首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
中国东部温带植被生长季节的空间外推估计   总被引:2,自引:0,他引:2  
陈效逑  胡冰  喻蓉 《生态学报》2007,27(1):65-74
利用地面植物物候和遥感归一化差值植被指数(NDVI)数据,以及一种物候-遥感外推方法,实现植被生长季节从少数站点到较多站点的空间外推。结果表明:(1)在1982~1993年期间,中国东部温带地区植被生长季节多年平均起讫日期的空间格局与春季和秋季平均气温的空间格局相关显著;(2)在不同纬度带和整个研究区域,植被生长季节结束日期呈显著推迟的趋势,而开始日期则呈不显著提前的趋势,这与欧洲和北美地区植被生长季节开始日期显著提前而结束日期不显著推迟的变化趋势完全不同;(3)北部纬度带的植被生长季节平均每年延长1.4~3.6d,全区的植被生长季节平均每年延长1.4d,与同期北半球和欧亚大陆植被生长季节延长的趋势数值相近;(4)植被生长季节结束日期的显著推迟与晚春至夏季的区域性降温有关,而植被生长季节开始日期的不显著提前则与晚冬至春季气温趋势的不稳定变化有关;(5)在年际变化方面,植被生长季节开始和结束日期分别与2~4月份平均气温和5~6月份平均气温呈负相关关系。  相似文献   

2.
祁连山不同植被类型的物候变化及其对气候的响应   总被引:2,自引:0,他引:2  
贾文雄  赵珍  俎佳星  陈京华  王洁  丁丹 《生态学报》2016,36(23):7826-7840
基于1982—2006年GIMMS NDVI和2000—2014年MODIS NDVI遥感数据,利用double logistic拟合方法提取了1982—2014年祁连山区不同植被的生长季始期、生长季末期和生长季长度3个重要的物候参数,分析了不同植被物候期的时间变化趋势、空间分异特征及对气候因子的响应。结果表明:(1)祁连山区不同植被的生长季始期和生长季末期随年际变化表现出波动提前或推迟,其中沼泽植被的变化波动最大;草甸植被、灌丛植被、阔叶林植被和栽培植被生长季长度出现延长趋势;(2)祁连山区植被生长季始期集中在5月初,其中阔叶林植被生长季开始最早,荒漠植被生长季开始最晚,植被生长季末期集中在9月,栽培植被生长季结束较早,荒漠植被、沼泽植被生长季结束较晚,植被生长季长度集中在110—140 d,其中阔叶林植被、针叶林植被生长季长度较长,而荒漠植被、高山植被生长季长度较短;(3)祁连山植被物候期变化趋势的空间分布表明植被生长季始期、生长季末期主要表现为提前不明显和推迟不明显,生长季长度主要表现为缩短不明显和延长不明显;(4)物候要素与气候要素相关性表明前期温度的积累有利于植被的开始生长,但当年3月的降水量对植被生长季始期同样有重要作用,不同植被生长季末期与8月、9月温度相关性较大,而与10月、11月降水的相关性较大。  相似文献   

3.
藏北高原植被物候时空动态变化的遥感监测研究   总被引:9,自引:0,他引:9       下载免费PDF全文
利用遥感数据提取的植被物候格局及时空变化特征能很好地反映区域尺度上植被对全球变化的响应。目前关于青藏高原地区植被物候的少量报道基本上是基于物候站点的观测记录展开分析的。该文基于非对称高斯拟合算法重建了藏北高原2001-2010年的MODIS EVI (增强型植被指数)时间序列影像, 然后利用动态阈值法提取整个藏北高原2001-2010年植被覆盖的重要物候信息, 包括植被返青期、枯黄期与生长季长度, 分析了植被物候10年间平均状况的空间分异特征以及年际变化情况, 并结合站点观测记录分析了气温和降水对植被物候变化的影响, 结果表明: (1)藏北高原植被返青期在空间上表现出从东南到西北逐渐推迟的水平地带性与东南高山峡谷区的垂直地带性相结合的特征, 近60%区域的植被返青期提前, 特别是高山地区; (2)植被枯黄期的年际变化不太明显, 大部分地区都表现为自然的年际波动; (3)生长季长度的时空变化特征由植被返青期和枯黄期二者决定, 但主要受返青期提前影响, 大部分地区生长季长度延长; (4)研究区内不同气候区划植被物候的年际变化以那曲高山谷地亚寒带半湿润区和青南高原亚寒带半干旱区的植被返青期提前和生长季延长程度最为明显; (5)基于气象台站数据分析气候变化对物候的影响发现, 返青期提前及生长季延长主要受气温升高的影响, 与降水的关系尚不明确。  相似文献   

4.

Mining has played an important role in the generation of economic wealth since colonial times in South America. However, the impact of historical mining on the environment has not been studied in detail. In view of this, and based on the analysis of archaeological and modern wood data, we discuss the impact of historical mining and human occupation on the woody vegetation of an arid region in the southern Andes. We present the results of the analysis of archaeobotanical charcoal remains recovered from the “Los Hornillos” mining site located in the Andean Precordillera, northwestern Mendoza Province, Argentina. The archaeobotanical materials date from the late 18th to the early 19th century. Based upon wood anatomy, 60% of charcoal fragments were associated with Adesmia cf. uspallatensis, a shrub widely distributed there. We assessed the impact and legacy of human occupation on local and regional plant communities based on charcoal evidence, archaeological data and the age of living A. uspallatensis shrubs growing around the mining site. This analysis allowed us to determine the rate of growth of this species (1.22 mm per year) and mean maximum ages of around 70 years. Therefore, the current development of woody communities in this area is thought to be representative of recovery after historical mining and occupation across the Andean Precordillera and suggests that obtaining firewood for mining activities constituted an important factor influencing past natural vegetation dynamics.

  相似文献   

5.
Fire is an ancient ecological factor influencing the Mediterranean vegetation of southern France. The study was carried out on three areas to determine the phenological behaviour of plants with regard to fire. First we studied the flowering responses of perennials in relation to the time since fire: in a Quercus coccifera garrigue most species flower during the year following burning. In comparing species by species between burned and unburned areas most species did not show major differences in the phenological stages. However, fire did increase the number of inflorescences of grasses. A phenological synthesis showed that differences at the community level existed for the flowering stages between the burned areas and the unburned control sites during the first and second years following fire. The growth of some woody species was also studied; the elongation and growth of the plants were biggest during the first or second year after fire. The lack of differences in phenological response between burned and unburned plants may be an adaptive trait to fire.  相似文献   

6.
The objectives of this study are to explore the relationships between plant phenology and satellite-sensor-derived measures of greenness, and to advance a new procedure for determining the growing season of land vegetation at the regional scale. Three phenological stations were selected as sample sites to represent different climatic zones and vegetation types in northern China. The mixed data set consists of occurrence dates of all observed phenophases for 50–70 kinds of trees and shrubs from 1983 to 1988. Using these data, we calculated the cumulative frequency of phenophases in every 5-day period (pentad) throughout each year, and also drew the cumulative frequency distribution curve for all station-years, in order to reveal the typical seasonal characteristics of these plant communities. The growing season was set as the time interval between 5% and 95% of the phenological cumulative frequency. Average lengths of the growing season varied between 188 days in the northern, to 259 days in the southern part of the research region. The beginning and end dates of the surface growing season were then applied each year as time thresholds, to determine the corresponding 10-day peak greenness values from normalized difference vegetation index curves for 8-km2 pixels overlying the phenological stations. Our results show that, at the beginning of the growing season, the largest average greenness value occurs in the southern part, then in the northern, and finally the middle part of the research region. In contrast, at the end of the growing season, the largest average greenness value is measured in the northern part, next in the middle and lastly the southern part of the research region. In future studies, these derived NDVI thresholds can be applied to determine the growing season of similar plant communities at other sites, which lack surface phenological data. Received: 29 November 1999 / Revised: 14 March 2000 / Accepted: 15 March 2000  相似文献   

7.
2003-2018年米仓山地区植被物候时空变化及对气候的响应   总被引:1,自引:0,他引:1  
邵周玲  周文佐  李凤  周新尧  杨帆 《生态学报》2021,41(9):3701-3712
植被物候直接反映了植被对环境变化响应的动态过程,对研究植被与气候的关系具有重要意义。基于遥感植被时序数据,探讨秦巴山区典型山地-米仓山地区植被物候变化及其对气候的响应。利用MODIS NDVI时序数据,采用动态阈值法获取米仓山地区植被物候参数;借助于Theil Sen斜率、Mann Kendall趋势检验方法结合植被类型数据分析研究区物候时空变化;采用偏相关方法分析物候变化与气温和降水之间的关系。结果表明:(1)米仓山地区植被生长季始期(SOS)主要集中在第80-110d,海拔每上升100m,SOS大约推迟0.6d;生长季末期(EOS)主要集中在第250-300d;生长季长度(LOS)主要集中在130-210d。除低海拔区域受人类活动影响物候波动较大外,EOS和LOS随海拔变化存在2000m分界线,其下物候随海拔升高物候明显推迟或缩短,其上物候变化趋于平缓。(2)16a来植被SOS呈提前趋势,提前幅度为0.47d/a,提前的像元占74.03%,其中,达到显著提前的像元占12.21%(P<0.1);EOS整体呈提前趋势,提前幅度为0.22d/a;LOS略有延长,延长幅度为0.26d/a。(3)区域常绿型森林植被SOS晚于同垂直带的落叶型森林植被;草地、常绿阔叶灌木林SOS提前趋势最明显,变化率分别为-0.80、-0.71d/a;EOS提前趋势最明显的是针阔混交林和落叶阔叶林。(4) SOS主要受3月平均气温和4月降水的影响,3月平均气温升高以及4月降水增加导致SOS提前;EOS主要受10月降水的负向影响。  相似文献   

8.
This study focuses on relationships between the phenological growing season of plant communities and the seasonal metrics of Normalized Difference Vegetation Index (NDVI) at sample stations and pixels overlying them, and explores the procedure for determining the growing season of terrestrial vegetation at the regional scale, using threshold NDVI values obtained by surface–satellite analysis at individual stations/pixels. The cumulative frequency of phenophases has been calculated for each plant community and each year in order to determine the growing season at the three sample stations from 1982 to 1993. The precise thresholds were arbitrarily set as the dates on which the phenological cumulative frequency reached 5% and 10% (for the beginning) and 90% and 95% (for the end). The beginning and end dates of the growing season were then applied each year as time thresholds, to determine the corresponding 10-day peak greenness values from NDVI curves for 8-km2 pixels overlying the phenological stations. According to a trend analysis, a lengthening of the growing seasons and an increase of the integrated growing season NDVI have been detected in the central part of the research region. The correlation between the beginning dates of the growing season and the corresponding threshold NDVI values is very low, which indicates that the satellite-sensor-derived greenness is independent of the beginning time of the growing season of local plant communities. Other than in spring, the correlation between the end dates of the growing season and the corresponding threshold NDVI values is highly significant. The negative correlation shows that the earlier the growing season terminates, the larger the corresponding threshold NDVI value, and vice versa. In order to estimate the beginning and end dates of the growing season using the threshold NDVI values at sites without phenological data from 1982 to 1993, we calculated the spatial correlation coefficients between NDVI time-series at each sample station and other contiguous sites year by year. The results provide the spatial extrapolation area of the growing season for each sample station. Thus, we can use the threshold NDVI value obtained at one sample station/pixel for a year to determine the growing season at the extrapolation sites with a similar vegetation type for the same year. Received: 25 October 2000 / Revised: 19 June 2001 / Accepted: 19 June 2001  相似文献   

9.
韩东  王浩舟  郑邦友  王锋 《生态学报》2018,38(18):6655-6663
植被覆盖度是评估生态环境质量与植被生长的重要指标,也是全球众多陆面过程模型和生态系统模型中表达植被动态的重要参数。卫星遥感和地面测量是估算植被覆盖度的常见方法。然而,如何精确估计榆树疏林草原上木本、草本不同类型植被的覆盖度仍然具有挑战性。无人机飞行系统有效的补充了区域尺度低空间分辨率的卫星遥感影像与样地尺度实地调查之间的缺口,为精确的监测、评估疏林草原的植被动态提供了新途径。利用无人机监测平台和决策树算法构建了一套快速、准确、自动获取景观尺度植被类型和估算植被覆盖度的自动化工具,以浑善达克沙地榆树疏林草原为对象,应用无人机监测平台对榆树疏林草原长期定位监测大样地2017年生长季植被状况进行7次监测。结果表明:1)无人机植被监测平台数据飞行高度100 m,获取的样地数字正射影像空间分辨率为2.67 cm/像元,远高于高分卫星影像,利用决策树算法基于数字正射影像可以实现自动划分榆树疏林草原木本和草本植被类型和估算植被覆盖度; 2)生长季内榆树疏林草原木本植被覆盖度为(19±2)%,草本植被覆盖度为(50±8)%,植被总覆盖度为(69±9)%,相对于木本植被,草本植被生长季内盖度变幅较大; 3)在整个生长季中,木本植被和草本植被对植被总覆盖度的平均贡献率分别为27%和73%,草本植被对植被总盖度的贡献远大于木本植被,榆树疏林草原植被的盖度主要受草本植被的影响。本研究证明无人机监测平台是一种高效、准确的植被监测工具,结合机器学习算法,实现了景观尺度植被类型的自动划分和不同类型植被覆盖度快速获取;在浑善达克沙地榆树疏林草原地区首次获取了木本植被和草本植被覆盖度的生长季动态。该平台未来可应用于各种类型生态系统植被类型划分、监测和评估。  相似文献   

10.
Abundance of predators in crops can be increased by augmenting the adjacent non-crop vegetation, with associated environmental benefits from reduced chemical inputs and landscape conservation. Fine-scale spatial analysis is required to assess the extent to which non-crop benefits extend into farmed areas. We used explicit spatial mapping to investigate benefits of woody vegetation in two vineyards. The abundance of canopy-dwelling predators and predation/parasitism rates was measured at two vineyards with woody vegetation on one margin. Grids were sampled monthly across two summer growing seasons and stability of spatial patterns determined for consecutive months for each season and between seasons. At these two locations small parasitoids and several species of ladybird beetles from the vine canopy exhibited spatial patterning, with regions of high and low abundance and activity, aggregated in rows near to woody vegetation. Aggregations varied in temporal stability, with some persisting throughout the season. When predation and parasitism of sentinel eggs of a moth pest were non-randomly distributed, levels were higher in vine rows closer to the woody vegetation and significantly associated with a known egg parasitoid and ladybird beetles. This study demonstrated predators and parasitoids had non random and stable distributions at two vineyards. Increased abundance of both Coccinellidae and parasitoids was seen over similar distances: extending approximately 40 m from the vegetated edge. Increase in parasitism and predation extended a similar distance in from the vegetation. These results suggest management of vineyards where non-crop vegetation can be used to increase numbers and impact of beneficials, with recommendations for planting woody vegetation a minimum of 50 m from vineyard edges.  相似文献   

11.
Abstract: Large herbivores such as elephants (Loxodonta africana) apparently have a negative impact on woody vegetation at moderate to high population densities. The confounding effects that fire, drought, and management history have may complicate assignment of such impacts to herbivory. We reviewed 238 studies published over 45 years and conducted a meta-analysis based on 21 studies that provided sufficient information on response of woody vegetation to elephants. We considered size and duration of studies, elephant densities, rainfall, fences, and study outcomes in our analysis. We detected a disproportionate citation of 20 published studies in our database, 15 of which concluded that woody vegetation responded negatively to elephants. Our analysis showed that high elephant densities had a negative effect on woody vegetation but that rainfall and presence of fences influenced these effects. In arid savannas, woody vegetation always responded negatively to elephants. In transitional savannas, an increase in elephant densities did not influence woody vegetation response. In mesic savannas, negative responses of woody vegetation increased when elephants occurred at higher densities, whereas elephants confined by fences also had more negative effects on woody plants than elephants that were not confined. Our analysis suggested that rainfall and fences influenced elephant density related impact and that research results were often site-specific. Local environmental conditions and site-specific objectives should be considered when developing management actions to curb elephant impacts on woody vegetation.  相似文献   

12.
王明  桑卫国 《生态科学》2020,39(1):164-175
根据2003-2014年气象数据和暖温带3种乔木(辽东栎、五角枫和核桃楸)和3种灌木(土庄绣线菊、毛叶丁香和六道木)的物候观测数据资料, 采用气候倾向率和回归分析等方法, 观察乔木和灌木物候变化特征的差异, 分析温度、降水以及乔木、灌木的物候变化趋势, 同时对气象因子与乔木和灌木物候期的相关关系进行研究。结果表明: ①研究期间, 北京东灵山平均气温呈不显著的上升趋势, 气候倾向率为0.200℃·10a–1, 春季(3–5月)和夏季(6-8月)温度显著上升; 降水量呈下降趋势, 平均减少71.630 mm·10a–1, 总体呈暖、干的趋势。②3种乔木的生长季长度都缩短, 辽东栎、五角枫和核桃楸平均生长季长度分别缩短50.70 d·10 a–1、29.83 d·10a–1和22.36 d·10a–1。3种灌木的生长季长度也都缩短, 土庄绣线菊、毛叶丁香和六道木的平均生长季长度分别缩短42.55 d·10a–1、42.76 d·10a–1和38.15 d·10a–1。乔木和灌木的物候变化趋势相同, 整体表现为春季物候推迟, 秋季物候提前, 生长季长度都缩短且生长季长度相差不大。乔木和灌木都表现出芽期推迟最明显, 每10年推迟达19天以上。③乔木和灌木各物候期与气温总体表现为负相关, 即气温升高, 物候期提前, 其相关性显示出夏季(6-8月)温度对植被物候期影响较大, 夏季温度与各物候期表现为正相关, 即夏季温度升高, 物候期推迟。同时乔木和灌木与总体降水没有明显的相关关系, 但秋季物候与不同时段降水表现不同的相关性, 由此可知夏季温度变化对木本植物春季物候(出芽期、展叶期和首花期)的影响更大, 而秋季物候(叶变色期和落叶期)受温度和降水共同影响。  相似文献   

13.
The structure of woody vegetation was studied in little disturbed arid savanna and in adjacent over-grazed vegetation. In the over-grazed areas density and cover of woody plants were higher than in the less disturbed vegetation. The difference was accounted for by one species, Acacia mellifera, which was strongly dominant in the overgrazed vegetation. In the open savanna, the woody species varied in height from small shrubs to trees, while the dense shrub vegetation was of uniformly low stature.It is suggested that, while the differences in total abundance of woody species depend on differences in the amount of soil water available for woody growth, differences in species composition and height distribution are governed by the spatial and temporal distribution of water in the soil profile.  相似文献   

14.
This research aims at developing a remote sensing technique for monitoring the interannual variability of the European larch phenological cycle in the Alpine region of Aosta Valley (Northern Italy) and to evaluate its relationships with climatic factors. Phenological field observations were conducted in eight test sites from 2005 to 2007 to determine the dates of completion of different phenological phases. MODerate Resolution Imaging Spectrometer (MODIS) 250 m 16‐days normalized difference vegetation index (NDVI) time series were fitted with double logistic curves and the dates corresponding to different features of the curves were determined. Comparison with field data showed that the features of the fitted NDVI curve that allowed the best estimate of the start and end of the growing season were the zeroes of its third derivative (MAE of 6 and 4 days, respectively). The start and end of season were also estimated with the spring warming (SW) and growing season index (GSI) phenological models. MODIS start and end of season dates generally agreed with those obtained by the SW and GSI climate‐driven phenological models. However, phenological models provided erroneous results when applied in years with anomalous meteorological conditions. The relationships between interannual variability of the larch phenological cycle and climate were investigated by comparing the mean start and end of season yearly anomalies with air temperature anomalies. A strong linear relationship (R2=0.91) was found between mean spring temperatures and mean start of season dates, with an increase of 1 °C in mean spring temperature leading to a 7‐day anticipation of mean larch bud‐burst date. Leaf coloring dates were found to be best related with mean September temperature (R2=0.77), but with higher spring temperatures appearing to lead to earlier leaf coloring.  相似文献   

15.
《Biological Control》2010,55(3):248-254
Undisturbed vegetation within agricultural areas, especially woody vegetation, has been documented to enhance natural invertebrate enemies within adjacent crops, particularly in northern Europe. To test this idea within the context of Australian vineyards, we considered 44 landscapes from two regions, and sampled invertebrates in vineyards central to each landscape five times at monthly intervals using canopy sticky traps. Landscape composition was characterized at 11 spatial scales from 95 m to 3 km radius. We found only weak relationships between woody vegetation and the abundance of invertebrate groups including coccinellids at any spatial scale, regardless of whether the contribution of each scale was considered independently or together using a multiple regression approach. The only consistent pattern was that several families of parasitoids were influenced by woody vegetation at the landscape scale; the abundance of Eulophidae increased with woody vegetation in the landscape, while two families of smaller parasitoids, Trichogrammatidae and Mymaridae, were negatively affected by woody vegetation. We discuss possible reasons for these apparent contrasting patterns between Australian and European studies.  相似文献   

16.
该研究利用谱系独立比较法(Phylogenetically Independent Contrasts,PIC)和Wilcoxon秩和检验法,分析中国科学院植物研究所植物园(39°54'N,116°12'E)中的84个物种170株个体的传粉方式和果实类型对木本开花时间和结实时间的影响,其中Wilcoxon秩和检验法检验的结果作为PIC检验结果的参考。结果表明:(1)传粉方式显著影响植物开花和结实时间,风媒花植物比虫媒花植物开花和结实早;(2)果实类型对结实时间的影响在考虑和不考虑物种间系统发育关系时表现不同,当不考虑物种间系统发育关系时,肉质果实植物结实时间比非肉质果实植物早;(3)不同的传粉方式间以及不同的果实类型间植物的花果间隙期无显著差异,但本研究结果显示肉质果实植物结实时间比非肉质果实植物大约早20d。由此推论:(1)植物固有属性,如传粉方式和果实类型,会影响植物繁殖物候,且不同的属性影响强度不同;(2)与某一特定物候期或繁殖器官相关性大的属性对该物候期的影响可能更大,如传粉方式对开花时间的影响可能大于其对结实时间的影响,而果实类型对结实物候期的影响更大。  相似文献   

17.
Aim To study changes in woody vegetation in both floodplains and eucalypt savanna over a 40‐year period using multi‐temporal spatial analysis of variation in density of a large introduced herbivore, the Asian water buffalo (Bubalus bubalis). Feral buffalo built up to high densities in the study area until c. 1985, after which a control programme almost eliminated the animals. From 1990, low densities of managed buffalo were maintained inside an enclosure. We compared trends in woody vegetation when buffalo were high‐density feral, low‐density managed or absent. Location The study area was located in and around a 116‐km2 buffalo enclosure inside Kakadu National Park, in monsoonal northern Australia. Methods We analysed sequences of digitized and geo‐rectified aerial photographs, acquired in 1964, 1975, 1984, 1991 and 2004, to chart changes in woody cover on the floodplain and in the savanna. On the floodplain we assessed whether trees were present at these times at 14,568 points, and buffalo density was estimated from the density of animal tracks. In the savanna we estimated woody cover at pre‐selected sites. Generalized linear modelling was used to analyse changes in woody vegetation, using elevation and presence of woody vegetation in neighbouring points on the floodplain, and buffalo regime and initial woody cover in the savanna. Results Changes in animal track density reflected park‐wide historical estimates of buffalo numbers. Tree cover increased in both floodplain and savanna, but this was only weakly related to buffalo density. The best predictor of whether a floodplain cell converted from treeless to woody, or the converse, was the woodiness of neighbouring vegetation. There was slightly less thickening with high buffalo densities. In savanna, low densities of managed buffalo were weakly associated with increases in tree cover relative to either high densities of feral buffalo or no buffalo. Main conclusions Our study indicates that buffalo are not a major driver of floodplain and eucalypt savanna dynamics. Rather, the observed increase in woody cover in both savanna and flood plains concords with regional trends and may be related to increased atmospheric CO2, increasing rainfall and changing fire regimes during the study period.  相似文献   

18.
Abstract

This work describes an ecological study on the vegetal component in a pilot area (hill A5) of a highly contaminated site (ACNA Cengio, Savona, Italy). The following analyses were performed: (i) phytosociological analysis of the vegetal component; (ii) phenological and synphenological analyses; (iii) evaluation of photosynthetic efficiency; and (iv) evaluation of the degree of mycorrhization. Most representative phytocoenoses belonged to the Artemisietea vulgaris, Galio-Urticetea and Molinio-Arrhenatheretea classes; the site was completely and densely covered by vegetation, but characterized by a rather poor floristic richness. Most plants were visibly suffering, as confirmed, at the physiological level, by fluorescence analysis of photosynthetic rate. Some important phenological phases were shorter than normal or even absent. Most plants were modestly colonized by arbuscular – mycorrhizal fungi, but the fungal structures within the roots were normal. Species belonging to the Leguminosae were, together with those belonging to the Graminaceae, the most representative; the former showed an almost normal photosynthetic efficiency, whereas other families did not.  相似文献   

19.
本研究以额济纳绿洲四道桥超级站为研究区,结合2018—2019年涡度通量、气象数据和2017—2020年Sentinel-2遥感影像,分析通量塔总初级生产力(GPP)与环境因子的关系,评估12种遥感植被指数对柽柳灌丛长势模拟和关键物候参数提取的适用性。采用7参数双逻辑斯蒂函数(DL-7)+全局模型函数(GMF)拟合GPP和各植被指数生长曲线,并逐年提取生长季始期(SOS)、生长季峰期(POS)和生长季末期(EOS)3种关键物候参数。结果表明: 有效积温(GDD)和土壤含水量是影响柽柳灌丛物候动态的主要环境因子。与2018年相比,2019年由于气温较低,SOS前的积温累积速率较慢,柽柳灌丛需要更长时间的热量积累来进入生长季,从而导致2019年SOS比2018年晚。在SOS与POS之间,2018和2019年水热条件相似,但2019年POS比2018年晚8 d,可能是2019年SOS较晚所致。POS以后,2019年较高的GDD和较低的土壤含水量使柽柳灌丛遭受水分胁迫,导致其生长季后期时间缩短。标准化的Sentinel-2植被指数与10:00—14:00 GPP均值的线性回归结果表明,宽波段植被指数中的增强型植被指数和窄波段植被指数中的叶绿素红边指数、倒红边叶绿素指数、红边归一化植被指数(NDVI705)能够较好地反映与柽柳灌丛GPP具有较高的一致性。柽柳灌丛SOS和EOS的遥感提取结果表明,Sentinel-2窄波段植被指数比宽波段植被指数的准确性更高,尤其是修正叶绿素吸收反射率指数提取SOS最准确,MERIS陆地叶绿素指数提取EOS最准确;Sentinel-2宽波段植被指数提取POS的准确性更高,尤其是两波段增强型植被指数和植被近红外反射率指数最准确。综合所有物候参数来看,NDVI705综合表现最佳。  相似文献   

20.
Abstract. The phenological changes in populations of Festuca pallescens (St. Yves) Parodi at different topographic positions and exposure along an altitudinal gradient (600 - 1100 m) were investigated during two growing seasons in northwestern Patagonia. Stepwise multiple regression analysis was used to describe the relationship between phenology and environment during the entire growing season. Analysis of variance was also performed at each sample date to detect significant environmental factors influencing phenology at different sites. The sum of maximum air temperatures was identified as the environmental variable best correlated with the seasonal variation of phenological events of Festuca pallescens over the period of two growing seasons, explaining 93.2 % of the total variance. Significant differences between sites were observed at each sample date. Main effects of altitude and topographic position and two-way interactions between altitude and topographic position, and topographic position and exposure were also detected as significant. Phenology was delayed at increased altitude. Differences in phenology between topographic sites at the same altitude were not detected during the entire growing season and were only observed in the reproductive phase. At this time, the phenology was significantly delayed at high topographic positions on the slopes as compared with low and mid positions. At high altitudes in the valley (950 m a. s. 1.), where steep slopes and humid conditions prevail, phenology was delayed on western exposures and low positions. The results adequately summarize and quantify the effect of spatial and temporal environmental variation on the phenological development of Festuca pallescens in northwestern Patagonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号