首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Meningococcal meningitis(MCM)is one of the serious public health threats in the tropical and sub-tropical regions.In this paper,we propose an epidemic model to study the transmission dynamics of MCM with high-and low-risk susceptible populations.The model considers two different groups of susceptible individuals depending on the availability of medical resources(MR,including hospitals,health workers,etc.),which varies the infection risk.We find that the model exhibits the phenomenon of backward bifurcation(BB),which increases the difficulty of MCM control since the dynamics are not merely relying on the basic reproduction number,TZo.This study explores the effects of MR on the MCM epidemics by mathematical analysis and shows the existence of BB on MCM disease.Our findings suggest that providing adequate MR in a community is crucial in mitigating MCM incidences and deaths,especially,in the MCM endemic regions.  相似文献   

6.
In this paper, we establish the existence of travelling wave solution to an intrinsically non-linear differential–integral equation formed as a result of mathematical modelling of the evolution of an asexual population in a changing environment. This equation is first converted to a non-linear integral equation. The discretization and manipulation of the corresponding eigenvalue problem allows us to use the theory of positive matrices to get some very useful estimates and then to confirm the existence of solution. We also exhibit numerical simulation results and explain the biological meaning of the results.  相似文献   

7.
The success of psychotherapy depends on the nature of the therapeutic relationship between a therapist and a client. We use dynamical systems theory to model the dynamics of the emotional interaction between a therapist and client. We determine how the therapeutic endpoint and the dynamics of getting there depend on the parameters of the model. Previously Gottman et al. used a very similar approach (physical-sciences paradigm) for modeling and making predictions about husband–wife relationships. Given that this novel approach shed light on the dyadic interaction between couples, we have applied it to the study of the relationship between therapist and client. The results of our computations provide a new perspective on the therapeutic relationship and a number of useful insights. Our goal is to create a model that is capable of making solid predictions about the dynamics of psychotherapy with the ultimate intention of using it to better train therapists.  相似文献   

8.
We observed the infection cycle of the temperate actinophage KC301 in relation to the growth of its host Streptomyces lividans TK24 in sterile soil microcosms. Despite a large increase in phage population following germination of host spores, there was no observable impact on host population numbers as measured by direct plate counts. The only change in the host population following infection was the establishment of a small subpopulation of KC301 lysogens. The interaction of S. lividans and KC301 in soil was analyzed with a population-dynamic mathematical model to determine the underlying mechanisms of this low susceptibility to phage attack relative to aquatic environments. This analysis suggests that the soil environment is a highly significant component of the phage-host interaction, an idea consistent with earlier observations on the importance of the environment in determining host growth and phage-host dynamics. Our results demonstrate that the accepted phage-host interaction and host life cycle, as determined from agar plate studies and liquid culture, is sufficient for quantitative agreement with observations in soil, using soil-determined rates. There are four significant effects of the soil environment: (i) newly germinated spores are more susceptible to phage lysis than are hyphae of developed mycelia, (ii) substrate mycelia in mature colonies adsorb about 98% of the total phage protecting susceptible young hyphae from infection, (iii) the burst size of KC301 is large in soil (>150, 90% confidence) relative to that observed in liquid culture (120, standard error of the mean [SEM], 6), and (iv) there is no measurable impact on the host in terms of reduced growth by the phage. We hypothesize that spatial heterogeneity is the principal cause of these effects and is the primary determinant in bacterial escape of phage lysis in soil.  相似文献   

9.
A mathematical model of glycolysis in Saccharomyces cerevisiae is presented. The model is based on rate equations for the individual reactions and aims to predict changes in the levels of intra- and extracellular metabolites after a glucose pulse, as described in part I of this study. Kinetic analysis focuses on a time scale of seconds, thereby neglecting biosynthesis of new enzymes. The model structure and experimental observations are related to the aerobic growth of the yeast. The model is based on material balance equations of the key metabolites in the extracellular environment, the cytoplasm and the mitochondria, and includes mechanistically based, experimentally matched rate equations for the individual enzymes. The model includes removal of metabolites from glycolysis and TCC for biosynthesis, and also compartmentation and translocation of adenine nucleotides. The model was verified by in vivo diagnosis of intracellular enzymes, which includes the decomposition of the network of reactions to reduce the number of parameters to be estimated simultaneously. Additionally, sensitivity analysis guarantees that only those parameters are estimated that contribute to systems trajectory with reasonable sensitivity. The model predictions and experimental observations agree reasonably well for most of the metabolites, except for pyruvate and adenine nucleotides. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 592-608, 1997.  相似文献   

10.
Mathematical analysis is carried out that completely determines the global dynamics of a mathematical model for the transmission of human T-cell lymphotropic virus I (HTLV-I) infection and the development of adult T-cell leukemia (ATL). HTLV-I infection of healthy CD4(+) T cells takes place through cell-to-cell contact with infected T cells. The infected T cells can remain latent and harbor virus for several years before virus production occurs. Actively infected T cells can infect other T cells and can convert to ATL cells, whose growth is assumed to follow a classical logistic growth function. Our analysis establishes that the global dynamics of T cells are completely determined by a basic reproduction number R(0). If R(0)< or =1, infected T cells always die out. If R(0)>1, HTLV-I infection becomes chronic, and a unique endemic equilibrium is globally stable in the interior of the feasible region. We also show that the equilibrium level of ATL-cell proliferation is higher when the HTLV-I infection of T cells is chronic than when it is acute.  相似文献   

11.
Decreasing the slope of the dynamic, but not conventional, restitution curves is antifibrillatory. Cardiac memory/accommodation underlies the difference. We measured diastolic interval (DI) and action potential duration (APD) in epicardial, endocardial, and Purkinje tissue from eight dogs. Consecutive 100-stimulus trains were given to study transitions between basic cycle lengths (BCL) ranging from 400 to 1,300 ms. (DI,APD) pairs aligned immediately on the line DI + APD = BCL (64/67) or oscillated (3/67). The shifting effect of up to 10 extrastimuli on restitution curves was also measured. These curves were fit with the equation APD = alpha + beta exp(-DI/tau), where alpha is asymptote, beta is drop, and tau is time constant. Linear regression of the parameters against the number of extrastimuli showed that premature and postmature stimuli decreased and increased alpha and beta and increased and decreased tau, respectively. Analysis of a mathematical model treating memory as an exponentially decreasing shift of restitution curves shows that oscillatory DI,APD is expected with large DeltaBCL, steep restitution slope, or increased cardiac accommodation. The model explains phase shifts and suggests a common mechanism for Purkinje and myocardial electrical alternans.  相似文献   

12.
Telomere dynamics in genome stability   总被引:7,自引:0,他引:7  
The past several years have seen an increasing interest in telomere recombinational interactions that provide many functions in telomere capping, in telomere size homeostasis and in overcoming the catastrophic effects of telomerase deficiency. Several key recombination mechanisms have emerged from recent investigations. In the yeasts, these mechanisms include exchange between subtelomeric regions and telomere sequences, rapid telomere expansion and telomere deletion. These processes proceed by pathways that use both the cellular recombination machinery and novel mechanisms such as rolling circle replication. The insights gained from recent studies extend our understanding of similar processes in higher eukaryotes and suggest that the recombinational dynamics of telomeres have additional roles that contribute to genomic stability and instability.  相似文献   

13.
  1. Download : Download high-res image (282KB)
  2. Download : Download full-size image
  相似文献   

14.
The pressure-temperature stability diagram of proteins and the underlying assumptions of the elliptical shape of the diagram are discussed. Possible extensions, such as aggregation and fibril formation, are considered. An important experimental observation is the extreme pressure stability of the mature fibrils. Molecular origins of the diagram in terms of models of the partial molar volume of a protein focus on cavities and hydration. Changes in thermal expansivity, compressibility and heat capacity in terms of fluctuations of the enthalpy and volume change of the unfolding should also focus on these parameters. It is argued that the study of water-soluble polymers might further our understanding of the stability diagram. Whereas the role of water in protein behaviour is unquestioned, the role of cavities is less clear.  相似文献   

15.
The effects of adaptation to intermittent and continuous hypoxia on the electrical stability of the heart were compared in middle altitude conditions and in altitude chamber in Wistar rats with postinfarction cardiosclerosis. It has been shown that both forms of adaptation could restore the heart fibrillation threshold and restrict the ectopic activity in postinfarction cardiosclerosis. Beneficial effects of adaptation to intermittent hypoxia in conditions of the altitude chamber appeared to be more radical.  相似文献   

16.
Various methods have been used to quantify the kinematic variability or stability of the human spine. However, each of these methods evaluates dynamic behavior within the stable region of state space. In contrast, our goal was to determine the extent of the stable region. A 2D mathematical model was developed for a human sitting on an unstable seat apparatus (i.e., the “wobble chair”). Forward dynamic simulations were used to compute trajectories based on the initial state. From these trajectories, a scalar field of trajectory divergence was calculated, specifically a finite time Lyapunov exponent (FTLE) field. Theoretically, ridges of local maxima within this field are expected to partition the state space into regions of qualitatively different behavior. We found that ridges formed at the boundary between regions of stability and failure (i.e., falling). The location of the basin of stability found using the FTLE field matched well with the basin of stability determined by an alternative method. In addition, an equilibrium manifold was found, which describes a set of equilibrium configurations that act as a low dimensional attractor in the controlled system. These simulations are a first step in developing a method to locate state space boundaries for torso stability. Identifying these boundaries may provide a framework for assessing factors that contribute to health risks associated with spinal injury and poor balance recovery (e.g., age, fatigue, load/weight, and distribution). Furthermore, an approach is presented that can be adapted to find state space boundaries in other biomechanical applications.  相似文献   

17.
A general mathematical model of viral infections inside a spherical organ is presented. Transported quantities are used to represent external cells or viral particles that penetrate the organ surface to either promote or combat the infection. A diffusion mechanism is considered for the migration of transported quantities to the organ inner tissue. Cases that include the effect of penetration, diffusion and proliferation of immune system cells, the generation of latently infected cells and the delivery of antiviral treatment are analyzed. Different antiviral mechanisms are modeled in the context of spatial variation. Equilibrium conditions are also calculated to determine the radial profile after the infection progresses and antiviral therapy is delivered for a long period of time. The dynamic and equilibrium solutions obtained in this paper provide insight into the temporal and spatial evolution of viral infections.  相似文献   

18.
19.
Global stability in time-delayed single-species dynamics   总被引:15,自引:0,他引:15  
Criteria are established for three classes of models of single-species dynamics with a single discrete delay to have a globally asymptotically stable positive equilibrium independent of the length of delay. Research partially supported by the NSERC of Canada, grant No. A4823. Research was carried out while the author was a distinguished visitor at the University of Alberta.  相似文献   

20.
Mathematical models of bubble evolution in tissue have recentlybeen incorporated into risk functions for predicting the incidence ofdecompression sickness (DCS) in human subjects after diving and/or flying exposures. Bubble dynamics models suitable forthese applications assume the bubble to be either contained in anunstirred tissue (two-region model) or surrounded by a boundary layerwithin a well-stirred tissue (three-region model). The contrastingpremises regarding the bubble-tissue system lead to differentexpressions for bubble dynamics described in terms of ordinarydifferential equations. However, the expressions are shown to bestructurally similar with differences only in the definitions ofcertain parameters that can be transformed to make the modelsequivalent at large tissue volumes. It is also shown that thetwo-region model is applicable only to bubble evolution in tissues ofinfinite extent and cannot be readily applied to bubble evolution infinite tissue volumes to simulate how such evolution is influenced byinteractions among multiple bubbles in a given tissue. Two-regionmodels that are incorrectly applied in such cases yield results thatmay be reinterpreted in terms of their three-region model equivalents but only if the parameters in the two-region model transform into consistent values in the three-region model. When such transforms yieldinconsistent parameter values for the three-region model, results maybe qualitatively correct but are in substantial quantitative error.Obviation of these errors through appropriate use of the differentmodels may improve performance of probabilistic models of DCSoccurrence that express DCS risk in terms of simulated in vivo gas andbubble dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号