首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Live cell fluorescence microscopy experiments often require visualization of the nucleus and the chromatin to determine the nuclear morphology or the localization of nuclear compartments. METHODS: We compared five different DNA dyes, TOPRO-3, TOTO-3, propidium iodide, Hoechst 33258, and DRAQ5, to test their usefulness in live cell experiments with continuous imaging and photobleaching in widefield epifluorescence and confocal laser scanning microscopy. In addition, we compared the DNA stainings with fluorescent histones as an independent fluorescent label to mark chromatin. RESULTS: From the dyes tested, only Hoechst and DRAQ5 could be used to stain DNA in living cells. However, DRAQ5 had several advantages, namely low photobleaching, labeling of the chromatin compartments comparable to that of H2B-GFP fusion proteins, and deep red excitation/emission compatible with available genetically encoded fluorescent proteins such as C/G/YFP or mRFP. CONCLUSIONS: The DNA dye DRAQ5 is well suited for chromatin visualization in living cells and can easily be combined with other fluorophores with blue to orange emission.  相似文献   

2.
BACKGROUND: The multiparameter fluorometric analysis of intact and fixed cells often requires the use of a nuclear DNA discrimination signal with spectral separation from visible range fluorochromes. We have developed a novel deep red fluorescing bisalkylaminoanthraquinone, DRAQ5 (Ex(lambdamax) 646 nm; Em(lambdamax) 681 nm; Em(lambdarange) 665->800 nm), with high affinity for DNA and a high capacity to enter living cells. We describe here the spectral characteristics and applications of this synthetic compound, particularly in relation to cytometric analysis of the cell cycle. METHODS: Cultured human tumor cells were examined for the ability to nuclear locate DRAQ5 using single and multiphoton laser scanning microscopy (LSM) and multiparameter flow cytometry. RESULTS: Multiparameter flow cytometry shows that the dye can rapidly report the cellular DNA content of live and fixed cells at a resolution level adequate for cell cycle analysis and the cycle-specific expression of cellular proteins (e.g., cyclin B1). The preferential excitation of DRAQ5 by laser red lines (633/647 nm) was found to offer a means of fluorescence signal discrimination by selective excitation, with greatly reduced emission overlap with UV-excitable and visible range fluophors as compared with propidium iodide. LSM reveals nuclear architecture and clearly defines chromosomal elements in live cells. DRAQ5 was found to permit multiphoton imaging of nuclei using a 1,047-nm emitting mode-locked YLF laser. The unusual spectral properties of DRAQ5 also permit live cell DNA analysis using conventional 488 nm excitation and the single-photon imaging of nuclear fluorescence using laser excitation between 488 nm and low infrared (IR; 780 nm) wavelengths. Single and multiphoton microscopy studies revealed the ability of DRAQ5 to report three-dimensional nuclear structure and location in live cells expressing endoplasmic reticulum targeted-GFP, MitoTracker-stained mitochondria, or a vital cell probe for free zinc (Zinquin). CONCLUSION: The fluorescence excitation and emission characteristics of DRAQ5 in living and fixed cells permit the incorporation of the measurement of cellular DNA content into a variety of multiparameter cytometric analyses.  相似文献   

3.
In eukaryotic cells, a major proportion of the cellular proteins localize to various subcellular organelles where they are involved in organelle-specific cellular processes. Thus, the localization of a particular protein in the cell is an important part of understanding the physiological role of the protein in the cell. Various approaches such as subcellular fractionation, immunolocalization and live imaging have been used to define the localization of organellar proteins. Of these various approaches, the most powerful one is the live imaging because it can show in vivo dynamics of protein localization depending on cellular and environmental conditions without disturbing cellular structures. However, the live imaging requires the ability to detect the organelles in live cells. In this study, we report generation of a new set of transgenic Arabidopsis plants using various organelle marker proteins fused to a fluorescence protein, monomeric Cherry (mCherry). All these markers representing different subcellular organelles such as chloroplasts, mitochondria, peroxisomes, endoplasmic reticulum (ER) and lytic vacuole showed clear and specific signals regardless of the cell types and tissues. These marker lines can be used to determine localization of organellar proteins by colocalization and also to study the dynamics of organelles under various developmental and environmental conditions.  相似文献   

4.
BACKGROUND: We report on the potential DNA binding modes and spectral characteristics of the cell-permeant far red fluorescent DNA dye, DRAQ5, in solution and bound within intact cells. Our aim was to determine the constraints for its use in flow cytometry and bioimaging. METHODS: Solution characteristics and quantum yields were determined by spectroscopy. DRAQ5 binding to nuclear DNA was analyzed using fluorescence quenching of Hoechst 33342 dye, emission profiling by flow cytometry, and spectral confocal laser scanning microscopy of the complex DRAQ5 emission spectrum. Cell cycle profiling utilized an EGFP-cyclin B1 reporter as an independent marker of cell age. Molecular modeling was used to explore the modes of DNA binding. RESULTS: DRAQ5 showed a low quantum yield in solution and a spectral shift upon DNA binding, but no significant fluorescence enhancement. DRAQ5 caused a reduction in the fluorescence intensity of Hoechst 33342 in live cells prelabeled with the UV excitable dye, consistent with molecular modeling that suggests AT preference and an engagement of the minor groove. In vivo spectral analysis of DRAQ5 demonstrated shifts to longer wavelengths upon binding with DNA. Analysis of spectral windows of the dual emission peaks at 681 and 707 nm in cells showed that cell cycle compartment recognition was independent of the far red-near IR emission wavelengths monitored. CONCLUSIONS: The study provides new clues to modes of DNA binding of the modified anthraquinone molecule in vivo, and its AT base-pair selectivity. The combination of low quantum yield but high DNA affinity explains the favorable signal-to-noise profile of DRAQ5-nuclear fluorescence. The robust nature of cell cycle reporting using DRAQ5, even when restricted spectral windows are selected, facilitates the analysis of encroaching spectral emissions from other fluorescent reporters, including GFP-tagged proteins.  相似文献   

5.
Batrachochytrium dendrobatidis ( Bd ), a chytrid fungus, is a causative agent of chytridiomycosis and amphibian population declines worldwide. The sequenced genome of Bd provides information necessary for studying the fungus and its molecular biology. Fluorescent microscopy is a technique used to image targeted molecules in live or fixed organisms to understand cellular trafficking and localization, but the use of fluorescent microscopy with Bd has not yet been demonstrated. Two fluorescent stains were tested for their use in live-cell imaging of Bd , i.e., the cell wall-specific fluorophore Solophenyl Flavine 7GFE and the DNA-specific fluorophore DRAQ5. These specific staining patterns were observed in live cultures of Bd when visualized with laser-scanning confocal microscopy.  相似文献   

6.
Mitochondria are cellular organelles with multifaceted tasks and thus composed of different sub-compartments. The inner mitochondrial membrane especially has a complex nano-architecture with cristae protruding into the matrix. Related to their function, the localization of mitochondrial membrane proteins is more or less restricted to specific sub-compartments. In contrast, it can be assumed that membrane proteins per se diffuse unimpeded through continuous membranes. Fluorescence recovery after photobleaching is a versatile technology used in mobility analyses to determine the mobile fraction of proteins, but it cannot provide data on subpopulations or on confined diffusion behavior. Fluorescence correlation spectroscopy is used to analyze single molecule diffusion, but no trajectory maps are obtained. Single particle tracking (SPT) technologies in live cells, such as tracking and localization microscopy (TALM), do provide nanotopic localization and mobility maps of mitochondrial proteins in situ. Molecules can be localized with a precision of between 10 and 20 nm, and single trajectories can be recorded and analyzed; this is sufficient to reveal significant differences in the spatio-temporal behavior of diverse mitochondrial proteins. Here, we compare diffusion coefficients obtained by these different technologies and discuss trajectory maps of diverse mitochondrial membrane proteins obtained by SPT/TALM. We show that membrane proteins in the outer membrane generally display unhindered diffusion, while the mobility of inner membrane proteins is restricted by the inner membrane architecture, resulting in significantly lower diffusion coefficients. Moreover, tracking analysis could discern proteins in the inner boundary membrane from proteins preferentially diffusing in cristae membranes, two sub-compartments of the inner mitochondrial membrane. Thus, by evaluating trajectory maps it is possible to assign proteins to different sub-compartments of the same membrane.  相似文献   

7.
Cytosine-5 methyltransferases of the Dnmt2 family are highly conserved in evolution and their biological function is being studied in several organisms. Although all structural DNA methyltransferase motifs are present in Dnmt2, these enzymes show a strong tRNA methyltransferase activity. In line with an enzymatic activity towards substrates other than DNA, Dnmt2 has been described to localize to the cytoplasm. Using molecular and biochemical approaches we show here that Dnmt2 is both a cytoplasmic and a nuclear protein. Sub-cellular fractionation shows that a significant amount of Dnmt2 is bound to the nuclear matrix. Sub-cellular localization analysis reveals that Dnmt2 proteins are enriched in actively dividing cells. Dnmt2 localization is highly dynamic during the cell cycle. Using live imaging we observed that Dnmt2-EGFP enters prophase nuclei and shows a spindle-like localization pattern during mitotic divisions. Additional experiments suggest that this localization is microtubule dependent and that Dnmt2 can access DNA during mitotic cell divisions. Our results represent the first comprehensive characterization of Dnmt2 proteins on the cellular level and have important implications for our understanding of the molecular activities of Dnmt2.  相似文献   

8.
9.
Three methyl-CpG-binding domain (MBD) proteins in Arabidopsis, AtMBD5, AtMBD6, and AtMBD7, are functional in binding methylated CpG dinucleotides in vitro and localize to the highly CpG-methylated chromocenters in vivo. These proteins differ, however, in their subnuclear localization pattern; AtMBD5 and AtMBD6, each containing a single MBD motif, show preference for two perinucleolar chromocenters, whereas AtMBD7, a naturally occurring poly-MBD protein containing three MBD motifs, localizes to all chromocenters. Here we studied the significance of multiple MBD motifs for subnuclear localization and mobility in living cells. We found that the number of MBD motifs determines the subnuclear localization of the MBD protein. Furthermore, live kinetic experiments showed that AtMBD7-green fluorescent protein (GFP) has lower mobility than AtMBD5-GFP and AtMBD6-GFP, which is conferred by cooperative activity of its three MBD motifs. Thus, the number of MBD motifs appears to affect not only binding affinity and mobility within the nucleus, but also the subnuclear localization of the protein. Our results suggest that poly-MBD proteins can directly affect chromatin structure by inducing intra- and inter-chromatin compaction via bridging over multiple methylated CpG sites.  相似文献   

10.
In the last decade, the long-standing biologist's dream of seeing the molecular events within the living cell came true. This technological achievement is largely due to the development of fluorescence microscopy technologies and the advent of green fluorescent protein as a fluorescent probe. Such imaging technologies allowed us to determine the subcellular localization, mobility and transport pathways of specific proteins and even visualize protein-protein interactions of single molecules in living cells. Direct observation of such molecular dynamics can provide important information about cellular events that cannot be obtained by other methods. Thus, imaging of protein dynamics in living cells becomes an important tool for cell biology to study molecular and cellular functions. In this special issue of review articles, we review various imaging technologies of microscope hardware and fluorescent probes useful for cell biologists, with a focus on recent development of live cell imaging.  相似文献   

11.
Cilia are organelles for cellular signalling and motility. Mutations affecting ciliary function are also associated with cilia-related disorders (ciliopathies). The identification of cilia markers is critical for studying their function at the cellular level. Due to the lack of a conserved, short ciliary localization motif, the full-length ARL13b or 5HT6 proteins are normally used for cilia labelling. Overexpression of these genes, however, can affect the function of cilia, leading to artefacts in cilia studies. Here, we show that Nephrocystin-3 (Nphp3) is highly conserved among vertebrates and demonstrate that the N-terminal truncated peptide of zebrafish Nphp3 can be used as a gratuitous cilia-specific marker. To visualize the dynamics of cilia in vivo, we generated a stable transgenic zebrafish Tg (β-actin: nphp3N-mCherry)sx1001. The cilia in multiple cell types are efficiently labelled by the encoded fusion protein from embryonic stages to adulthood, without any developmental and physiological defects. We show that the line allows live imaging of ciliary dynamics and trafficking of cilia proteins, such as Kif7 and Smo, key regulators of the Hedgehog signalling pathway. Thus, we have generated an effective new tool for in vivo cilia studies that will help shed further light on the roles of these important organelles.  相似文献   

12.
Image-based, high-content screening assays demand solutions for image segmentation and cellular compartment encoding to track critical events — for example those reported by GFP fusions within mitosis, signalling pathways and protein translocations. To meet this need, a series of nuclear/cytoplasmic discriminating probes have been developed: DRAQ5™ and CyTRAK Orange™. These are spectrally compatible with GFP reporters offering new solutions in imaging and cytometry. At their most fundamental they provide a convenient fluorescent emission signature which is spectrally separated from the commonly used reporter proteins (e.g. eGFP, YFP, mRFP) and fluorescent tags such as Alexafluor 488, fluorescein and Cy2. Additionally, they do not excite in the UV and thus avoid the complications of compound UV-autofluorescence in drug discovery whilst limiting the impact of background sample autofluorescence. They provide a convenient means of stoichiometrically labelling cell nuclei in live cells without the aid of DMSO and can equally be used for fixed cells. Further developments have permitted the simultaneous and differential labelling of both nuclear and cytoplasmic compartments in live and fixed cells to clearly render the precise location of cell boundaries which may be beneficial for quantitative expression measurements, cell-cell interactions and most recently compound in vitro toxicology testing.  相似文献   

13.
14.
BACKGROUND: The linking of intracellular metabolism of anticancer drugs with cellular response is problematic. We describe a new probe for cellular integrity, based upon a structure which has the additional potential to act as a substrate for cytochrome P450-dependent bioreductive metabolism. DRAQ5NO is an N-oxide modified anthraquinone with optimal fluorescence excitation maxima compatible with He-Ne (633 nm) and Kr-Ar (647 nm) lasers. METHODS: DRAQ5NO-loading and Annexin V binding was monitored using dual-laser flow cytometry (488 nm/633 nm wavelengths) in human lymphoma cultures undergoing anticancer drug- (etoposide; VP-16) induced apoptosis. RESULTS: DRAQ5NO gave an Em(lambdamax) of 700.5 nm but retains DNA binding potential with an emission wavelength red-shift of approximately 12 nm. The agent showed reduced cytotoxicity and a limited capacity to accumulate within cells compared with the non-N-oxide form that shows a high nuclear targeting capacity in intact cells. DRAQ5NO/Annexin V provides for a positive discrimination between intact cells, membrane-compromised cells, cellular debris, and early stage apoptotic cells. CONCLUSIONS: The spectral properties of DRAQ5NO allow for the use of visible range fluorochromes and differential excitation in multilaser systems for tracking apoptotic populations with implications for the measurement of bioreductive potential in complex tumour populations simultaneously undergoing physiologically or drug-induced apoptosis.  相似文献   

15.
The distribution of some enzymes between peroxisomes and cytosol, or a dual localization in both these compartments, can be difficult to reconcile. We have used photobleaching in live cells expressing green fluorescent protein (GFP)-fusion proteins to show that imported bona fide peroxisomal matrix proteins are retained in the peroxisome. The high mobility of the GFP-fusion proteins in the cytosol and absence of peroxisomal escape makes it possible to eliminate the cytosolic fluorescence by photobleaching, to distinguish between exclusively cytosolic proteins and proteins that are also present at low levels in peroxisomes. Using this technique we found that GFP tagged bile acid-CoA:amino acid N-acyltransferase (BAAT) was exclusively localized in the cytosol in HeLa cells. We conclude that the cytosolic localization was due to its carboxyterminal non-consensus peroxisomal targeting signal (-SQL) since mutation of the -SQL to -SKL resulted in BAAT being efficiently imported into peroxisomes.  相似文献   

16.
Fluorescence microscopy of the localization and the spatial and temporal dynamics of specifically labelled proteins is an indispensable tool in cell biology. Besides fluorescent proteins as tags, tag-mediated labelling utilizing self-labelling proteins as the SNAP-, CLIP-, or the Halo-tag are widely used, flexible labelling systems relying on exogenously supplied fluorophores. Unfortunately, labelling of live budding yeast cells proved to be challenging with these approaches because of the limited accessibility of the cell interior to the dyes. In this study we developed a fast and reliable electroporation-based labelling protocol for living budding yeast cells expressing SNAP-, CLIP-, or Halo-tagged fusion proteins. For the Halo-tag, we demonstrate that it is crucial to use the 6′-carboxy isomers and not the 5′-carboxy isomers of important dyes to ensure cell viability. We report on a simple rule for the analysis of 1H NMR spectra to discriminate between 6′- and 5′-carboxy isomers of fluorescein and rhodamine derivatives. We demonstrate the usability of the labelling protocol by imaging yeast cells with STED super-resolution microscopy and dual colour live cell microscopy. The large number of available fluorophores for these self-labelling proteins and the simplicity of the protocol described here expands the available toolbox for the model organism Saccharomyces cerevisiae.  相似文献   

17.
DNA replication and repair are two fundamental processes required in life proliferation and cellular defense and some common proteins are involved in both processes. The filamentous cyanobacterium Anabaena sp. strain PCC 7120 is capable of forming heterocysts for N2 fixation in the absence of a combined-nitrogen source. This developmental process is intimately linked to cell cycle control. In this study, we investigated the localization of the DNA double-strand break repair protein RecN during key cellular events, such as chromosome damaging, cell division, and heterocyst differentiation. Treatment by a drug causing DNA double-strand breaks (DSBs) induced reorganization of the RecN focus preferentially towards the mid-cell position. RecN-GFP was absent in most mature heterocysts. Furthermore, our results showed that HetR, a central player in heterocyst development, was involved in the proper positioning and distribution of RecN-GFP. These results showed the dynamics of RecN in DSB repair and suggested a differential regulation of DNA DSB repair in vegetative cell and heterocysts. The absence of RecN in mature heterocysts is compatible with the terminal nature of these cells.  相似文献   

18.
Many cellular processes are regulated by cell cycle dependent changes in protein dynamics and localization. Studying these changes in vivo requires methods to distinguish the different cell cycle stages. Here we demonstrate the use of DNA Ligase I fused to DsRed1 as an in situ marker to identify S phase and the subsequent transition to G2 in live cells. Using this marker, we observed changes in the nuclear distribution of Dnmt1 during cell cycle progression. Based on the different nuclear distribution of DNA Ligase I and Dnmt1 in G2 and G1, we demonstrate that the combination of both proteins allows the direct discrimination of all cell cycle phases using either immunostainings or fusions with fluorescent proteins. These markers are new tools to directly study cell cycle dependent processes in both, fixed and living cells.  相似文献   

19.
Won S  Kim HD  Kim JY  Lee BC  Chang S  Park CS 《Biophysical journal》2010,99(9):2853-2862
The movements of BKCa channels were investigated in live cells using quantum dots (QDs). The extracellular N-terminus was metabolically tagged with biotin, labeled with streptavidin-conjugated QDs and then monitored using real-time time-lapse imaging in COS-7 cells and cultured neurons. By tracking hundreds of channels, we were able to determine the characteristics of channel movements quantitatively. Channels in COS-7 cells exhibited a confined diffusion in an area of 1.915 μm2, with an initial diffusion coefficient of 0.033 μm2/s. In neurons, the channel movements were more heterogeneous and highly dependent on subcellular location. While the channels in soma diffused slowly without clear confinement, axodendritic channels showed more rapid and pseudo-one-dimensional movements. Intriguingly, the channel movement in somata was drastically increased by the neuronal β4 subunit, in contrast to the channels in the axodendritic area where the mobility were significantly decreased. Thus, our results demonstrate that the membrane mobility of BKCa channels can be greatly influenced by the expression system used, subunit composition, and subcellular location. This QD-based, single-molecule tracking technique can be utilized to investigate the cellular mechanisms that determine the mobility as well as the localization of various membrane proteins in live cells.  相似文献   

20.
Small GTPases are highly regulated proteins that control essential signaling pathways through the activity of their effector proteins. Among the RHOA subfamily, RHOB regulates peculiar functions that could be associated with the control of the endocytic trafficking of signaling proteins. Here, we used an optimized assay based on tripartite split-GFP complementation to localize GTPase-effector complexes with high-resolution. The detection of RHOB interaction with the Rhotekin Rho binding domain (RBD) that specifically recognizes the active GTP-bound GTPase, is performed in vitro by the concomitant addition of recombinant GFP1–9 and a GFP nanobody. Analysis of RHOB-RBD complexes localization profiles combined with immunostaining and live cell imaging indicated a serum-dependent reorganization of the endosomal and membrane pool of active RHOB. We further applied this technology to the detection of RHO-effector complexes that highlighted their subcellular localization with high resolution among the different cellular compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号