首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
To study the soybean plasma membrane proteome under osmotic stress, two methods were used: a gel‐based and a LC MS/MS‐based proteomics method. Two‐day‐old seedlings were subjected to 10% PEG for 2 days. Plasma membranes were purified from seedlings using a two‐phase partitioning method and their purity was verified by measuring ATPase activity. Using the gel‐based proteomics, four and eight protein spots were identified as up‐ and downregulated, respectively, whereas in the nanoLC MS/MS approach, 11 and 75 proteins were identified as up‐ and downregulated, respectively, under PEG treatment. Out of osmotic stress responsive proteins, most of the transporter proteins and all proteins with high number of transmembrane helices as well as low‐abundance proteins could be identified by the LC MS/MS‐based method. Three homologues of plasma membrane H+‐ATPase, which are transporter proteins involved in ion efflux, were upregulated under osmotic stress. Gene expression of this protein was increased after 12 h of stress exposure. Among the identified proteins, seven proteins were mutual in two proteomics techniques, in which calnexin was the highly upregulated protein. Accumulation of calnexin in plasma membrane was confirmed by immunoblot analysis. These results suggest that under hyperosmotic conditions, calnexin accumulates in the plasma membrane and ion efflux accelerates by upregulation of plasma membrane H+‐ATPase protein.  相似文献   

2.

Background

Unlike humans, there is currently no publicly available reference mass spectrometry-based circulating acellular proteome data for sheep, limiting the analysis and interpretation of a range of physiological changes and disease states. The objective of this study was to develop a robust and comprehensive method to characterise the circulating acellular proteome in ovine serum.

Methods

Serum samples from healthy sheep were subjected to shotgun proteomic analysis using nano liquid chromatography nano electrospray ionisation tandem mass spectrometry (nanoLC-nanoESI-MS/MS) on a quadrupole time-of-flight instrument (TripleTOF® 5600+, SCIEX). Proteins were identified using ProteinPilot? (SCIEX) and Mascot (Matrix Science) software based on a minimum of two unmodified highly scoring unique peptides per protein at a false discovery rate (FDR) of 1% software by searching a subset of the Universal Protein Resource Knowledgebase (UniProtKB) database (http://www.uniprot.org). PeptideShaker (CompOmics, VIB-UGent) searches were used to validate protein identifications from ProteinPilot? and Mascot.

Results

ProteinPilot? and Mascot identified 245 and 379 protein groups (IDs), respectively, and PeptideShaker validated 133 protein IDs from the entire dataset. Since Mascot software is considered the industry standard and identified the most proteins, these were analysed using the Protein ANalysis THrough Evolutionary Relationships (PANTHER) classification tool revealing the association of 349 genes with 127 protein pathway hits. These data are available via ProteomeXchange with identifier PXD004989.

Conclusions

These results demonstrated for the first time the feasibility of characterising the ovine circulating acellular proteome using nanoLC-nanoESI-MS/MS. This peptide spectral data contributes to a protein library that can be used to identify a wide range of proteins in ovine serum.
  相似文献   

3.

Background  

The observed molecular weight of a protein on a 1D polyacrylamide gel can provide meaningful insight into its biological function. Differences between a protein's observed molecular weight and that predicted by its full length amino acid sequence can be the result of different types of post-translational events, such as alternative splicing (AS), endoproteolytic processing (EPP), and post-translational modifications (PTMs). The characterization of these events is one of the important goals of total proteome profiling (TPP). LC/MS/MS has emerged as one of the primary tools for TPP, but since this method identifies tryptic fragments of proteins, it has not generally been used for large-scale determination of the molecular weight of intact proteins in complex mixtures.  相似文献   

4.
5.
缺磷胁迫下的小麦根系形态特征研究   总被引:42,自引:10,他引:42  
研究了缺磷条件下不同基因型小麦(Triticum aestivum L.)苗期根系形态学适应特征,以明确环境因子对根系不同组分(根轴和侧根)生长发育调控作用的强度和根系形态与磷营养效率关系。在缺P环境中,小麦根轴数量和侧根长度明显减小,同化物向根部的分配比例增加,根轴长度、侧根数量和根系长度等均有显著提高。供试基因型小麦的根轴数量及其长度的差异在每个供磷水平及不同供磷水平之间均呈显著,说明这两种性状的差异是由基因型和环境因素共同决定的;而侧根特征的差异只在不同供磷水平间显著,表明侧根性状主要受环境因素的控制。对6种基因型小麦的研究表明,根轴数量、根轴长度、根生长角度和根系长度根角之间存在着显著的基因型差异。相关分析表明,小麦的相对产量与缺磷条件下的小麦苗期根系形态指标的交互作用之间具有显著的线性关系。这种关系说明根系形态性状可作为早期有效地筛选磷高效小麦品种的指标。  相似文献   

6.
Nostoc punctiforme is an oxygenic photoautotrophic cyanobacterium with multiple developmental states, which can form nitrogen-fixing symbioses with a variety of terrestrial plants. 3D LC/MS/MS shotgun peptide sequencing was used to analyze the proteome when N. punctiforme is grown in continuous moderate light with ammonia as the nitrogen source. The soluble proteome includes 1575 proteins, 50% of which can be assigned to core metabolic and transport functions. Another 39% are assigned to proteins with no known function, a substantially higher fraction than in the Escherichia coli proteome. Many expressed proteins protect against oxidative and light stress. Seventy-one sensor histidine kinases, response regulators, and serine/threonine kinases, individually and as hybrid, multidomain proteins, were identified, reflecting a substantial capacity to sense and respond to environmental change. Proteins encoded by each of the five N. punctiforme plasmids were identified, as were 10 transposases, reflecting the plasticity of the N. punctiforme genome. This core proteome sets the stage for comparison with that of other developmental states.  相似文献   

7.
8.
Assessment of differential protein abundance from the observed properties of detected peptides is an essential part of protein profiling based on shotgun proteomics. However, the abundance observed for shared peptides may be due to contributions from multiple proteins that are affected differently by a given treatment. Excluding shared peptides eliminates this ambiguity but may significantly decrease the number of proteins for which abundance estimates can be obtained. Peptide sharing within a family of biologically related proteins does not cause ambiguity if family members have a common response to treatment. On the basis of this concept, we have developed an approach for including shared peptides in the analysis of differential protein abundance in protein profiling. Data from a recent proteomics study of lung tissue from mice exposed to lipopolysaccharide, cigarette smoke, and a combination of these agents are used to illustrate our method. Starting from data where about half of the implicated database protein involved shared peptides, 82% of the affected proteins were grouped into families, based on FASTA annotation, with closure on peptide sharing. In many cases, a common abundance relative to control was sufficient to explain ion-current peak areas for peptides, both unique and shared, that identified biologically related proteins in a peptide-sharing closure group. On the basis of these results, we propose that peptide-sharing closure groups provide a way to include abundance data for shared peptides in quantitative protein profiling by high-throughput mass spectrometry.  相似文献   

9.
Flooding is a major problem for soybean crop as it reduces the growth and grain yield. To investigate the function of the soybean cell wall in the response to flooding stress, cell wall proteins were analyzed. Cell wall proteins from roots and hypocotyls of soybeans, which were germinated for 2 days and subjected to 2 days of flooding, were purified, separated by two-dimensional polyacrylamide gel electrophoresis and stained with Coomassie brilliant blue. Sixteen out of 204 cell wall proteins showed responses to flooding stress. Of these, two lipoxygenases, four germin-like protein precursors, three stem 28/31 kDa glycoprotein precursors, and one superoxide dismutase [Cu–Zn] were downregulated. A copper amine oxidase was found to have shifted from the basic to acidic zone following flooding stress. Based on these results, it was confirmed by the lignin staining that the lignification was suppressed in the root of soybean under the flooding stress. These results suggest that the roots and hypocotyls of soybean caused the suppression of lignification through decrease of these proteins by downregulation of reactive oxygen species and jasmonate biosynthesis under flooding stress.  相似文献   

10.
The most commonly used method for protein identification with two-dimensional (2D) online liquid chromatography-mass spectrometry (LC/MS) involves the elution of digest peptides from a strong cation exchange column by an injected salt step gradient of increasing salt concentration followed by reversed phase separation. However, in this approach ion exchange chromatography does not perform to its fullest extent, primarily because the injected volume of salt solution is not optimized to the SCX column. To improve the performance of strong cation exchange chromatography, we developed a new method for 2D online nano-LC/MS that replaces the injected salt step gradient with an optimized semicontinuous pumped salt gradient. The viability of this method is demonstrated in the results of a comparative analysis of a complex tryptic digest of the yeast proteome using the injected salt solution method and the semicontinuous pump salt method. The semicontinuous pump salt method compares favorably with the commonly used injection method and also with an offline 2D-LC method.  相似文献   

11.
With the emergence of mass spectrometry in protein science and the availability of complete genome sequences, proteomics has gone through a rapid development. The soil bacterium Bacillus subtilis, as one of the first DNA sequenced species, represents a model for Gram-positive bacteria and its proteome was extensively studied throughout the years. Having the final goal to elucidate how life really functions, one basic requirement is to know the entirety of cellular proteins. This review presents how far we have got in unraveling the proteome of B. subtilis. The application of gel-based and gel-free technologies, the analyses of different subcellular proteome fractions, and the pursuance of various physiological strategies resulted in a coverage of more than one-third of B. subtilis theoretical proteome.  相似文献   

12.
A prototype linear octopole ion trap/ion mobility/tandem mass spectrometer has been coupled with a nanoflow liquid chromatography separation approach and used to separate and characterize a complicated peptide mixture from digestion of soluble proteins extracted from human urine. In this approach, two dimensions of separation (nanoflow liquid chromatography and ion mobility) are followed by collision induced dissociation (CID) and mass spectrometry (MS) analysis. From a preliminary analysis of the most intense CID-MS features in a part of the dataset, it is possible to assign 27 peptide ions which correspond to 13 proteins. The data contain many additional CID-MS features for less intense ions. A limited discussion of these features and their potential utility in identifying complicated peptide mixtures required for proteomics study is presented.  相似文献   

13.
In the literature, a variety of ways have been used to obtain anoxia, and most often results are compared between studies without taking into consideration how anoxia has been obtained. Here, we provide a comprehensive study of two types of anoxia, using a proteomics approach to compare changes in protein expression. The two investigated situations were 30 min of chemical anoxia (10 mM NaN(3)) followed by reoxygenation overnight (CR) and 2 h of N(2)-induced anoxia (achieved by flushing with N(2)) followed by reoxygenation overnight (NR), after which samples were resolved by 2-DE. Forty-five protein spots changed their abundance in response to CR and 35 protein spots changed their abundance in response to NR, but only six proteins changed their abundance in response to both stimuli. By the means of MS/MS, 40 protein spots were identified including proteins involved in processes like cell protection and protein synthesis. It was also revealed that the level of a number of keratins was down-regulated. This study therefore provides a valuable comparison of two different anoxia models and shows that great care should be taken when comparing the effects of anoxia in studies that have used different types and durations of anoxia.  相似文献   

14.
The root apex is considered the first sites of aluminum (Al) toxicity and the reduction in root biomass leads to poor uptake of water and nutrients. Aluminum is considered the most limiting factor for plant productivity in acidic soils. Aluminum is a light metal that makes up 7 % of the earth’s scab dissolving ionic forms. The inhibition of root growth is recognized as the primary effect of Al toxicity. Seeds of wheat cv. Keumkang were germinated on petridish for 5 days and then transferred hydroponic apparatus which was treated without or with 100 and 150 μM AlCl3 for 5 days. The length of roots, shoots and fresh weight of wheat seedlings were decreased under aluminum stress. The concentration of K+, Mg2+ and Ca2+ were decreased, whereas Al3+ and P2O5 ? concentration was increased under aluminum stress. Using confocal microscopy, the fluorescence intensity of aluminum increased with morin staining. A proteome analysis was performed to identify proteins, which are responsible to aluminum stress in wheat roots. Proteins were extracted from roots and separated by 2-DE. A total of 47 protein spots were changed under Al stress. Nineteen proteins were significantly increased such as sadenosylmethionine, oxalate oxidase, malate dehydrogenase, cysteine synthase, ascorbate peroxidase and/or, 28 protein spots were significantly decreased such as heat shock protein 70, O-methytransferase 4, enolase, and amylogenin. Our results highlight the importance and identification of stress and defense responsive proteins with morphological and physiological state under Al stress.  相似文献   

15.
Flooding inducible proteins were analyzed using a proteomic technique to understand the mechanism of soybean response to immersion in water. Soybeans were germinated for 2 days, and then subjected to flooding for 2 days. Proteins were extracted from root and hypocotyl, separated by two-dimensional polyacrylamide gel electrophoresis, stained by Coomassie brilliant blue, and analyzed by protein sequencing and mass spectrometry. Out of 803 proteins, 21 proteins were significantly up-regulated, and seven proteins were down-regulated by flooding stress. Of the total, 11 up-regulated proteins were classified as related to protein destination/storage and three proteins to energy, while four down-regulated proteins were related to protein destination/storage and three proteins to disease/defense. The expression of 22 proteins significantly changed within 1 day after flooding stress. The effects of flooding, nitrogen substitution without flooding, or flooding with aeration were analyzed for 1–4 days. The expression of alcohol dehydrogenase increased remarkably by nitrogen substitution compared to flooding. The expression of many proteins that changed due to flooding showed the same tendencies observed for nitrogen substitution; however, the expression of proteins classified into protein destination/storage did not.  相似文献   

16.
Plant acclimation to stress is associated with profound changes in proteome composition. Since proteins are directly involved in plant stress response, proteomics studies can significantly contribute to unravel the possible relationships between protein abundance and plant stress acclimation. In this review, proteomics studies dealing with plant response to a broad range of abiotic stress factors--cold, heat, drought, waterlogging, salinity, ozone treatment, hypoxia and anoxia, herbicide treatments, inadequate or excessive light conditions, disbalances in mineral nutrition, enhanced concentrations of heavy metals, radioactivity and mechanical wounding are discussed. Most studies have been carried out on model plants Arabidopsis thaliana and rice due to large protein sequence databases available; however, the variety of plant species used for proteomics analyses is rapidly increasing. Protein response pathways shared by different plant species under various stress conditions (glycolytic pathway, enzymes of ascorbate-glutathione cycle, accumulation of LEA proteins) as well as pathways unique to a given stress are discussed. Results from proteomics studies are interpreted with respect to physiological factors determining plant stress response. In conclusion, examples of application of proteomics studies in search for protein markers underlying phenotypic variation in physiological parameters associated with plant stress tolerance are given.  相似文献   

17.
We demonstrate an approach for global quantitative analysis of protein mixtures using differential stable isotopic labeling of the enzyme-digested peptides combined with microbore liquid chromatography (LC) matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS). Microbore LC provides higher sample loading, compared to capillary LC, which facilitates the quantification of low abundance proteins in protein mixtures. In this work, microbore LC is combined with MALDI MS via a heated droplet interface. The compatibilities of two global peptide labeling methods (i.e., esterification to carboxylic groups and dimethylation to amine groups of peptides) with this LC-MALDI technique are evaluated. Using a quadrupole-time-of-flight mass spectrometer, MALDI spectra of the peptides in individual sample spots are obtained to determine the abundance ratio among pairs of differential isotopically labeled peptides. MS/MS spectra are subsequently obtained from the peptide pairs showing significant abundance differences to determine the sequences of selected peptides for protein identification. The peptide sequences determined from MS/MS database search are confirmed by using the overlaid fragment ion spectra generated from a pair of differentially labeled peptides. The effectiveness of this microbore LC-MALDI approach is demonstrated in the quantification and identification of peptides from a mixture of standard proteins as well as E. coli whole cell extract of known relative concentrations. It is shown that this approach provides a facile and economical means of comparing relative protein abundances from two proteome samples.  相似文献   

18.
19.
The prevalence of diabetes mellitus is increasing dramatically throughout the world, and the disease has become a major public health issue. The most common form of the disease, type 2 diabetes, is characterized by insulin resistance and insufficient insulin production from the pancreatic beta-cell. Since glucose is the most potent regulator of beta-cell function under physiological conditions, identification of the insulin secretory defect underlying type 2 diabetes requires a better understanding of glucose regulation of human beta-cell function. To this aim, a bottom-up LC-MS/MS-based proteomics approach was used to profile pooled islets from multiple donors under basal (5 mM) or high (15 mM) glucose conditions. Our analysis discovered 256 differentially abundant proteins (~p < 0.05) after 24 h of high glucose exposure from more than 4500 identified in total. Several novel glucose-regulated proteins were elevated under high glucose conditions, including regulators of mRNA splicing (pleiotropic regulator 1), processing (retinoblastoma binding protein 6), and function (nuclear RNA export factor 1), in addition to neuron navigator 1 and plasminogen activator inhibitor 1. Proteins whose abundances markedly decreased during incubation at 15 mM glucose included Bax inhibitor 1 and synaptotagmin-17. Up-regulation of dicer 1 and SLC27A2 and down-regulation of phospholipase Cβ4 were confirmed by Western blots. Many proteins found to be differentially abundant after high glucose stimulation are annotated as uncharacterized or hypothetical. These findings expand our knowledge of glucose regulation of the human islet proteome and suggest many hitherto unknown responses to glucose that require additional studies to explore novel functional roles.  相似文献   

20.
Tocopherols and tocotrienols are metabolized via hydroxylation and oxidation of their hydrophobic side chain to generate 13′-hydroxychromanols (13′-OHs) and various carboxychromanols, which can be further metabolized by conjugation including sulfation. Recent studies indicate that long-chain carboxychromanols, especially 13′-carboxychromanol (13′-COOH), appear to be more bioactive than tocopherols in anti-inflammatory and anticancer actions. To understand the potential contribution of metabolites to vitamin E-mediated effects, an accurate assay is needed to evaluate bioavailability of these metabolites. Here we describe an LC/MS/MS assay for quantifying vitamin E metabolites using negative polarity ESI. This assay includes a reliable sample extraction procedure with efficacy of ≥ 89% and interday/intraday variation of 3–11% for major metabolites. To ensure accurate quantification, short-chain, long-chain, and sulfated carboxychromanols are included as external/internal standards. Using this assay, we observed that sulfated carboxychromanols are the primary metabolites in the plasma of rodents fed with γ-tocopherol or δ-tocopherol. Although plasma levels of 13′-COOHs and 13′-OHs are low, high concentrations of these compounds are found in feces. Our study demonstrates an LC/MS/MS assay for quantitation of sulfated and unconjugated vitamin E metabolites, and this assay will be useful for evaluating the role of these metabolites in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号