首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inheritance of the two main types of the plant resistance to insects was investigated in the sorghum-greenbug (Schizaphis graminum Rond.) and wheat-bird cherry-oat aphid (Rhopalosiphon padi L.) interaction systems. The data obtained support the hypothesis that antixenosis (avoiding of the plant by the insect, given a choice) and antibiosis (adverse effect of the plant on the insect feeding on it) are pleiotropic manifestations of the same genes. This is confirmed by the following facts. (1) Identical patterns of segregation for antixenosis and antibiosis in different cases of sorghum resistance to the greenbug: monogenic control (gene Sgr4), digenic control (Sgr1, Sgr2 and Sgr7, Sgr8), and complementary action of the genes (Sgr9 and Sgr10). (2) Correlated changes in the levels of antibiosis and antixenosis during long-term reproduction of a greenbug clone on the resistant sorghum variety k-1206 (resistance controlled by one gene). (3) Simultaneous expression of antixenosis and antibiosis in F3 wheat hybrid families to the bird cherry-oat aphid.  相似文献   

2.
Transgenic crops genetically engineered for enhanced insect resistance should be compatible with other components of IPM for the pest resistance to be durable and effective. An experimental potato line was genetically engineered to express an anti-aphid plant protein (snowdrop lectin, GNA), and assessed for possible interactions of the insect resistance gene with a beneficial pest predator. These extended laboratory studies are the first to demonstrate adverse tri-trophic interactions involving a lectin- expressing transgenic crop, a target pest aphid and a beneficial aphidophagous predator. When adult 2-spot ladybirds (Adalia bipunctata[L.]) were fed for 12 days on peach-potato aphids (Myzus persicae Sulzer) colonising transgenic potatoes expressing GNA in leaves, ladybird fecundity, egg viability and longevity significantly decreased over the following 2–3 weeks. No acute toxicity due to the transgenic plants was observed, although female ladybird longevity was reduced by up to 51%. Adverse effects on ladybird reproduction, caused by eating peach-potato aphids from transgenic potatoes, were reversed after switching ladybirds to feeding on pea aphids from non-transgenic bean plants. These results demonstrate that expression of a lectin gene for insect resistance in a transgenic potato line can cause adverse effects to a predatory ladybird via aphids in its food chain. The significance of these potential ecological risks under field conditions need to be further evaluated.  相似文献   

3.
Abstract. 1. In a reciprocal transplant experiment on pea aphids (Acyrthosiphon pisum (Harris)), the relative performance of clones collected from nearby alfalfa and red clover fields was tested by allowing clonal replicates to develop on both crops under field conditions.
2. Populations from alfalfa and red clover differed in relative survivorship and probabilities of reproduction on the two crops. Clones had significantly higher performance on the crop from which they were collected (the 'home' crop) than they did on the other crop.
3. Evidence is presented that previous experience on these host plants cannot account for the increased probability of reproduction observed on the 'home' crop. Thus, the differences between these two populations in their relative performance on alfalfa and clover are likely to be genetically based.
4. These results illustrate that local adaptation to different host plants can occur within small geographical areas, despite the high probability that migrants are exchanged between nearby fields of the two crops.
5. Experimental designs of the type described here permit estimation of patterns of genetic variation within and between insect populations. When applied to pest species, such designs will facilitate the study of evolution in agricultural systems.  相似文献   

4.
Recent insights into virus-host interaction have been compiled in this review, focusing on the genetic basis and the modern conception of the molecular mechanisms of pathogen (mostly viral) recognition by plants. The significance of plant signal transduction systems and their key factors are discussed. The possible role of different elicitors in signal transduction processes has been considered.  相似文献   

5.
Natural, agricultural and human populations are structured, with a proportion of interactions occurring locally or within social groups rather than at random. This within-population spatial and social structure is important to the evolution of parasites but little attention has been paid to how spatial structure affects the evolution of host resistance, and as a consequence the coevolutionary outcome. We examine the evolution of resistance across a range of mixing patterns using an approximate mathematical model and stochastic simulations. As reproduction becomes increasingly local, hosts are always selected to increase resistance. More localized transmission also selects for higher resistance, but only if reproduction is also predominantly local. If the hosts disperse, lower resistance evolves as transmission becomes more local. These effects can be understood as a combination of genetic (kin) and ecological structuring on individual fitness. When hosts and parasites coevolve, local interactions select for hosts with high defence and parasites with low transmissibility and virulence. Crucially, this means that more population mixing may lead to the evolution of both fast-transmitting highly virulent parasites and reduced resistance in the host.  相似文献   

6.
Plant-insect interactions: molecular approaches to insect resistance   总被引:1,自引:0,他引:1  
Recent advances in our understanding of induced responses in plants and their regulation, brought about by a revolution in molecular biology, have re-focused attention on the potential exploitation of endogenous resistance mechanisms for crop protection. The future goal of crop biotechnology is thus to engineer a durable, multimechanistic resistance to insect pests through an understanding of the diversity of plant responses to insect attack.  相似文献   

7.
Cotton produces insecticidal terpenoids that are induced by tissue-feeding herbivores. Damage by Heliothis virescens caterpillars increases the terpenoid content, which reduces the abundance of aphids. This effect is not evident in Bt-transgenic cotton, which is resistant to H. virescens. We determined whether induction of terpenoids by caterpillars influences the host quality of Aphis gossypii for the parasitoid Lysiphlebus testaceipes and whether this interaction is influenced by Bt cotton. The exposure of parasitoids to terpenoids was determined by quantifying terpenoids in the aphids. We detected several terpenoids in aphids and found a positive relationship between their concentrations in plants and aphids. When L. testaceipes was allowed to parasitize aphids on Bt and non-Bt cotton that was infested or uninfested with H. virescens, fewer parasitoid mummies were found on infested non-Bt than on Bt cotton. Important parasitoid life-table parameters, however, were not influenced by induced resistance following H. virescens infestation, or the Bt trait. Our study provides an example of a tritrophic indirect interaction web, where organisms are indirectly linked through changes in plant metabolites.  相似文献   

8.
The pea aphid, Acyrthosiphon pisum, shows significant reproductive isolation and host plant specialization between populations on alfalfa and clover in New York. We examine whether specialization is seen in pea aphids in California, and whether fitness on alternative host plants is associated with the presence of bacterial symbionts. We measured the fitness of alfalfa- and clover-derived aphids on both types of plants and found no evidence for specialization when all aphid lineages were considered simultaneously. We then screened all aphids for the presence of four facultative bacterial symbionts: PAR, PASS, PABS and PAUS. Aphids with PAUS were host-plant specialized, having twice as many offspring as other aphids on clover, and dying on alfalfa. Other aphids showed no evidence of specialization. Additionally, aphids with PABS had 50% more offspring than aphids with PASS when on alfalfa. Thus, specialist and generalist aphid lineages coexist, and specialization is symbiont associated. Further work will resolve whether PAUS is directly responsible for this variation in fitness or whether PAUS is incidentally associated with host-plant specialized aphid lineages.  相似文献   

9.
Czesak ME  Knee MJ  Gale RG  Bodach SD  Fritz RS 《Heredity》2004,93(6):619-626
Hybrid plants often differ in resistance to arthropods compared to the parental species from which they are derived. To better understand the relative contribution of genetic effects in influencing plant resistance to arthropods, we examined the genetic architecture of resistance in a willow hybrid system, Salix eriocephala, S. sericea, and their interspecific hybrids. Resistance to two arthropods, a willow leaf aphid (Chaitophorus sp.: Aphididae) and an eriophyoid mite (Aculops tetanothrix: Eriophyidae), were compared because resistance to different herbivores may be controlled by different traits and influenced by different genetic effects. We found additive and nonadditive genetic effects to be important in explaining the difference between willow species in resistance to aphids and mites. F2 hybrids exhibited low resistance to aphids, suggesting breakdown of favourable epistatic interactions that confer resistance. F2 hybrids, however, exhibited high resistance to mites, suggesting either the breakdown of interactions that affect traits used by mites in host location or the creation of favourable epistatic interactions. This study demonstrates the potential role of herbivores in affecting plant genetic structure, such that selection by herbivores can potentially lead to the creation of gene interactions that influence host resistance traits or host recognition traits used by the herbivore.  相似文献   

10.
Host-plant resistance can affect herbivorous insects and their natural enemies such as parasitoids and entomopathogenic fungi. This tritrophic effect acts on interspecific interactions between the two groups of natural enemies distantly related in phylogenetic terms. The intra- and extra-host aspects of the interaction between the cereal aphid parasitoid Aphidius rhopalosiphi and the entomopathogenic fungus Erynia neoaphidis developing on the grain aphid, Sitobion avenae, on resistant and susceptible wheat (Triticum aestivum) cultivars, were studied. The competitive outcome of the intra-host interaction depended on the timing of parasitoid oviposition and fungal infection and was affected by wheat resistance. In particular, survival of the parasitoid was lower on the resistant wheat cultivar than the susceptible wheat cultivar, when the competitive outcome of the interaction was favourable for either parasitoid or fungal development. Before and after this period the influence of plant resistance was not significant. Furthermore, the extra-host interaction was not affected by the wheat cultivar, although an increase in fungal infection of S. avenae was observed when parasitoids foraged in the experimental arena with sporulating aphid cadavers compared with foraging in the absence of sporulating cadavers. Our results showed that the host plant may affect interspecific interactions between parasitoids and fungi and that these interactions depended on the timing of parasitoid oviposition and fungal infection. Received: 16 March 1998 / Accepted: 24 August 1998  相似文献   

11.
The probing and larviposition behaviour of the bird cherry-oat aphid, Rhopalosiphum padi on summer and winter host plants were investigated using electrical penetration graph (EPG) coupled with simultaneous video recording. In this way the precise probing history prior to parturition can be monitored and the location of possible reproductive stimulants identified. On the host plant, all gynoparae (autumn winged females that give birth to sexual females on bird cherry, Prunus padus, the primary host) and 55% of winged virginoparae (summer females which produce further virginoparae on barley, Hordeum vulgare, a secondary host) initiated larviposition before phloem contact. However, 90% of wingless virginoparae (on barley) contacted the phloem before first larviposition whilst 10% did not. Thus, phloem contact does not appear to be a pre-requisite for these aphid forms to initiate reproduction.  相似文献   

12.
The aphid parasitoid Lysiphlebus testaceipes is a potentially valuable biological control agent of Aphis gossypii a major worldwide pest of cotton. One means of increasing the abundance of a biological control agent is to provide an alternative host habitat adjacent to cropping, from which they can provide pest control services in the crop. Host selection and parasitism rate of an alternative host aphid, Aphis craccivora by L. testaceipes were studied in a series of experiments that tested its host suitability relative to A. gossypii on cotton, hibiscus and mungbean. Host acceptance, as measured by number of ovipositions was much greater in A. craccivora compared to A. gossypii, while more host aphids were accepted on mungbean than cotton. When given a choice L. testaceipes attacks more 4th instar and adult stages (63% and 70%, respectively) of both hosts than 2nd instar nymphs (47%). In a switching (host choice) experiment, L. testaceipes preferentially attacked A. craccivora on mungbean over A. gossypii on cotton. Observations of parasitoid contact with A. gossypii cornicle secretion suggest it provides a useful deterrent against parasitoid attack. From these experiments it appears L. testaceipes has a preference for A. craccivora and mungbean compared to A. gossypii and cotton, in this respect using A. craccivora and mungbean as alternative habitat may not work as the parasitoid is unlikely to switch away from its preferred host.  相似文献   

13.
14.
Sycamore aphids with occluded siphunculi survive, give birth to as many offspring and maintain their weight as well as aphids with normal siphunculi and it is therefore unlikely that siphunculi have an excretory function. Blocking the siphunculi of sycamore aphids does not affect the way they space out. Siphunculi are used in defence against predators most effectively when the aphid and predator are similar in size.The smell of siphuncular exudate causes aphids like Myzus persicae to scatter but in the sycamore aphid the smell has to be accompanied by the sight or vibration of a struggling aphid to induce an alarm response. Prodding the abdomen and pinching the legs of a sycamore aphid induces it to produce siphuncular exudate.  相似文献   

15.
The refuge strategy is designed to delay evolution of pest resistance to transgenic crops producing Bacillus thuringiensis Berliner (Bt) toxins. Movement of insects between Bt crops and refuges of non-Bt crops is essential for the refuge strategy because it increases chances that resistant adults mate with susceptible adults from refuges. Conclusions about optimal levels of movement for delaying resistance are not consistent among previous modeling studies. To clarify the effects of movement on resistance evolution, we analyzed simulations of a spatially explicit model based partly on the interaction of pink bollworm, Pectinophora gossypiella (Saunders), with Bt cotton. We examined resistance evolution as a function of insect movement under 12 sets of assumptions about the relative abundance of Bt cotton (50 and 75%), temporal distribution of Bt cotton and refuge fields (fixed, partial rotation, and full rotation), and spatial distribution of fields (random and uniform). The results show that interactions among the relative abundance and distribution of refuges and Bt cotton fields can alter the effects of movement on resistance evolution. The results also suggest that differences in conclusions among previous studies can be explained by differences in assumptions about the relative abundance and distribution of refuges and Bt crop fields. With fixed field locations and all Bt cotton fields adjacent to at least one refuge, resistance evolved slowest with low movement. However, low movement and fixed field locations favored rapid resistance evolution when some Bt crop fields were isolated from refuges. When refuges and Bt cotton fields were rotated to the opposite crop type each year, resistance evolved fastest with low movement. Nonrecessive inheritance of resistance caused rapid resistanceevolution regardless of movement rate. Confirming previous reports, results described here show that resistance can be delayed effectively by fixing field locations and distributing refuges uniformly to ensure that Bt crop fields are not isolated from refuges. However, rotating fields provided better insect control and reduced the need for insecticide sprays.  相似文献   

16.
17.
To examine if the cultivation process has reduced the genetic variation of modern cultivars of the traditional Chinese medicinal plant, Coptis chinensis, the levels and distribution of genetic variation was investigated using ISSR markers. A total of 214 C. chinensis individuals from seven wild and three cultivated populations were included in the study. Seven ISSR primers were used and a total of 91 DNA fragments were scored. The levels of genetic diversity in cultivated populations were similar as those in wild populations (mean PPL = 65.2% versus PPL = 52.4%, mean H = 0.159 versus H = 0.153 and mean I = 0.255 versus I = 0.237), suggesting that cultivation did not seriously influence genetic variation of present-day cultivated populations. Neighbour-joining cluster analysis showed that wild populations and cultivated populations were not separated into two groups. The coefficient of genetic differentiation between a cultivar and its wild progenitor was 0.066 (G(st)), which was in good accordance with the result by amova analysis (10.9% of total genetic variation resided on the two groups), indicating that cultivated populations were not genetically differentiated from wild progenitors. For the seven wild populations, a significant genetic differentiation among populations was found using amova analysis (45.9% of total genetic variation resided among populations). A number of causes, including genetic drift and inbreeding in the small and isolated wild populations, the relative limited gene flow between wild populations (N(m) = 0.590), and high gene flow between cultivars and their wild progenitors (N(m) = 7.116), might have led to the observed genetic profiles of C. chinensis.  相似文献   

18.
The sudden decline following the peak in population abundance of aphids on crops of small grain cereals is attributed to the joint effect of natural enemies and plant senescence. To distinguish between these causes, a four year experiment was established in which the numbers of Metopolophium dirhodum (Walker) infesting spring wheat plots sown from April to June at c. 14 day intervals were determined. Aphid abundance in replicates sown at successive dates peaked within a period of 5-9 days (106-171 day degrees above a base temperature of 0 degrees C) although their sowing dates varied by 62-97 days (727-1106 day degrees). At the time of the aphid population peaks, plants in the different sowings differed in age (11-99 days), developmental stage (stage 15-65 on the Zadoks scale), leaf nitrogen content and shoot mass. Maximum abundance of M. dirhodum decreased with sowing date because the time available for its population increase was shorter on late than early sowings. The abundance of M. dirhodum on spring wheat was similar to its abundance on winter wheat. After reaching peak abundance, aphids declined in numbers within 3-7 days. The effect of host plant ageing on the M. dirhodumdecline thus appeared small. Natural enemies (largely mycoses), and timing of alata production may have contributed to the aphid decline.  相似文献   

19.
Twelve forage grass accessions including 11 accessions of Brachiaria Griseb, were evaluated in a glasshouse for host plant resistance to nymphs and tolerance to feeding damage caused by adults of Zulia colombiana (Lallemand) (Homoptera: Cercopidae). Resistance to nymphs was evaluated with a technique that provided uniform environmental conditions and abundant feeding sites. B. brizantha Stapf (cv. Marandú) was the most resistant of the accessions tested based on nymphal mortality, duration of nymphal stadia, and weight of adult females. Andropogon gayanus Kunth, resistant to spittlebug attack in the field, was susceptible under the conditions of this study. While growth habit and rooting characteristics may contribute to field resistance, other resistance factors are present within the genus Brachiaria, particularly in the case of B. brizantha cv. Marandú. The number of insect-days causing severe damage in the most tolerant species (B. dictyoneura Stapf and B. humidicola Schweick) was approximately six times greater than that necessary to cause the same level of damage to the most susceptible species (B. ruziziensis Germain & Evrard and B. decumbens Stapf). No difference was found in regrowth capacity between infested and noninfested plants within accessions. There was a significant positive correlation between number of insect-days causing severe damage (tolerance) and regrowth of infested plants.
Résumé Brachiaria est une graminée fourragère prometteuse pour les sols tropicaux acides, saturés d'aluminium. Z. colombiana est un Cercopidae très répandu, limitant l'utilisation de Brachiaria en Amérique Latine. La résistance (antibiose et tolérance) à Z. colombiana, de Brachiaria d'origines diverses a été examinée. B. brizantha cv. Marandù s'est révélé le plus résistant d'après la forte mortalité larvaire, la prolongation du développement larvaire, et le poids réduit des femelles adultes de Z. colombiana. Andropogon gayanus, résistant dans la nature, s'est révélé sensible. Ces résultats suggèrent que cette résistance de A. gayanus dans la nature pourrait être due à la structure du végétal et à son mode de croissance. Dans le cas de B. brizantha cv. Marandù, des facteurs supplémentaires de résistance, mis en évidence à partir de différents modes de croissance, ont été éliminés, de façon à identifier les mécanismes de l'antibiose présents chez Brachiaria. Une grande gamme de résistance aux attaques alimentaires a été observée chez Brachiaria. Les plus résistants ont besoin de 6 fois plus de jours d'attaque par Z. colombiana pour provoquer les dégâts observés sur individus sensibles.
  相似文献   

20.
Molecular data regarding the diversity of plant loci involved in resistance to herbivores or pathogens are becoming increasingly available. These genes demonstrate variable patterns of diversity, suggesting that they differ in their evolutionary history. In parallel, the study of natural variation for resistance, generally conducted at the phenotypic level, has shown that resistance does not evolve solely under selection pressures exerted by enemies. Metapopulation dynamics and other ecological characteristics of interacting species also appear to have a large impact on resistance evolution. Until now, studies of resistance at the molecular level have been conducted separately from ecological studies in extant populations. Future progress requires an evolutionary approach integrating both molecular and ecological aspects of resistance evolution. Such an approach will contribute greatly to our understanding of the evolution of molecular diversity at loci involved in biotic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号