not present in 150 ethnically matched control individuals, single-nucleotide polymorphism databases, or the 1000 Genomes database. Immunohistochemical studies revealed C8orf37 localization at the base of the primary cilium of human retinal pigment epithelium cells and at the base of connecting cilia of mouse photoreceptors. C8orf37 sequence analysis of individuals who had retinal dystrophy and carried conspicuously large homozygous regions encompassing C8orf37 revealed a homozygous splice-site mutation (c.156−2A>G) in two siblings of a consanguineous family and homozygous missense mutations (c.529C>T [p.Arg177Trp]; c.545A>G [p.Gln182Arg]) in siblings of two other consanguineous families. The missense mutations affect highly conserved amino acids, and in silico analyses predicted that both variants are probably pathogenic. Clinical assessment revealed CRD in four individuals and RP with early macular involvement in two individuals. The two CRD siblings with the c.156−2A>G mutation also showed unilateral postaxial polydactyly. These results underline the importance of disrupted ciliary processes in the pathogenesis of retinal dystrophies.  相似文献   

14.
Genetic deficiency of the glycogen debranching enzyme causes glycogen storage disease type III, an autosomal recessive inherited disorder. The gene encoding this enzyme is designated as AGL gene. The disease is characterized by fasting hypoglycemia, hepatomegaly, growth retardation, progressive myopathy and cardiomyopathy. In the present study, we present clinical features and molecular characterization of two consanguineous Tunisian siblings suffering from Glycogen storage disease type III. The full coding exons of the AGL gene and their corresponding exon–intron boundaries were amplified for the patients and their parents. Gene sequencing identified a novel single point mutation at the conserved polypyrimidine tract of intron 21 in a homozygous state (IVS21-8A>G). This variant cosegregated with the disease and was absent in 102 control chromosomes. In silico analysis using online resources showed a decreased score of the acceptor splice site of intron 21. RT-PCR analysis of the AGL splicing pattern revealed a 7 bp sequence insertion between exon 21 and exon 22 due to the creation of a new 3′ splice site. The predicted mutant enzyme was truncated by the loss of 637 carboxyl-terminal amino acids as a result of premature termination. This novel mutation is the first mutation identified in the region of Bizerte and the tenth AGL mutation identified in Tunisia. Screening for this mutation can improve the genetic counseling and prenatal diagnosis of GSD III.  相似文献   

15.

Objective

Monogenic congenital cataract is one of the most genetically heterogeneous ocular conditions with almost 30 different genes involved in its etiology. In adult patients, genotype–phenotype correlations are troubled by eye surgery during infancy and/or long-term ocular complications. Here, we describe the molecular diagnosis of GALK1 deficiency as the cause of autosomal recessive congenital cataract in a family from Costa Rica.

Methods

Four affected siblings were included in the study. All of them underwent eye surgery during the first decade but medical records were not available. Congenital cataract was diagnosed by report. Molecular analysis included genome wide homozygosity mapping using a 250 K SNP Affymetrix microarray followed by PCR amplification and direct nucleotide sequencing of candidate gene.

Results

Genome wide homozygosity mapping revealed a 6 Mb region of homozygosity shared by two affected siblings at 17q25. The GALK1 gene was included in this interval and direct sequencing of this gene revealed a homozygous c.1144C>T mutation (p.Q382*) in all four affected subjects.

Conclusions

This work demonstrates the utility of homozygosity mapping in the retrospective diagnosis of a family with congenital cataracts in which ocular surgery at early age, the lack of medical records, and the presence of long term eye complications, impeded a clear clinical diagnosis during the initial phases of evaluation.  相似文献   

16.
Progressive familial intrahepatic cholestasis is an autosomal recessive liver disorder caused by (biallelic) mutations in the ATP8B1 of ABCB11 gene. A nine-year-old girl with cholestasis was referred for genetic counseling. She had a family history of cholestasis in two previous expired siblings. Genetic analysis of the ABCB11 gene led to the identification of a novel homozygous mutation in exon 25. The mutation 3593- A > G lead to a missense mutation at the amino acid level (His1198Arg). This mutation caused PFIC2 due to abnormal function in the bile salt export pump protein (BSEP).  相似文献   

17.
18.
19.
Tangier disease is a rare disorder of lipoprotein metabolism that presents with extremely low levels of HDL cholesterol and apoprotein A-I. It is caused by mutations in the ATP-binding cassette transporter A1 (ABCA1) gene. Clinical heterogeneity and mutational pattern of Tangier disease are poorly characterized. Moreover, also familial HDL deficiency may be caused by mutations in ABCA1 gene.ATP-binding cassette transporter A1 (ABCA1) gene mutations in a patient with Tangier disease, who presented an uncommon clinical history, and in his family were found and characterized. He was found to be compound heterozygous for two intronic mutations of ABCA1 gene, causing abnormal pre-mRNAs splicing. The novel c.1510-1G?>?A mutation was located in intron 12 and caused the activation of a cryptic splice site in exon 13, which determined the loss of 22 amino acids of exon 13 with the introduction of a premature stop codon. Five heterozygous carriers of this mutation were also found in proband's family, all presenting reduced HDL cholesterol and ApoAI (0.86?±?0.16?mmol/L and 92.2?±?10.9?mg/dL respectively), but not the typical features of Tangier disease, a phenotype compatible with the diagnosis of familial HDL deficiency. The other known mutation c.1195-27G?>?A was confirmed to cause aberrant retention of 25 nucleotides of intron 10 leading to the insertion of a stop codon after 20 amino acids of exon 11. Heterozygous carriers of this mutation also showed the clinical phenotype of familial HDL deficiency.Our study extends the catalog of pathogenic intronic mutations affecting ABCA1 pre-mRNA splicing. In a large family, a clear demonstration that the same mutations may cause Tangier disease (if in compound heterozygosis) or familial HDL deficiency (if in heterozygosis) is provided.  相似文献   

20.
Heterozygous de novo mutations in SOX2 have been reported in approximately 10–20% of patients with unilateral or bilateral anophthalmia or microphthalmia. An additional phenotype of hypopituitarism, with anterior pituitary hypoplasia and hypogonadotropic hypogonadism, has been reported in patients carrying SOX2 alterations. We report a novel heterozygous mutation in the SOX2 gene in a male affected with congenital bilateral anophthalmia, hypogonadotrophic hypogonadism and growth hormone deficiency. The mutation we describe is a cytosine deletion in position 905 (c905delC) which causes frameshift and an aberrant C-terminal domain. Our report highlights the fact that subjects affected with eye anomalies and harboring SOX2 mutations are at high risk for gonadotropin deficiency, which has important implications for their clinical management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号