共查询到20条相似文献,搜索用时 0 毫秒
1.
Epigenetics include DNA methylation, the modification of histone tails that affect chromatin states, and small RNAs that are involved in the setting and maintenance of chromatin modifications. Marine stramenopiles (MAS), which are a diverse assemblage of algae that acquired photosynthesis from secondary endosymbiosis, include single-celled organisms such as diatoms as well as multicellular forms such as brown algae. The recent publication of two diatom genomes that diverged ~90 million years ago (mya), as well as the one of a brown algae that diverged from diatoms ~250 Mya, provide a great system of related, yet diverged set of organisms to compare epigenetic marks and their relationships. For example, putative DNA methyltransferase homologues were found in diatoms while none could be identified in the brown algal genome. On the other hand, no canonical DICER-like protein was found in diatoms in contrast to what is observed in brown algae. A key interest relies in understanding the adaptive nature of epigenetics and its inheritability. In contrast to yeast that lack DNA methylation, homogeneous cultures of diatoms constitute an attractive system to study epigenetic changes in response to environmental conditions such as nutrient-rich to nutrient-poor transitions which is especially relevant because of their ecological importance. P. tricornutum is also of outstanding interest because it is observed as three different morphotypes and thus constitutes a simple and promising model for the study of the epigenetic phenomena that accompany cellular differentiation. In this review we focus on the insights obtained from MAS comparative genomics and epigenomic analyses. 相似文献
2.
Culture-independent molecular analyses of open-sea microorganisms have revealed the existence and apparent abundance of novel eukaryotic lineages, opening new avenues for phylogenetic, evolutionary, and ecological research. Novel marine stramenopiles, identified by 18S ribosomal DNA sequences within the basal part of the stramenopile radiation but unrelated to any previously known group, constituted one of the most important novel lineages in these open-sea samples. Here we carry out a comparative analysis of novel stramenopiles, including new sequences from coastal genetic libraries presented here and sequences from recent reports from the open ocean and marine anoxic sites. Novel stramenopiles were found in all major habitats, generally accounting for a significant proportion of clones in genetic libraries. Phylogenetic analyses indicated the existence of 12 independent clusters. Some of these were restricted to anoxic or deep-sea environments, but the majority were typical components of coastal and open-sea waters. We specifically identified four clusters that were well represented in most marine surface waters (together they accounted for 74% of the novel stramenopile clones) and are the obvious targets for future research. Many sequences were retrieved from geographically distant regions, indicating that some organisms were cosmopolitan. Our study expands our knowledge on the phylogenetic diversity and distribution of novel marine stramenopiles and confirms that they are fundamental members of the marine eukaryotic picoplankton. 相似文献
4.
Marine stramenopiles (MASTs) are a diverse suite of eukaryotic microbes found in marine environments. Several MAST lineages are thought to contain heterotrophic nanoflagellates. However, MASTs remain uncultured and data on distributions and trophic modes are limited. We investigated MASTs in provinces on the west and east sides of the North Pacific Subtropical Gyre, specifically the East China Sea (ECS) and the California Current system (CALC). For each province, DNA was sampled from three zones: coastal, mesotrophic transitional, and more oligotrophic euphotic waters. Along with diatoms, chrysophytes, and other stramenopiles, sequences were recovered from nine MAST lineages in the six ECS and four CALC 18S rRNA gene clone libraries. All but one of these libraries were from surface samples. MAST clusters 1, 3, 7, 8, and 11 were identified in both provinces, with MAST cluster 3 (MAST-3) being found the most frequently. Additionally, MAST-2 was detected in the ECS and MAST-4, -9, and -12 were detected in the CALC. Phylogenetic analysis indicated that some subclades within these lineages differ along latitudinal gradients. MAST-1A, -1B, and -1C and MAST-4 size and abundance estimates obtained using fluorescence in situ hybridization on 79 spring and summer ECS samples showed a negative correlation between size of MAST-1B and MAST-4 cells and temperature. MAST-1A was rarely detected, but MAST-1B and -1C and MAST-4 were abundant in summer and MAST-1C and MAST-4 were more so at the coast, with maximum abundances of 543 and 1,896 cells ml(-1), respectively. MAST-4 and Synechococcus abundances were correlated, and experimental work showed that MAST-4 ingests Synechococcus. Together with previous studies, this study helps refine hypotheses on distribution and trophic modes of MAST lineages. 相似文献
6.
Two heterotrophic members of the Dictyochophyceae (stramenopiles), Pteridomonas danica and Ciliophrys infusionum, were investigated. An undescribed organelle bounded by four membranes and closely associated with the nucleus was detected in P. danica. The outermost membrane was continuous with the outer nuclear membrane. These features strongly suggested that this organelle was a vestigial chloroplast. A photosynthetic gene, rbcL, was successfully amplified by polymerase chain reaction (PCR) from P. danica and C. infusionum. These sequences were readily and well aligned with those of photosynthetic stramenopiles. Phylogenetic trees of 18S rDNA and rbcL were constructed. In all the trees obtained, P. danica and C. infusionum appeared in two different clades, the Pedinellales clade and the Ciliophryales/Rhizochromulinales clade, each of which contained photosynthetic members as well as heterotrophic members. The results indicated that the loss of photosynthetic ability occurred independently in P. danica and C. infusionum. This is the first report of the presence of a vestigial chloroplast (leucoplast) in colorless dictyochophytes. 相似文献
8.
Molecular surveys in planktonic marine systems have unveiled a large novel diversity of small protists. A large part of this diversity belongs to basal heterotrophic stramenopiles and is distributed in a set of polyphyletic ribogroups (described from rDNA sequences) collectively named as MAST (MArine STramenopiles). In the few groups investigated, MAST cells are globally distributed and abundant bacterial grazers, therefore having a putatively large impact on marine ecosystem functioning. The main aim of this study is to reevaluate the MAST ribogroups described so far and to determine whether additional groups can be found. For this purpose, we used traditional and state-of-the-art molecular tools, combining 18S rDNA sequences from publicly available clone libraries, single amplified genomes (SAGs) of planktonic protists, and a pyrosequencing survey from coastal waters and sediments. Our analysis indicated a final set of 18 MAST groups plus 5 new ribogroups within Ochrophyta (named as MOCH). The MAST ribogroups were then analyzed in more detail. Seven were typical of anoxic systems and one of oxic sediments. The rest were clearly members of oxic marine picoplankton. We characterized the genetic diversity within each MAST group and defined subclades for the more diverse (46 subclades in 8 groups). The analyses of sequences within subclades revealed further ecological specializations. Our data provide a renovated framework for phylogenetic classification of the numerous MAST ribogroups and support the notion of a tight link between phylogeny and ecological distribution. These diverse and largely uncultured protists are widespread and ecologically relevant members of marine microbial assemblages. 相似文献
9.
Mannitol, one of the most widely occurring sugar alcohol compounds, is found in bacteria, fungi, algae, and plants. In these
organisms the compound acts as a compatible solute and has multiple functions, including osmoregulation, storage, and regeneration
of reducing power, and scavenging of active oxygen species. Because of the diverse functions of mannitol, introducing the
ability to accumulate it has been a hallmark of attempts to generate highly salt-tolerant transgenic plants. However, transgenic
plants have not yet improved significantly in their salt tolerance. Recently, we purified and characterized 2 enzymes that
biosynthesize mannitol, mannitol-1-phosphate dehydrogenase (M1PDH) and mannitol-1-phosphate-specific phosphatase, from the
marine red alga Caloglossa continua, which grows in estuarine areas where tide levels fluctuate frequently. The activation of Caloglossa M1PDH is unique in that it is regulated by salt concentration at enzyme level. In this review we focus on the metabolism
of mannitol, mainly in marine photosynthetic organisms, and suggest how this might be applied to producing salt-tolerant transgenic
plants. 相似文献
11.
In green algae, striated fiber assemblin (SFA) is the major protein of the striated microtubule-associated fibers that are structural elements in the flagellar basal apparatus. Using Basic Local Alignment Search Tool (BLAST) searches of recently established databases, SFA-like sequences were detected in the genomes not only of green algal species but also of a range of other protists. These included species in two alveolate subgroups, the ciliates ( Tetrahymena thermophila, Paramecium tetraurelia) and the dinoflagellates ( Perkinsus marinus), and two stramenopile subgroups, the oomycetes ( Phytophthora sojae, Phytophthora ramorum, Phytophthora infestans) and the diatoms ( Thalassiosira pseudonana, Phaeodactylum tricornutum). Together with earlier identification of SFA-like sequences in the apicomplexans, these results indicate that homologs of SFA are present across the alveolates and stramenopiles. Antibodies raised against SFA from the green alga, Spermatozopsis similis, react in immunofluorescence assays with the two basal bodies and an anteriorly directed striated fiber in the flagellar apparatus of biflagellate Phytophthora zoospores. 相似文献
12.
Non-structural storage carbohydrates were measured in 9-day-old barley ( Hordeum vulgare L. cv. Brant) primary leaves. Accumulation rates of starch, sucrose and total non-structural carbohydrates (TNC) were approximately linear when measured between 2- and 12-h of light. Progressively higher TNC accumulation rates were observed at higher irradiance levels (i.e., comparing 250, 550 and 1050 ·mol m −2 s −1). Synthesis of a low-molecular-weight fructan also was enhanced by high irradiances. Low irradiance treatments decreased leaf sucrose levels and there was a corresponding increase in the lag period preceding starch synthesis in the light. Increased starch accumulation rates were usually observed when sucrose concentrations were high. These and other results suggested that cytosolic sucrose concentrations affected starch metabolism in the chloroplast. However, sucrose accumulation rates increased and starch storage decreased when barley seedlings were transferred from 20 to 10°C during the light period. Lowering the night temperature from 20 to 10°C for a single dark period 8-days after planting increased the TNC content of barley primary leaves at the beginning of day nine. In this experiment, TNC accumulation rates of treated and untreated leaves were similar. Changes in the accumulation rate of TNC were usually observed within 2- to 4-h after barley seedlings were exposed to altered environmental conditions. Monitoring rapid changes in leaf carbohydrate levels is a sensitive method for assessing the effects of environmental treatments on photosynthetic metabolism. 相似文献
14.
A hexitol-inducible, phosphoenolpyruvate-dependent phosphotransferase system was demonstrated in Streptococcus mutans. Cell-free extracts obtained from mannitol-grown cells from a representative strain of each of the five S. mutans serotypes (AHT, BHT, C-67-1, 6715, and LM7) were capable of converting mannitol to mannitol-1-phosphate by a reaction which required phosphoenolpyruvate and Mg2+. Mannitol and sorbitol phosphotransferase activities were found in cell-free extracts prepared from cells grown on the respective substrate, but neither hexitol phosphotransferase activity was present in extracts obtained from cells grown on other substrates examined. A heat-stable, low-molecular-weight component was partially purified from glucose-grown cells and found to stimulate the mannitol phosphotransferase system. Divalent cations Mn2+ and Ca2+ partially replaced Mg2+, while Zn2+ was found to be highly inhibitory. 相似文献
15.
It was found that S. meliloti strain SmA818, which is cured of pSymA, could not grow on defined medium containing only formate and bicarbonate as carbon sources. Growth experiments showed that Rm1021 was capable of formate/bicarbonate-dependent growth, suggesting that it was capable of autotrophic-type growth. The annotated genome of S. meliloti Rm1021 contains three formate dehydrogenase genes. A systematic disruption of each of the three formate dehydrogenase genes, as well as the genes encoding determinants of the Calvin-Benson-Bassham, cycle was carried out to determine which of these determinants played a role in growth on this defined medium. The results showed that S. meliloti is capable of formate-dependent autotrophic growth. Formate-dependent autotrophic growth is dependent on the presence of the chromosomally located fdsABCDG operon, as well as the cbb operon carried by pSymB. Growth was also dependent on the presence of either of the two triose-phosphate isomerase genes ( tpiA or tpiB) that are found in the genome. In addition, it was found that fdoGHI carried by pSymA encodes a formate dehydrogenase that allows Rm1021 to carry out formate-dependent respiration. Taken together, the data allow us to present a model of how S. meliloti can grow on defined medium containing only formate and bicarbonate as carbon sources. 相似文献
16.
Microbial communities of Kamchatka Peninsula terrestrial hot springs were studied using molecular, radioisotopic and cultural approaches. Analysis of 16S rRNA gene fragments performed by means of high-throughput sequencing revealed that aerobic autotrophic sulfur-oxidizing bacteria of the genus Sulfurihydrogenibium (phylum Aquificae) dominated in a majority of streamers. Another widely distributed and abundant group was that of anaerobic bacteria of the genus Caldimicrobium (phylum Thermodesulfobacteria). Archaea of the genus Vulcanisaeta were abundant in a high-temperature, slightly acidic hot spring, where they were accompanied by numerous Nanoarchaeota, while the domination of uncultured Thermoplasmataceae A10 was characteristic for moderately thermophilic acidic habitats. The highest rates of inorganic carbon assimilation determined by the in situ incubation of samples in the presence of 14C-labeled bicarbonate were found in oxygen-dependent streamers; in two sediment samples taken from the hottest springs this process, though much weaker, was found to be not dependent on oxygen. The isolation of anaerobic lithoautotrophic prokaryotes from Kamchatka hot springs revealed a wide distribution of the ability for sulfur disproportionation, a new lithoautotrophic process capable to fuel autonomous anaerobic ecosystems. 相似文献
17.
The vertical distribution, biomass concentrations and growthrates of autotrophic picoplankton (APP) were investigated duringthe growing season (March-October) in Lake Constance in differentdepths. Cell numbers determined by epifluorescence microscopyvaried between 1.0 x 10 3 and 1.6 times; 10 5 cells ml 1depending on season and water depth. Highest concentrationswere recorded above the thermodine in late summer. Numerically,APP consisted almost exclusively of chroococcoid cyanobactena.During lake stratification several peaks of biomass concentrationsoccurred in epilimsietic waters at intervals of 68 weeks.In-situ experiments using a dilution technique and dialysisbags revealed that during summer APP population dynamics wereprimarily driven by combined changes of their growth and grazingrates, whereas temperature was less important. Gross growthrates varied between 0.006 and 0.051 h 1, grazing ratesbetween 0.002 and 0.053 h 1. On average APP productionwas completely removed by grazing within the microbial community.Ciliates, heterotrophic nanoflagellates and rotifers have beenidentified as the major consumers of APP cells. APP biomassis small compared to larger phytoplankton, ranging from ito5% of total phytoplankton biovolume. Due to its high gross growthrates, which are on the same level as those of free-living pelagicbacteria, APP contributes slightly more to overall primary productionwith maximum percentages of {small tilde}15% in late summer. 相似文献
18.
The biokinetic parameters for autotrophic systems are difficult to obtain and are often mistakenly determined because the size of the autotrophic population in mixed (i.e., heterotrophic and autotrophic) cultures cannot be accurately estimated. This article presents a systematic approach, combining bioenergetic calculations and experimental data, to obtain values of the biokinetic parameters pertinent to the aerobic, autotrophic biodegradation of thiocyanate. Nonlinear regression techniques were employed using both initial thiocyanate utilization rate data and single thiocyanate depletion curves. Both types of data were necessary to overcome the problems arising from the linear nature of the substrate depletion curves and the high correlation of the biokinetic model parameters inherent in nonlinear regression analysis. The aerobic biodegradation of thiocyanate followed a substrate inhibition pattern that was successfully described by the Haldane-Andrews model. Although regression analysis did not yield unique biokinetic parameter estimates, the following parameter value ranges were obtained: maximum specific substrate utilization rate (k), 0.26 to 0.44 mg SCN-/mg biomass h; half-saturation coefficient (Ks), 2.3 to 7.1 mg SCN-/L; and inhibition coefficient (Ki), 28 to 109 mg SCN-/L. Based on the estimated biokinetic parameter values, a design and operation diagram was constructed that depicts the steady-state thiocyanate concentration as a function of solids retention time for a completely mixed, continuous-flow reactor. 相似文献
20.
A range of marine photosynthetic picoeukaryote phytoplankton species grown in culture were screened for the presence of extracellular carbonic anhydrase (CA ext), a key enzyme in inorganic carbon acquisition under carbon- limiting conditions in some larger marine phytoplankton species. Of the species tested, extracellular carbonic anhydrase was detected only in Micromonas pusilla Butcher. The rapid, light-dependent development of CA ext when cells were transferred from carbon-replete to carbon-limiting conditions was regulated by the available free- CO 2 concentration and not by total dissolved inorganic carbon. Kinetic studies provided support for a CO 2- concentrating mechanism in that the K 0.5[CO 2] (i.e. the CO 2 concentration required for the half-maximal rate of photosynthesis) was substantially lower than the K m[CO 2] of Rubisco from related taxa, whilst the intracellular carbon pool was at least seven fold greater than the extracellular DIC concentration, for extracellular DIC values 1.0 m m . It is proposed that when the flux of CO 2 into the cell is insufficient to support the photosynthetic rate at an optimum photon irradiance, the development of CA ext increases the availability of CO 2 at the plasma membrane. This ensures rapid acclimation to environmental change and provides an explanation for the central role of M. pusilla as a carbon sink in oligotrophic environments. 相似文献
|