首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although a strong correlation between type-2 diabetes and obesity has been found, no comparative analysis between diabetes and obesity has been performed with respect to mitochondrial DNA (mtDNA) polymorphisms. To test the hypothesis that certain mitochondrial single nucleotide polymorphisms (mtSNPs) might be associated with obesity or type-2 diabetes, we determined the entire sequences of the mitochondrial genomes from 96 patients with type-2 diabetes and those from 96 young obese adults by direct sequencing and compared the frequencies of mtSNPs between these two groups. A mtSNP, 8684C > T (T53I) in the mitochondrial ATP synthase subunit 6 gene (ATP6), was detected in 5 of the 96 patients with type-2 diabetes, whereas this substitution was not detected in any of the 96 young obese adults. Two mtSNPs, 3497C > T (A64V) in NADH dehydrogenase subunit 1 gene (ND1) and 1119T > C (472U > C) in the 12S rRNA gene, were detected in 5 of the 96 young obese adults, whereas these substitutions were not detected in any of the 96 diabetic patients. The 8684C > T transition associated with type-2 diabetes represents haplogroup M8a, and the 3497C > T and 1119T > C transitions predisposing to obesity represent haplogroup B4c. These results suggest that distinct mtSNPs contribute to susceptibility to type-2 diabetes or obesity, pointing out the necessity of large-scale case control studies.  相似文献   

2.
Leber’s hereditary optic neuropathy (LHON) is an optic nerve dysfunction resulting from mutations in mitochondrial DNA (mtDNA), which is transmitted in a maternal pattern of inheritance. It is caused by three primary point mutations: G11778A, G3460A and T14484C; in the mitochondrial genome. These mutations are sufficient to induce the disease, accounting for the majority of LHON cases, and affect genes that encode for the different subunits of mitochondrial complexes I and III of the mitochondrial respiratory chain. Other mutations are secondary mutations associated with the primary mutations. The purpose of this study was to determine MT-ND variations in Iranian patients with LHON. In order to determine the prevalence and distribution of mitochondrial mutations in the LHON patients, their DNA was studied using PCR and DNA sequencing analysis. Sequencing of MT-ND genes from 35 LHON patients revealed a total of 44 nucleotide variations, in which fifteen novel variations—A14020G, A13663G, C10399T, C4932A, C3893G, C10557A, C12012A, C13934T, G4596A, T12851A, T4539A, T4941A, T13255A, T14353C and del A 4513—were observed in 27 LHON patients. However, eight patients showed no variation in the ND genes. These mutations contribute to the current database of mtDNA polymorphisms in LHON patients and may facilitate the definition of disease-related mutations in human mtDNA. This research may help to understand the disease mechanism and open up new diagnostic opportunities for LHON.  相似文献   

3.
Several genetic factors have been found to be associated with recurrent pregnancy loss (RPL). However, not many attempts have been made to associate the mitochondrial DNA (mtDNA) variations with RPL. Therefore, we have analyzed the complete mtDNA of 100 women with RPL and 12 aborted fetal tissues. Our analysis revealed a total of 681 variations, most of which were in NADH Dehydrogenase (ND) genes that encode mitochondrial enzyme Complex I. Presence of T4216C variation (ND1 gene) in 9% of the RPL women and several pathogenic, and novel mutations suggest the role of mtDNA variations in RPL.  相似文献   

4.
We describe a novel mutation in human mitochondrial NADH dehydrogenase 1 gene (ND1), a G to A transition at nucleotide position 3337, which is co-segregated with two known mutations in tRNALeu(CUN) A12308G and tRNAThr C15946T. These mutations were detected in two unrelated patients with different clinical phenotypes, exhibiting cardiomyopathy as the common symptom. The ND1 G3337A mutation that was detected was found almost homoplasmic in the two patients and it was absent in 150 individuals that were tested as control group. Mitochondrial respiratory chain complex I activity of the patients platelets was also tested and found decreased compared to those of controls. We suggest that the co-existence of mutations in tRNA and ND1 genes may act synergistically affecting the clinical phenotype. Our study highlights the enormous phenotypic diversity that exists among pathogenic mtDNA mutations and re-emphasizes the need for a more careful clinical approach.  相似文献   

5.
Somatic mutations have been identified in mitochondrial DNA (mtDNA) of various human primary cancers. However, their roles in the pathophysiology of cancers are still unclear. In our previous study, high frequency of somatic mutations was found in the D-loop region of mtDNA of hepatocellular carcinomas (HCCs). In the present study, we examined 44 HCCs and corresponding non-cancerous liver tissues, and identified 13 somatic mutations in the coding region of mtDNAs from 11 HCC samples (11/44, 25%). Among the 13 mtDNA mutations, six mutations (T6787C, G7976A, A9263G, G9267A, A9545G and A11708G) were homoplasmic while seven mutations (956delC, T1659C, G3842A, G5650A, 11032delA, 12418insA and a 66 bp deletion) were heteroplasmic. Moreover, the G3842A transition created a premature stop codon and the 66 bp deletion could omit 22 amino acid residues in the NADH dehydrogenase (ND) subunit 1 (ND1) gene. The 11032delA and 12418insA could result in frame-shift mutation in the ND4 and ND5 genes, respectively. The T1659C transition in tRNAVal gene and G5650A in tRNAAla gene were reported to be clinically associated with some mitochondrial disorders. In addition, the T6787C (cytochrome c oxidase subunit I, COI), G7976A (COII), G9267A (COIII) and A11708G (ND4) mutations could result in amino acid substitutions in the highly conserved regions of the affected mitochondrial genes. These mtDNA mutations (10/13, 76.9%) have the potential to cause mitochondrial dysfunction in HCCs. Taken these results together, we suggest that there may be a higher frequency of mtDNA mutations in HCC than in normal liver tissues from the same individuals.  相似文献   

6.
Mutations in the mitochondrial tRNA(leu) (UUR) gene have been associated with diabetes mellitus and deafness. We screened for the presence of mtDNA mutations in the tRNA(leu) (UUR) gene and adjacent ND1 sequences in 12 diabetes mellitus pedigrees with a possible maternal inheritance of the disease. One patient carried a G to A substitution at nt 3243 (tRNA(leu) (UUR) gene) in heteroplasmic state. In a second pedigree a patient had an A to G substitution at nt 3397 in the ND1 gene. All maternal relatives of the proband had the 3397 substitution in homoplasmic state. This substitution was not present in 246 nonsymptomatic Caucasian controls. The 3397 substitution changes a highly conserved methionine to a valine at aa 31 and has previously been found in Alzheimer's (AD) and Parkinson's (PD) disease patients. Substitutions in the mitochondrial ND1 gene at aa 30 and 31 have associated with a number of different diseases (e.g. AD/PD, MELAS, cardiomyopathy and diabetes mellitus, LHON, Wolfram-syndrome and maternal inherited diabetes) suggesting that changes at these two codons may be associated with very diverse pathogenic processes. In a further attempt to search for mtDNA mutations outside the tRNAleu gene associated with diabetes, the whole mtDNA genome sequence was determined for two patients with maternally inherited diabetes and deafness. Except for substitutions previously reported as polymorphisms, none of the two patients showed any non-synonymous substitutions either in homoplasmic or heteroplasmic state. These results imply that the maternal inherited diabetes and deafness in these patients must result from alterations of nuclear genes and/or environmental factors.  相似文献   

7.
Friedreich’s ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by decreased expression of the protein Frataxin. Frataxin deficiency leads to excessive free radical production and dysfunction of chain complexes. Mitochondrial DNA (mtDNA) could be considered a candidate modifier factor for FRDA disease, since mitochondrial oxidative stress is thought to be involved in the pathogenesis of this disease. It prompted us to focus on the mtDNA and monitor the nucleotide changes of genome which are probably the cause of respiratory chain defects and reduced ATP generation. We searched about 46% of the entire mitochondrial genome by temporal temperature gradient gel electrophoresis (TTGE) and DNA fragments showing abnormal banding patterns were sequenced for the identification of exact mutations. In 18 patients, for the first time, we detected 26 mtDNA mutations; of which 5 (19.2%) was novel and 21 (80.8%) have been reported in other diseases. Heteroplasmic C13806A polymorphisms were associated with Iranian FRDA patients (55.5%). Our results showed that NADH dehydrogenase (ND) genes mutations in FRDA samples were higher than normal controls (P < 0.001) and we found statistically significant inverse correlation (r = −0.8) between number of mutation in ND genes and age of onset in FRDA patients. It is possible that mutations in ND genes could constitute a predisposing factor which in combination with environmental risk factors affects age of onset and disease progression.  相似文献   

8.
Complex I NADH-oxidoreductase-ubiquinone transports reducing equivalents from the reduced form of NADH to ubiquinone (coenzyme Q-CoQ). The purpose of this study was to analyze mutations in MT-ND1, MT-ND2, MT-ND3 and MT-ND6 genes and their effect on the biochemical properties, structure and functioning of proteins in patients with breast tumours. In research materials, in 50 patients, 28 total polymorphisms and five mutations were detected. Most detected polymorphisms (50 %, 14/28) were observed in MT-ND2 gene. Most of them were silent mutations. Five polymorphisms (m.G3916A, m.C4888T, m.A4918G, m.C5363T, m.C10283T) do not exist in the database. A total of five mutations in 13 patients (13/50) were detected, including two not described in the literature: m.C4987G and m.T10173C. It cannot be excluded that, through the mutations and polymorphism impact on the protein structure, they may cause mitochondrial dysfunction and contribute to the appearance of other changes in mtDNA. The results of our study indicate the presence of homological changes in the sequence of mtDNA in both breast cancer and in some mitochondrial diseases. Mutations in the examined genes in breast cancer may affect the cell and cause its dysfunction, as is the case in mitochondrial diseases.  相似文献   

9.
Mutations in mitochondrial DNA (mtDNA), particularly those in the 12S rRNA gene, have been shown to be associated with sensorineural hearing loss. Here we report the clinical and sequence analysis of the entire mitochondrial genome in three Chinese subjects with aminoglycoside-induced and non-syndromic hearing impairment. Clinical evaluation showed a variable phenotype of hearing impairment including the age of onset and audiometric configuration in these subjects. Sequence analysis of the complete mitochondrial genomes in three subjects showed the distinct sets of mtDNA polymorphism, in addition to the identical mitochondrial 12S rRNA T1095C mutation. This mutation was previously identified to be associated with hearing impairment in three families from different genetic backgrounds. The T1095C mutation was absent in 364 Chinese control. In fact, the occurrence of the T1095C mutation in these several genetically unrelated subjects affected by hearing impairment strongly indicates that this mutation is involved in the pathogenesis of hearing impairment. Among other nucleotide changes, the A2238G and T2885C mutations in the 16S rRNA, the I175V mutation in the CO2, the F16L mutation in the A6 and the V112M mutation in the ND6 exhibited a high evolutionary conservation. These data suggest that the T1095C mutation may be associated with aminoglycoside-induced and non-syndromic hearing impairments and A2238G and T2885C mutations in the 16S rRNA, the I175V mutation in the CO2, the F16L mutation in the A6 and the V112M mutation in the ND6 may contribute to the phenotypic expression of the T1095C mutation in these subjects.  相似文献   

10.
Lactic acidosis has been associated with a variety of clinical conditions and can be due to mutation in nuclear or mitochondrial genes. We performed mutations screening of all mitochondrial tRNA genes in 44 patients who referred as hyperlactic acidosis. Patients showed heterogeneous phenotypes including Leigh disease in four, MELAS in six, unclassified mitochondrial myopathy in 10, cardiomyopathy in five, MERRF in one, pure lactic acidosis in six, and others in 12 including facio-scaplo-femoral muscular dystrophy (FSFD), familial cerebellar ataxia, recurrent Reye syndrome, cerebral palsy with mental retardation. We measured enzymatic activities of pyruvate dehydrogenase complex, and respiratory chain enzymes. All mitochondrial tRNA genes and known mutation of ATPase 6 were studied by single strand conformation polymorphism (SSCP), automated DNA sequence and PCR-RFLP methods. We have found one patient with PDHC deficiency and six patients with Complex I+IV deficiency, though the most of the patients showed subnormal to deficient state of respiratory chain enzyme activities. We have identified one of the nucleotide changes in 29 patients. Single nucleotide changes in mitochondrial tRNA genes are found in 27 patients and one in ATPase 6 gene in two patients. One of four pathogenic point mutations (A3243G, C3303T, A8348G, and T8993G) was identified in 12 patients who showed the phenotype of Leigh syndrome, MELAS, cardimyopathy and cerebral palsy with epilepsy. Seventeen patients have one of the normal polymorphisms in the mitochondrial tRNA gene reported before. SSCP and PCR-RFLP could detect the heteroplasmic condition when the percentage of mutant up to 5, however, it cannot be observed by direct sequencing method. It is important to screen the mtDNA mutation not only by direct sequence but also by PCR-RFLP and the other sensitive methods to detect the heroplasmy when lactic acidosis has been documented in the patients who are not fulfilled the criteria of mitochondrial disorders.  相似文献   

11.
线粒体DNA突变是引起听力损伤的重要原因之一. 其中,线粒体12S rRNA基因突变与综合征型耳聋和非综合征型耳聋相关. 导致综合征型耳聋的线粒体DNA突变多为异质性,然 而对于非综合征型耳聋突变则多以同质性或高度异质性存在,说明这种分子致病性需要较高的阈值. 位于12S rRNA解码区的A1555G和C1494T突变是造成氨基糖甙类抗生素耳毒性和 非综合征型耳聋常见的分子机制. 这些突变可能造成12S rRNA二级结构的改变,影响线粒体蛋白质的合成,降低细胞内ATP的产生,由此引起的线粒体功能障碍导致耳聋. 但是多数 基因突变的致病机制还仅处于推测阶段. 其它修饰因子如氨基糖甙类抗生素、线粒体单体型、核修饰基因参与了线粒体12S rRNA基因A1555G和C1494T突变相关的耳聋表型表达.  相似文献   

12.
A considerable body of evidence supports the role of mitochondrial dysfunction in psychiatric disorders and mitochondrial DNA (mtDNA) mutations are known to alter brain energy metabolism, neurotransmission, and cause neurodegenerative disorders. Genetic studies focusing on common nuclear genome variants associated with these disorders have produced genome wide significant results but those studies have not directly studied mtDNA variants. The purpose of this study is to investigate, using next generation sequencing, the involvement of mtDNA variation in bipolar disorder, schizophrenia, major depressive disorder, and methamphetamine use. MtDNA extracted from multiple brain regions and blood were sequenced (121 mtDNA samples with an average of 8,800x coverage) and compared to an electronic database containing 26,850 mtDNA genomes. We confirmed novel and rare variants, and confirmed next generation sequencing error hotspots by traditional sequencing and genotyping methods. We observed a significant increase of non-synonymous mutations found in individuals with schizophrenia. Novel and rare non-synonymous mutations were found in psychiatric cases in mtDNA genes: ND6, ATP6, CYTB, and ND2. We also observed mtDNA heteroplasmy in brain at a locus previously associated with schizophrenia (T16519C). Large differences in heteroplasmy levels across brain regions within subjects suggest that somatic mutations accumulate differentially in brain regions. Finally, multiplasmy, a heteroplasmic measure of repeat length, was observed in brain from selective cases at a higher frequency than controls. These results offer support for increased rates of mtDNA substitutions in schizophrenia shown in our prior results. The variable levels of heteroplasmic/multiplasmic somatic mutations that occur in brain may be indicators of genetic instability in mtDNA.  相似文献   

13.
14.
Leber's hereditary optic neuropathy (LHON) is a maternally transmitted form of blindness caused by mitochondrial DNA (mtDNA) mutations. Approximately 90% of LHON cases are caused by 3460A, 11778A, or 14484C mtDNA mutations. These are designated "primary" mutations because they impart a high risk for LHON expression. Although the 11778A and 14484C mutations unequivocally predispose carriers to LHON, they are preferentially associated with mtDNA haplogroup J, one of nine Western Eurasian mtDNA lineages, suggesting a synergistic and deleterious interaction between these LHON mutations and haplogroup J polymorphism(s). We report here the characterization of a new primary LHON mutation in the mtDNA ND4L gene at nucleotide pair 10663. The homoplasmic 10663C mutation has been found in three independent LHON patients who lack a known primary mutation and all of which belong to haplogroup J. This mutation has not been found in a large number of haplotype-matched or non-haplogroup-J control mtDNAs. Phylogenetic analysis with primarily complete mtDNA sequence data demonstrates that the 10663C mutation has arisen at least three independent times in haplogroup J, indicating that it is not a rare lineage-specific polymorphism. Analysis of complex I function in patient lymphoblasts and transmitochondrial cybrids has revealed a partial complex I defect similar in magnitude to the 14484C mutation. Thus, the 10663C mutation appears to be a new primary LHON mutation that is pathogenic when co-occurring with haplogroup J. These results strongly support a role for haplogroup J in the expression of certain LHON mutations.  相似文献   

15.
Phylogenetic analysis of different regions of the mitochondrial genome of the sable showed the presence of several topologies of phylogenetic trees, but the most statistically significant topology is A-BC, which was obtained as a result of the analysis of the mitochondrial genome as a whole, as well as of the individual CO1, ND4, and ND5 genes. Analysis of the intergroup divergence of the mtDNA haplotypes (D xy) indicated that the maximum D xy values between A and BC groups were accompanied by minimum differences between B and C groups only for six genes showing the A-BC topology (12S rRNA, CO1, CO2, ND4, ND5, and CYTB). It is assumed that the topological conflicts observed in the analysis of individual sable mtDNA genes are associated with the uneven distribution of mutations along the mitochondrial genome and the mitochondrial tree. This may be due to random causes, as well as the nonuniform effect of selection.  相似文献   

16.
This study was primarily undertaken to test the hypothesis that mitochondrial DNA (mtDNA) mutations may be associated with aplastic anemia (AA). We analyzed mtDNA sequences from 15 patients with AA. The samples were obtained from bone marrow, and patients' oral epithelial cells were collected for normal tissue comparison. Total DNA was amplified by PCR after extraction, and these segments were then sent for sequencing. The results were compared with those of oral epithelial tissues as well as mtDNA sequences in the revised Cambridge Reference Sequence (rCRS) database. We detected 61 heteroplasmic mutations in 11 genes, including those encoding NADH dehydrogenase (ND)1-2 and 4-6, tRNA glutamic acid (TRNE), ribosomal RNA (RNR) 1 and 2, cytochrome c oxidase (COX1), cytochrome b (CYTB), and tRNA glycine (TRNG); mutation rates were particularly high in ND2 (34.4%) and ND4 (21.3%) in the patients' mtDNA genomes. The products of these genes are involved in oxidation in the respiratory chain, and a large number of homoplasmic mutations were found. Interestingly, these 162 polymorphisms were mostly in the D-loop DNA structure (54.3%), in which numerous mutations associated with leukemia and myelodysplastic syndromes are found. We conclude that functional impairment of the mitochondrial respiratory chain induced by mutation may be an important reason for hematopoietic failure in AA patients.  相似文献   

17.
In patients with mitochondrial disease a continuously increasing number of mitochondrial DNA (mtDNA) mutations and polymorphisms have been identified. Most pathogenic mtDNA mutations are heteroplasmic, resulting in heteroduplexes after PCR amplification of mtDNA. To detect these heteroduplexes, we used the technique of denaturing high performance liquid chromatography (DHPLC). The complete mitochondrial genome was amplified in 13 fragments of 1–2 kb, digested in fragments of 90–600 bp and resolved at their optimal melting temperature. The sensitivity of the DHPLC system was high with a lowest detection of 0.5% for the A8344G mutation. The muscle mtDNA from six patients with mitochondrial disease was screened and three mutations were identified. The first patient with a limb-girdle-type myopathy carried an A3302G substitution in the tRNALeu(UUR) gene (70% heteroplasmy), the second patient with mitochondrial myopathy and cardiomyopathy carried a T3271C mutation in the tRNALeu(UUR) gene (80% heteroplasmy) and the third patient with Leigh syndrome carried a T9176C mutation in the ATPase6 gene (93% heteroplasmy). We conclude that DHPLC analysis is a sensitive and specific method to detect heteroplasmic mtDNA mutations. The entire automatic procedure can be completed within 2 days and can also be applied to exclude mtDNA involvement, providing a basis for subsequent investigation of nuclear genes.  相似文献   

18.
A rare form of Leber hereditary optic neuropathy (LHON) that is associated with hereditary spastic dystonia has been studied in a large Dutch family. Neuropathy and ophthalmological lesions were present together in some family members, whereas only one type of abnormality was found in others. mtDNA mutations previously reported in LHON were not present. Sequence analysis of the protein-coding mitochondrial genes revealed two previously unreported mtDNA mutations. A heteroplasmic A-->G transition at nucleotide position 11696 in the ND4 gene resulted in the substitution of an isoleucine for valine at amino acid position 312. A second mutation, a homoplasmic T-->A transition at nucleotide position 14596 in the ND6 gene, resulted in the substitution of a methionine for the isoleucine at amino acid residue 26. Biochemical analysis of a muscle biopsy revealed a severe complex I deficiency, providing a link between these unique mtDNA mutations and this rare, complex phenotype including Leber optic neuropathy.  相似文献   

19.
Dilated cardiomyopathy (DCM) is widely accepted as a pluricausal or multifactorial disease. Because of the linkage between energy metabolism in the mitochondria and cardiac muscle contraction, it is reasonable to assume that mitochondrial abnormalities may be responsible for some forms of DCM. We analysed the whole mitochondrial genome in a series of 45 patients with DCM for alterations and compared the findings with those of 62 control subjects. A total of 458 sequence changes could be identified. These sequence changes were distributed among the whole mitochondrial DNA (mtDNA). An increased number of novel missense mutations could be detected nearly in all genes encoding for protein subunits in DCM patients. In genes coding for NADH dehydrogenase subunits the number of mtDNA mutations detected in patients with DCM was significantly increased (p < 0.05) compared with control subjects. Eight mutations were found to occur in conserved amino acids in the above species. The c.5973G > A (Ala-Trp) and the c.7042T > G (Val-Asp) mutations were located in highly conserved domains of the gene coding for cytochrome c oxidase subunit. Two tRNA mutations could be detected in the mtDNA of DCM patients alone. The T-C transition at nt 15,924 is connected with respiratory enzyme deficiency, mitochondrial myopathy, and cardiomyopathy. The c.16189T > C mutation in the D-loop region that is associated with susceptibility to DCM could be detected in 15.6% of patients as well as in 9.7% of controls. Thus, mutations altering the function of the enzyme subunits of the respiratory chain can be relevant for the pathogenesis of dilated cardiomyopathy.  相似文献   

20.
Autosomal dominant and/or recessive progressive external ophthalmoplegia (ad/arPEO) is associated with mtDNA mutagenesis. It can be caused by mutations in three nuclear genes, encoding the adenine nucleotide translocator 1, the mitochondrial helicase Twinkle or DNA polymerase γ (POLG). How mutations in these genes result in progressive accumulation of multiple mtDNA deletions in post- mitotic tissues is still unclear. A recent hypothesis suggested that mtDNA replication infidelity could promote slipped mispairing, thereby stimulating deletion formation. This hypothesis predicts that mtDNA of ad/arPEO patients will contain frequent mutations throughout; in fact, our analysis of muscle from ad/arPEO patients revealed an age-dependent, enhanced accumulation of point mutations in addition to deletions, but specifically in the mtDNA control region. Both deleted and non-deleted mtDNA molecules showed increased point mutation levels, as did mtDNAs of patients with a single mtDNA deletion, suggesting that point mutations do not cause multiple deletions. Deletion breakpoint analysis showed frequent breakpoints around homopolymeric runs, which could be a signature of replication stalling. Therefore, we propose replication stalling as the principal cause of deletion formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号