首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ecological Complexity》2008,5(3):272-279
As ecological data increases in breadth, depth, and complexity, the discipline of ecology is increasingly influenced by information science. While this influence provides many opportunities for ecologists, it also necessitates a change in how we manage and share data, and perhaps more fundamentally, define concepts in ecology. Specifically, the information technology process of automated data integration entirely depends upon consistent concept definition. A common tool used in computer science and engineering to specify meanings, which is both novel and offers significant potential to ecology, is an ontology. An ontology is a formal representation of knowledge in which concepts are described by their meaning and their relationship to each other. Ontologies are a tool that can be used to ‘explicitly specify a concept’ (Gruber, 1993) and this approach is uncommon in ecology. In this paper, we develop an ontology for the concept of ‘landscape’ that captures the most general definitions and usages of this term. We selected the concept of landscape because it is often used in very different ways by investigators and hence generates linguistic uncertainty. A graphic theoretic (i.e., visual) model is provided which describes the set of structuring rules we used to define the relationships between ‘landscape’ and appropriately related terms. Based upon these rules, a landscape necessarily contains a spatial component (i.e., area), structure and function (i.e., ecosystems), and is scale independent. This approach provides the set of necessary conditions for landscape studies to reduce linguistic uncertainty, and facilitate interoperability of data, i.e., in a manner that promotes data linkages and quantitative synthesis particularly by automatic data synthesis programs that are likely to become an important part of ecology in the future. Simply put, we use an ontology, a technique novel to ecology but not other disciplines, to define ‘landscape,’ thereby clearly delineating one subset of its potential general usage. As such this ontology can serve as both a checklist for landscape studies and a blueprint for additional ecological ontologies.  相似文献   

2.
We modeled expert knowledge of arthropod flower-visiting behavioral ecology and represented this in an event-centric domain ontology, which we describe along with the ontology construction process. Two smaller domain ontologies were created to represent expert knowledge of known flower-visiting insect groups and expert knowledge of the flower-visiting behavioral ecology of Rediviva bees. Two application ontologies were designed, which, together with the domain ontologies, constituted the ontology framework of a prototype semantic enrichment and mediation system that we designed and implemented to improve semantic interoperability between flower-visiting data-stores. We describe and evaluate the system implementation in a case-study of three flower-visiting data-stores, and we discuss the system's scalability, extension and potential impact. We demonstrate how the system is able to dynamically extract complex ecological interactions from heterogeneous specimen data-stores. The conceptual stance and modeling approach are potentially of general use in representing knowledge of animal behavior and ecological interactions, and in engineering semantic interoperability between data-stores containing behavioral ecology data.  相似文献   

3.
The value of any kind of data is greatly enhanced when it exists in a form that allows it to be integrated with other data. One approach to integration is through the annotation of multiple bodies of data using common controlled vocabularies or 'ontologies'. Unfortunately, the very success of this approach has led to a proliferation of ontologies, which itself creates obstacles to integration. The Open Biomedical Ontologies (OBO) consortium is pursuing a strategy to overcome this problem. Existing OBO ontologies, including the Gene Ontology, are undergoing coordinated reform, and new ontologies are being created on the basis of an evolving set of shared principles governing ontology development. The result is an expanding family of ontologies designed to be interoperable and logically well formed and to incorporate accurate representations of biological reality. We describe this OBO Foundry initiative and provide guidelines for those who might wish to become involved.  相似文献   

4.
Researchers design ontologies as a means to accurately annotate and integrate experimental data across heterogeneous and disparate data- and knowledge bases. Formal ontologies make the semantics of terms and relations explicit such that automated reasoning can be used to verify the consistency of knowledge. However, many biomedical ontologies do not sufficiently formalize the semantics of their relations and are therefore limited with respect to automated reasoning for large scale data integration and knowledge discovery. We describe a method to improve automated reasoning over biomedical ontologies and identify several thousand contradictory class definitions. Our approach aligns terms in biomedical ontologies with foundational classes in a top-level ontology and formalizes composite relations as class expressions. We describe the semi-automated repair of contradictions and demonstrate expressive queries over interoperable ontologies. Our work forms an important cornerstone for data integration, automatic inference and knowledge discovery based on formal representations of knowledge. Our results and analysis software are available at http://bioonto.de/pmwiki.php/Main/ReasonableOntologies.  相似文献   

5.
MOTIVATION: In the Life Sciences, guidelines, checklists and ontologies describing what metadata is required for the interpretation and reuse of experimental data are emerging. Data producers, however, may have little experience in the use of such standards and require tools to support this form of data annotation. RESULTS: RightField is an open source application that provides a mechanism for embedding ontology annotation support for Life Science data in Excel spreadsheets. Individual cells, columns or rows can be restricted to particular ranges of allowed classes or instances from chosen ontologies. The RightField-enabled spreadsheet presents selected ontology terms to the users as a simple drop-down list, enabling scientists to consistently annotate their data. The result is 'semantic annotation by stealth', with an annotation process that is less error-prone, more efficient, and more consistent with community standards. Availability and implementation: RightField is open source under a BSD license and freely available from http://www.rightfield.org.uk  相似文献   

6.

Background  

Biomedical ontologies are being widely used to annotate biological data in a computer-accessible, consistent and well-defined manner. However, due to their size and complexity, annotating data with appropriate terms from an ontology is often challenging for experts and non-experts alike, because there exist few tools that allow one to quickly find relevant ontology terms to easily populate a web form.  相似文献   

7.
BACKGROUND: Ontologies are being developed for the life sciences to standardise the way we describe and interpret the wealth of data currently being generated. As more ontology based applications begin to emerge, tools are required that enable domain experts to contribute their knowledge to the growing pool of ontologies. There are many barriers that prevent domain experts engaging in the ontology development process and novel tools are needed to break down these barriers to engage a wider community of scientists. RESULTS: We present Populous, a tool for gathering content with which to construct an ontology. Domain experts need to add content, that is often repetitive in its form, but without having to tackle the underlying ontological representation. Populous presents users with a table based form in which columns are constrained to take values from particular ontologies. Populated tables are mapped to patterns that can then be used to automatically generate the ontology's content. These forms can be exported as spreadsheets, providing an interface that is much more familiar to many biologists. CONCLUSIONS: Populous's contribution is in the knowledge gathering stage of ontology development; it separates knowledge gathering from the conceptualisation and axiomatisation, as well as separating the user from the standard ontology authoring environments. Populous is by no means a replacement for standard ontology editing tools, but instead provides a useful platform for engaging a wider community of scientists in the mass production of ontology content.  相似文献   

8.
MOTIVATION: A major challenge in modern biology is to link genome sequence information to organismal function. In many organisms this is being done by characterizing phenotypes resulting from mutations. Efficiently expressing phenotypic information requires combinatorial use of ontologies. However tools are not currently available to visualize combinations of ontologies. Here we describe CRAVE (Concept Relation Assay Value Explorer), a package allowing storage, active updating and visualization of multiple ontologies. RESULTS: CRAVE is a web-accessible JAVA application that accesses an underlying MySQL database of ontologies via a JAVA persistent middleware layer (Chameleon). This maps the database tables into discrete JAVA classes and creates memory resident, interlinked objects corresponding to the ontology data. These JAVA objects are accessed via calls through the middleware's application programming interface. CRAVE allows simultaneous display and linking of multiple ontologies and searching using Boolean and advanced searches.  相似文献   

9.
A continuing discussion in applied and theoretical ecology focuses on the relationship of different organisational levels and on how ecological systems interact across scales. We address principal approaches to cope with complex across-level issues in ecology by applying elements of hierarchy theory and the theory of complex adaptive systems. A top-down approach, often characterised by the use of statistical techniques, can be applied to analyse large-scale dynamics and identify constraints exerted on lower levels. Current developments are illustrated with examples from the analysis of within-community spatial patterns and large-scale vegetation patterns. A bottom-up approach allows one to elucidate how interactions of individuals shape dynamics at higher levels in a self-organisation process; e.g., population development and community composition. This may be facilitated by various modelling tools, which provide the distinction between focal levels and resulting properties. For instance, resilience in grassland communities has been analysed with a cellular automaton approach, and the driving forces in rodent population oscillations have been identified with an agent-based model. Both modelling tools illustrate the principles of analysing higher level processes by representing the interactions of basic components.The focus of most ecological investigations on either top-down or bottom-up approaches may not be appropriate, if strong cross-scale relationships predominate. Here, we propose an ‘across-scale-approach’, closely interweaving the inherent potentials of both approaches. This combination of analytical and synthesising approaches will enable ecologists to establish a more coherent access to cross-level interactions in ecological systems.  相似文献   

10.
Advancing ecological research with ontologies   总被引:1,自引:0,他引:1  
  相似文献   

11.
The National Center for Biomedical Ontology is a consortium that comprises leading informaticians, biologists, clinicians, and ontologists, funded by the National Institutes of Health (NIH) Roadmap, to develop innovative technology and methods that allow scientists to record, manage, and disseminate biomedical information and knowledge in machine-processable form. The goals of the Center are (1) to help unify the divergent and isolated efforts in ontology development by promoting high quality open-source, standards-based tools to create, manage, and use ontologies, (2) to create new software tools so that scientists can use ontologies to annotate and analyze biomedical data, (3) to provide a national resource for the ongoing evaluation, integration, and evolution of biomedical ontologies and associated tools and theories in the context of driving biomedical projects (DBPs), and (4) to disseminate the tools and resources of the Center and to identify, evaluate, and communicate best practices of ontology development to the biomedical community. Through the research activities within the Center, collaborations with the DBPs, and interactions with the biomedical community, our goal is to help scientists to work more effectively in the e-science paradigm, enhancing experiment design, experiment execution, data analysis, information synthesis, hypothesis generation and testing, and understand human disease.  相似文献   

12.
Machine learning methods without tears: a primer for ecologists   总被引:1,自引:0,他引:1  
Machine learning methods, a family of statistical techniques with origins in the field of artificial intelligence, are recognized as holding great promise for the advancement of understanding and prediction about ecological phenomena. These modeling techniques are flexible enough to handle complex problems with multiple interacting elements and typically outcompete traditional approaches (e.g., generalized linear models), making them ideal for modeling ecological systems. Despite their inherent advantages, a review of the literature reveals only a modest use of these approaches in ecology as compared to other disciplines. One potential explanation for this lack of interest is that machine learning techniques do not fall neatly into the class of statistical modeling approaches with which most ecologists are familiar. In this paper, we provide an introduction to three machine learning approaches that can be broadly used by ecologists: classification and regression trees, artificial neural networks, and evolutionary computation. For each approach, we provide a brief background to the methodology, give examples of its application in ecology, describe model development and implementation, discuss strengths and weaknesses, explore the availability of statistical software, and provide an illustrative example. Although the ecological application of machine learning approaches has increased, there remains considerable skepticism with respect to the role of these techniques in ecology. Our review encourages a greater understanding of machin learning approaches and promotes their future application and utilization, while also providing a basis from which ecologists can make informed decisions about whether to select or avoid these approaches in their future modeling endeavors.  相似文献   

13.
Mixed models are now well‐established methods in ecology and evolution because they allow accounting for and quantifying within‐ and between‐individual variation. However, the required normal distribution of the random effects can often be violated by the presence of clusters among subjects, which leads to multi‐modal distributions. In such cases, using what is known as mixture regression models might offer a more appropriate approach. These models are widely used in psychology, sociology, and medicine to describe the diversity of trajectories occurring within a population over time (e.g. psychological development, growth). In ecology and evolution, however, these models are seldom used even though understanding changes in individual trajectories is an active area of research in life‐history studies. Our aim is to demonstrate the value of using mixture models to describe variation in individual life‐history tactics within a population, and hence to promote the use of these models by ecologists and evolutionary ecologists. We first ran a set of simulations to determine whether and when a mixture model allows teasing apart latent clustering, and to contrast the precision and accuracy of estimates obtained from mixture models versus mixed models under a wide range of ecological contexts. We then used empirical data from long‐term studies of large mammals to illustrate the potential of using mixture models for assessing within‐population variation in life‐history tactics. Mixture models performed well in most cases, except for variables following a Bernoulli distribution and when sample size was small. The four selection criteria we evaluated [Akaike information criterion (AIC), Bayesian information criterion (BIC), and two bootstrap methods] performed similarly well, selecting the right number of clusters in most ecological situations. We then showed that the normality of random effects implicitly assumed by evolutionary ecologists when using mixed models was often violated in life‐history data. Mixed models were quite robust to this violation in the sense that fixed effects were unbiased at the population level. However, fixed effects at the cluster level and random effects were better estimated using mixture models. Our empirical analyses demonstrated that using mixture models facilitates the identification of the diversity of growth and reproductive tactics occurring within a population. Therefore, using this modelling framework allows testing for the presence of clusters and, when clusters occur, provides reliable estimates of fixed and random effects for each cluster of the population. In the presence or expectation of clusters, using mixture models offers a suitable extension of mixed models, particularly when evolutionary ecologists aim at identifying how ecological and evolutionary processes change within a population. Mixture regression models therefore provide a valuable addition to the statistical toolbox of evolutionary ecologists. As these models are complex and have their own limitations, we provide recommendations to guide future users.  相似文献   

14.
15.
A central goal in understanding the ecology and evolution of animals is to identify factors that constrain or expand breadth of diet. Selection of diet in many animals is often constrained by chemical deterrents (i.e., secondary metabolites) in available food items. The integration of chemistry and ecology has led to a significant understanding of the chemical complexity of prey (e.g., animals, plants, and algae) and the resultant foraging behavior of consumers. However, most of the literature on chemical defenses of marine and terrestrial prey lacks a mechanistic understanding of how consumers tolerate, or avoid, chemically-defended foods. In order to understand ecological patterns of foraging and co-evolutionary relationships between prey and consumers, we must advance our understanding of the physiological mechanisms responsible for chemical interactions. Such mechanistic studies require the integration of the discipline of pharmacology with ecology, which we call "PharmEcology." Pharmacology provides the tools and insight to investigate the fate (what the body does to a chemical) and action (what a chemical does to the body) of chemicals in living organisms, whereas ecology provides the insight into the interactions between organisms (e.g., herbivores) and their environment (e.g., plants). Although, the general concepts of pharmacology were introduced to ecologists studying plant-herbivore interactions over 30 years ago, the empirical use of pharmacology to understand mechanisms of chemical interactions has remained limited. Moreover, many of the recent biochemical, molecular and technical advances in pharmacology have yet to be utilized by ecologists. The PharmEcology symposium held at a meeting of the Society for Integrative and Comparative Biology in January of 2009 was developed to define novel research directions at the interface of pharmacology and ecology.  相似文献   

16.
MOTIVATION: An important contribution to the Gene Ontology (GO) project is to develop tools that facilitate the creation, maintenance and use of ontologies. Several tools have been created for communicating and using the GO project. However, a limitation with most of these tools is that they suffer from lack of a comprehensive search facility. We developed a web application, GOfetcher, with a very comprehensive search facility for the GO project and a variety of output formats for the results. GOfetcher has three different levels for searching the GO: 'Quick Search', 'Advanced Search' and 'Upload Files' for searching. The application includes a unique search option which generates gene information given a nucleotide or protein accession number which can then be used in generating GO information. The output data in GOfetcher can be saved into several different formats; including spreadsheet, comma-separated values and the extensible markup language (XML) format. The database is available at http://mcbc.usm.edu/gofetcher/.  相似文献   

17.

Background  

The use of ontologies to control vocabulary and structure annotation has added value to genome-scale data, and contributed to the capture and re-use of knowledge across research domains. Gene Ontology (GO) is widely used to capture detailed expert knowledge in genomic-scale datasets and as a consequence has grown to contain many terms, making it unwieldy for many applications. To increase its ease of manipulation and efficiency of use, subsets called GO slims are often created by collapsing terms upward into more general, high-level terms relevant to a particular context. Creation of a GO slim currently requires manipulation and editing of GO by an expert (or community) familiar with both the ontology and the biological context. Decisions about which terms to include are necessarily subjective, and the creation process itself and subsequent curation are time-consuming and largely manual.  相似文献   

18.
MOTIVATION: Anatomy ontologies have a growing role in bioinformatics-for example, in indexing gene expression data in model organisms. To relate or draw conclusions from data so indexed, anatomy ontologies must be equipped with the formal vocabulary that would allow statements about meronomy to be qualified by constraints such as part of the male or part at the embryonic stage. Lacking such a vocabulary, anatomists have built this information into the structure of the ontology or into anatomical terms. For example, in the FlyBase anatomy for drosophila, the term larval abdominal segment encodes the stage in the term, while the terms male genital disc and female genital disc encode the sex. It remains implicit that a fly has one and only one of these parts during its larval stage. Such indicators of context can and should be represented explicitly in the ontology. RESULTS: The framework we have defined for anatomical ontologies allows the canonical anatomy structures of a given species to be those common to all sexes, and to have either male, female or hermaphrodite parts--but not combinations of the latter. Temporal aspects of development are addressed by associating a stage with organism parts and requiring a connected anatomy to have parts that exist at a common stage. Both sex and anatomical stage are represented by attributes. This formalization clarifies ontological structure and meaning and increases the capacity for formal reasoning about anatomy. The framework also supports generalizations such as vertebrate and invertebrate, thereby allowing the representation of anatomical structures that are common across a sub-phylum.  相似文献   

19.
The evening session in ecological complexity at the last Joint Meeting of the International Association for Ecology (INTECOL) and the Ecological Society of America (ESA) held in Montreal was an occasion to evaluate the pertinence and upcoming challenges of the complex systems approach (CSA) applied to ecology. Through concepts such as the interaction topology among biological objects, the phenotypic integration of individual traits, the meaning of biological objects and complexity measures in space and time, the management of human dominated ecosystems, and non-equilibrium thermodynamics as a paradigm for the development of ecosystems, the panel members covered some of the most active areas of research in ecological complexity. However, for many ecologists, and particularly field ecologists, a comprehensive framework clearly emphasizing how and why the CSA provides a unique corpus for studying ecosystem functions is missing. The purpose of this article is thus to provide an overview of the different themes visited during the evening session and to emphasize the distinctiveness of the CSA as an alternative to contemporary ecological issues. Examples from functional ecology and food webs are given to support the discussion.  相似文献   

20.
The strength of the rat as a model organism lies in its utility in pharmacology, biochemistry and physiology research. Data resulting from such studies is difficult to represent in databases and the creation of user-friendly data mining tools has proved difficult. The Rat Genome Database has developed a comprehensive ontology-based data structure and annotation system to integrate physiological data along with environmental and experimental factors, as well as genetic and genomic information. RGD uses multiple ontologies to integrate complex biological information from the molecular level to the whole organism, and to develop data mining and presentation tools. This approach allows RGD to indicate not only the phenotypes seen in a strain but also the specific values under each diet and atmospheric condition, as well as gender differences. Harnessing the power of ontologies in this way allows the user to gather and filter data in a customized fashion, so that a researcher can retrieve all phenotype readings for which a high hypoxia is a factor. Utilizing the same data structure for expression data, pathways and biological processes, RGD will provide a comprehensive research platform which allows users to investigate the conditions under which biological processes are altered and to elucidate the mechanisms of disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号