首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chlorella vulgaris 11h cells grown in air enriched with 4% CO2(high-CO2 cells) had carbonic anhydrase (CA) activity whichwas 20 to 90 times lower than that of algal cells grown in ordinaryair (containing 0.04% CO2, low-CO2 cells). The CO2 concentrationduring growth did not affect either ribulose 1,5-bisphosphate(RuBP) carboxylase activity or its Km for CO2. When high-CO2 cells were transferred to low CO2 conditions,CA activity increased without a lag period, and this increasewas accompanied by an increase in the rate of photosynthetic14CO2 fixation under 14CO2-limiting conditions. On the otherhand, CA activity as well as the rate of photosynthetic 14CO2fixation at low 14CO2 concentrations decreased when low-CO2cells were transferred to high CO2 conditions. Diamox, an inhibitor of CA, at 0.1 mM did not affect photosynthesisof low-CO2 cells at high CO2 concentration (0.5%). Diamox inhibitedphotosynthesis only under low CO2 concentrations, and the lowerthe CO2 concentration, the greater was the inhibition. Consequently,the CO2 concentration at which the rate of photosynthesis attainedone-half its maximum rate (Km) greatly increased in the presenceof this inhibitor. When CO2 concentration was higher than 1%, the photosyntheticrate in low-CO2 cells decreased, while that in high-CO2 cellsincreased. Fractionation of the low-CO2 cells in non-aqueous medium bydensity showed that CA was fractionated in a manner similarto the distribution of chlorophyll and RuBP carboxylase. These observations indicate that CA enhances photosynthesisunder CO2-limiting conditions, but inhibits it at CO2 concentrationshigher than a certain level. The mechanism underlying the aboveregulatory functions of CA is discussed. 1This work was reported at the International Symposium on PhotosyntheticCO2-Assimilation and Photorespiration, Sofia, August, 1977 (18).Requests for reprints should be addressed to S. Miyachi, RadioisotopeCentre, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan. (Received December 11, 1978; )  相似文献   

2.
This article develops a new carbon exchange diagnostic model [i.e. Southampton CARbon Flux (SCARF) model] for estimating daily gross primary productivity (GPP). The model exploits the maximum quantum yields of two key photosynthetic pathways (i.e. C3 and C4) to estimate the conversion of absorbed photosynthetically active radiation into GPP. Furthermore, this is the first model to use only the fraction of photosynthetically active radiation absorbed by photosynthetic elements of the canopy (i.e. FAPARps) rather than total canopy, to predict GPP. The GPP predicted by the SCARF model was comparable to in situ GPP measurements (R2 > 0.7) in most of the evaluated biomes. Overall, the SCARF model predicted high GPP in regions dominated by forests and croplands, and low GPP in shrublands and dry‐grasslands across USA and Europe. The spatial distribution of GPP from the SCARF model over Europe and conterminous USA was comparable to those from the MOD17 GPP product except in regions dominated by croplands. The SCARF model GPP predictions were positively correlated (R2 > 0.5) to climatic and biophysical input variables indicating its sensitivity to factors controlling vegetation productivity. The new model has three advantages, first, it prescribes only two quantum yield terms rather than species specific light use efficiency terms; second, it uses only the fraction of PAR absorbed by photosynthetic elements of the canopy (FAPARps) hence capturing the actual PAR used in photosynthesis; and third, it does not need a detailed land cover map that is a major source of uncertainty in most remote sensing based GPP models. The Sentinel satellites planned for launch in 2014 by the European Space Agency have adequate spectral channels to derive FAPARps at relatively high spatial resolution (20 m). This provides a unique opportunity to produce global GPP operationally using the Southampton CARbon Flux (SCARF) model at high spatial resolution.  相似文献   

3.
The maximum rate of photosynthetic 14CO2 fixation (Vmax) aswell as the concentration of CO2 at which the rate of photosynthetic14CO2 fixation attains one-half its maximum velocity (Km) inChlorella vulgaris 11h cells was strongly dependent on the concentrationof CO2 continuously provided during the algal growth. The Vmax (µmoles 14CO2 fixed/ml pcv?min) and Km (% CO2)of the algal cells which had been grown in air containing 4%CO2 (by volume) were ca. 10 and 0.15–0.17, while thosein the cells which had been grown in ordinary air (containing0.04% CO2) were 7 and 0.05–0.06, respectively. When the concentration of CO2 in the bubbling gas was loweredfrom 4 to 0.04% during the algal growth, their photosynthetickinetics attained the respective lower steady levels after 5–10hr. On the other hand, when the photosynthetic kinetics weredetermined 24 hr after raising the concentration of CO2 from0.04 to 4%, the Vmax and Km-values were found to have alreadyattained the respective higher levels. (Received October 15, 1976; )  相似文献   

4.
A regional climate change model (PRECIS) for China, developed by the UK's Hadley Centre, was used to simulate China's climate and to develop climate change scenarios for the country. Results from this project suggest that, depending on the level of future emissions, the average annual temperature increase in China by the end of the twenty-first century may be between 3 and 4 degrees C. Regional crop models were driven by PRECIS output to predict changes in yields of key Chinese food crops: rice, maize and wheat. Modelling suggests that climate change without carbon dioxide (CO2) fertilization could reduce the rice, maize and wheat yields by up to 37% in the next 20-80 years. Interactions of CO2 with limiting factors, especially water and nitrogen, are increasingly well understood and capable of strongly modulating observed growth responses in crops. More complete reporting of free-air carbon enrichment experiments than was possible in the Intergovernmental Panel on Climate Change's Third Assessment Report confirms that CO2 enrichment under field conditions consistently increases biomass and yields in the range of 5-15%, with CO2 concentration elevated to 550 ppm Levels of CO2 that are elevated to more than 450 ppm will probably cause some deleterious effects in grain quality. It seems likely that the extent of the CO2 fertilization effect will depend upon other factors such as optimum breeding, irrigation and nutrient applications.  相似文献   

5.
6.
Long  S. P.  Baker  N. R.  Raines  C. A. 《Plant Ecology》1993,(1):33-45
Understanding how photosynthetic capacity acclimatises when plants are grown in an atmosphere of rising CO2 concentrations will be vital to the development of mechanistic models of the response of plant productivity to global environmental change. A limitation to the study of acclimatisation is the small amount of material that may be destructively harvested from long-term studies of the effects of elevation of CO2 concentration. Technological developments in the measurement of gas exchange, fluorescence and absorption spectroscopy, coupled with theoretical developments in the interpretation of measured values now allow detailed analyses of limitations to photosynthesisin vivo. The use of leaf chambers with Ulbricht integrating spheres allows separation of change in the maximum efficiency of energy transduction in the assimilation of CO2 from changes in tissue absorptance. Analysis of the response of CO2 assimilation to intercellular CO2 concentration allows quantitative determination of the limitation imposed by stomata, carboxylation efficiency, and the rate of regeneration of ribulose 1:5 bisphosphate. Chlorophyll fluorescence provides a rapid method for detecting photoinhibition in heterogeneously illuminated leaves within canopies in the field. Modulated fluorescence and absorption spectroscopy allow parallel measurements of the efficiency of light utilisation in electron transport through photosystems I and IIin situ.Abbreviations A net rate of CO2 uptke per unit leaf area (µmol m–2 s–1) - Asat light-saturated A - A820 change in absorptance of PSI on removal of illumination (OD) - c CO2 concentration in air (µmol mol–1) - ca c in the bulk air; ci, c in the intercellular spaces - ce carboxylation efficiency (mol m–2 s–1) - E transpiration per unit leaf area (mol m–2 s–1) - F fluorescence emission of PSII (relative units) - Fm maximal level of F - Fo minimal level of F upon illumination when PSII is maximally oxidised - Fs the steady-state F following the m peak - Fv the difference between Fm and Fo - F'm maximal F' generated after the m peak by addition of a saturating light pulse - F'o the minimal level of F' after the m peak determined by re-oxidising PSII by far-red light - g1 leaf conductance to CO2 diffusion in the gas phase (mol m–2 s–1) - g'1 leaf conductance to water vapour diffusion in the gas phase (mol m–2 s–1) - kc and ko the Michaelis constants for CO2 and O2, respectively, (µmol mol–1); - Jmax the maximum rate of regeneration of rubP (µmol m–2 s–1) - l stomatal limitation to CO2 uptake (dimensionless, 0–1) - LCP light compensation point of photosynthesis (µmol m–2 s–1) - oi the intercellular O2 concentration (mmol mol–1) - Pi cytosol inorganic phosphate concentration - PSI photosystem I - PSII photosystem II - Q photon flux (µmol m–2 s–1) - Qabs Q absorbed by the leaf - rubisCO ribulose 1:5 bisphosphate carboxylase/oxygenase; rubP, ribulose 1:5 bisphosphate; s, projected surface area of a leaf (m2) - Vc,max is the maximum rate of carboxylation (µmol m–2 s–1) - Wc the rubisCO limited rate of carboxylation (µmol m–2 s1) - Wj the electron transport limited rate of regeneration of rubP (µmol m–2 s–1) - Wp the inorganic phosphate limited rate of regeneration of rubP (µmol m–2 s–1) - absorptance of light (dimensionless, 0–1) - a of standard black absorber 1, of leaf - s of integrating sphere walls - , CO2 compensation point of photosynthesis (µmol mol–1) - the specificity factor for rubisCO carboxylation (dimensionless) - , convexity of the response of A to Q (dimensionless 0–1) - the quantum yield of photosynthesis on an absorbed light basis (A/Qabs; dimensionless) - the quantum yield of photosynthesis on an incident light basis (A/Q; dimensionless) - app the maximum - m the maximum - m,app the photochemical efficiency of PSII (dimensionless, 0–1) - PSII,m the maximum   相似文献   

7.
A statistical test is described to verify the characteristics of the biological information contained in the dynamics of the flowering process. The test focuses on interactions between the pollen index and climatic variables to investigate if the biological indicator can synthesise the information of the pre-flowering phases. The multiple-regression model is built upon two pre-flowering climate macro-indicators extracted by Principal Component Analysis (PCA) and the optimised pollen index is obtained by non-parametric estimation. The empirical analysis is applied to 15 stations located in southern Italy in regions that have a longstanding tradition of olive production. Using the variance explained, we find that an optimised pollen index is fairly well predicted by the pre-flowering climatic data. We conclude that the optimised pollen index makes more parsimonious the modelling for predicting olive production.  相似文献   

8.
Calvin cycle carbon dioxide fixation genes encoded on DNA fragments from two nonphotosynthetic, chemolithoautotrophic bacteria, Bradyrhizobium japonicum and Xanthobacter flavus, were found to complement and support photosynthetic growth of a ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) deletion mutant of the purple nonsulfur bacterium Rhodobacter sphaeroides. The regulation of RubisCO expression was analyzed in the complemented R. sphaeroides RubisCO deletion mutant. Distinct differences in the regulation of RubisCO synthesis were revealed when the complemented R. sphaeroides strains were cultured under photolithoautotrophic and photoheterotrophic growth conditions, e.g., a reversal in the normal pattern of RubisCO gene expression. These studies suggest that sequences and molecular signals which regulate the expression of diverse RubisCO genes may be probed by using the R. sphaeroides complementation system.  相似文献   

9.
The metabolic basis for observed differences in the yield response of rice to projected carbon dioxide concentrations (CO2) is unclear. In this study, three rice cultivars, differing in their yield response to elevated CO2, were grown under ambient and elevated CO2 conditions, using the free-air CO2 enrichment technology. Flag leaves of rice were used to determine (1) if manipulative increases in sink strength decreased the soluble sucrose concentration for the ‘weak’ responders and (2), whether the genetic expression of sucrose transporters OsSUT1 and OsSUT2 was associated with an accumulation of soluble sugars and the maintenance of photosynthetic capacity. For the cultivars that showed a weak response to additional CO2, photosynthetic capacity declined under elevated CO2 and was associated with an accumulation of soluble sugars. For these cultivars, increasing sink relative to source strength did not increase photosynthesis and no change in OsSUT1 or OsSUT2 expression was observed. In contrast, the ‘strong’ response cultivar did not show an increase in soluble sugars or a decline in photosynthesis but demonstrated significant increases in OsSUT1 and OsSUT2 expression at elevated CO2. Overall, these data suggest that the expression of the sucrose transport genes OsSUT1 and OsSUT2 may be associated with the maintenance of photosynthetic capacity of the flag leaf during grain fill; and, potentially, greater yield response of rice as atmospheric CO2 increases.  相似文献   

10.
d-Mannitol (hereafter denoted mannitol) is used in the medical and food industry and is currently produced commercially by chemical hydrogenation of fructose or by extraction from seaweed. Here, the marine cyanobacterium Synechococcus sp. PCC 7002 was genetically modified to photosynthetically produce mannitol from CO2 as the sole carbon source. Two codon-optimized genes, mannitol-1-phosphate dehydrogenase (mtlD) from Escherichia coli and mannitol-1-phosphatase (mlp) from the protozoan chicken parasite Eimeria tenella, in combination encoding a biosynthetic pathway from fructose-6-phosphate to mannitol, were expressed in the cyanobacterium resulting in accumulation of mannitol in the cells and in the culture medium. The mannitol biosynthetic genes were expressed from a single synthetic operon inserted into the cyanobacterial chromosome by homologous recombination. The mannitol biosynthesis operon was constructed using a novel uracil-specific excision reagent (USER)-based polycistronic expression system characterized by ligase-independent, directional cloning of the protein-encoding genes such that the insertion site was regenerated after each cloning step. Genetic inactivation of glycogen biosynthesis increased the yield of mannitol presumably by redirecting the metabolic flux to mannitol under conditions where glycogen normally accumulates. A total mannitol yield equivalent to 10% of cell dry weight was obtained in cell cultures synthesizing glycogen while the yield increased to 32% of cell dry weight in cell cultures deficient in glycogen synthesis; in both cases about 75% of the mannitol was released from the cells into the culture medium by an unknown mechanism. The highest productivity was obtained in a glycogen synthase deficient culture that after 12 days showed a mannitol concentration of 1.1 g mannitol L−1 and a production rate of 0.15 g mannitol L−1 day−1. This system may be useful for biosynthesis of valuable sugars and sugar derivatives from CO2 in cyanobacteria.  相似文献   

11.
Stomatal conductance (gs) typically declines in response to increasing intercellular CO2 concentration (ci). However, the mechanisms underlying this response are not fully understood. Recent work suggests that stomatal responses to ci and red light (RL) are linked to photosynthetic electron transport. We investigated the role of photosynthetic electron transport in the stomatal response to ci in intact leaves of cocklebur (Xanthium strumarium) plants by examining the responses of gs and net CO2 assimilation rate to ci in light and darkness, in the presence and absence of the photosystem II inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), and at 2% and 21% ambient oxygen. Our results indicate that (1) gs and assimilation rate decline concurrently and with similar spatial patterns in response to DCMU; (2) the response of gs to ci changes slope in concert with the transition from Rubisco- to electron transport-limited photosynthesis at various irradiances and oxygen concentrations; (3) the response of gs to ci is similar in darkness and in DCMU-treated leaves, whereas the response in light in non-DCMU-treated leaves is much larger and has a different shape; (4) the response of gs to ci is insensitive to oxygen in DCMU-treated leaves or in darkness; and (5) stomata respond normally to RL when ci is held constant, indicating the RL response does not require a reduction in ci by mesophyll photosynthesis. Together, these results suggest that part of the stomatal response to ci involves the balance between photosynthetic electron transport and carbon reduction either in the mesophyll or in guard cell chloroplasts.  相似文献   

12.
The impacts of climate change on crop productivity are often assessed using simulations from a numerical climate model as an input to a crop simulation model. The precision of these predictions reflects the uncertainty in both models. We examined how uncertainty in a climate (HadAM3) and crop General Large-Area Model (GLAM) for annual crops model affects the mean and standard deviation of crop yield simulations in present and doubled carbon dioxide (CO2) climates by perturbation of parameters in each model. The climate sensitivity parameter (gamma, the equilibrium response of global mean surface temperature to doubled CO2) was used to define the control climate. Observed 1966-1989 mean yields of groundnut (Arachis hypogaea L.) in India were simulated well by the crop model using the control climate and climates with values of gamma near the control value. The simulations were used to measure the contribution to uncertainty of key crop and climate model parameters. The standard deviation of yield was more affected by perturbation of climate parameters than crop model parameters in both the present-day and doubled CO2 climates. Climate uncertainty was higher in the doubled CO2 climate than in the present-day climate. Crop transpiration efficiency was key to crop model uncertainty in both present-day and doubled CO2 climates. The response of crop development to mean temperature contributed little uncertainty in the present-day simulations but was among the largest contributors under doubled CO2. The ensemble methods used here to quantify physical and biological uncertainty offer a method to improve model estimates of the impacts of climate change.  相似文献   

13.
A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species   总被引:39,自引:0,他引:39  
Various aspects of the biochemistry of photosynthetic carbon assimilation in C3 plants are integrated into a form compatible with studies of gas exchange in leaves. These aspects include the kinetic properties of ribulose bisphosphate carboxylase-oxygenase; the requirements of the photosynthetic carbon reduction and photorespiratory carbon oxidation cycles for reduced pyridine nucleotides; the dependence of electron transport on photon flux and the presence of a temperature dependent upper limit to electron transport. The measurements of gas exchange with which the model outputs may be compared include those of the temperature and partial pressure of CO2(p(CO2)) dependencies of quantum yield, the variation of compensation point with temperature and partial pressure of O2(p(O2)), the dependence of net CO2 assimilation rate on p(CO2) and irradiance, and the influence of p(CO2) and irradiance on the temperature dependence of assimilation rate.Abbreviations RuP2 ribulose bisphosphate - PGA 3-phosphoglycerate - C=p(CO2) partial pressure of CO2 - O=p(O2) partial pressure of O2 - PCR photosynthetic carbon reduction - PCO photorespiratory carbon oxidation  相似文献   

14.
Sexual dimorphisms of dioecious plants are important in controlling and maintaining sex ratios under changing climate environments. Yet, little is known about sex-specific responses to elevated CO2 with soil nitrogen (N) deposition. To investigate sex-related physiological and biochemical responses to elevated CO2 with N deposition, Populus cathayana Rehd. was employed as a model species. The cuttings were subjected to two CO2 regimes (350 and 700???mol?mol?1) with two N levels (0 and 5?g?N?m?2?year?1). Our results showed that elevated CO2 and N deposition separately increased the total number of leaves, leaf area (LA), leaf mass, net photosynthetic rate (P n), light saturated photosynthetic rate (P max), chlorophyll a (Chl a), and chlorophyll a to chlorophyll b ratio (Chl a/b) in both males and females of P. cathayana. However, the effects on LA, leaf mass, P n, P max, Chl a and Chl a/b were weakened under the combined treatment of elevated CO2 and N deposition. Males had higher leaf mass, P n, P max, apparent quantum yield (??), carboxylation efficiency (CE), Chl a, Chl a/b, leaf N, and root carbon to N ratio (C/N) than did females under elevated CO2 with N deposition. In contrast to males, females had significantly higher levels of soluble sugars in leaves and greater starch accumulation in roots and stems under the same condition. The results of the present work imply that P. cathayana females are more responsive and suffer from greater negative effects on growth and photosynthetic capacity than do males when grown under elevated CO2 with soil N deposition.  相似文献   

15.

Background

Conversion of industrial processes to more nature-friendly modes is a crucial subject for achieving sustainable development. Utilization of hydrogen-oxidation reactions by hydrogenase as a driving force of bioprocess reaction can be an environmentally ideal method because the reaction creates no pollutants. We expressed NAD-dependent alcohol dehydrogenase from Kluyveromyces lactis in a hydrogen-oxidizing bacterium: Ralstonia eutropha. This is the first report of hydrogen-driven in vivo coupling reaction of the alcohol dehydrogenase and indigenous soluble NAD-reducing hydrogenase. Asymmetric reduction of hydroxyacetone to (R)-1,2-propanediol, which is a commercial building block for antibacterial agents, was performed using the transformant as the microbial cell catalyst.

Results

The two enzymes coupled in vitro in vials without a marked decrease of reactivity during the 20 hr reaction because of the hydrogenase reaction, which generates no by-product that affects enzymes. Alcohol dehydrogenase was expressed functionally in R. eutropha in an activity level equivalent to that of indigenous NAD-reducing hydrogenase under the hydrogenase promoter. The hydrogen-driven in vivo coupling reaction proceeded only by the transformant cell without exogenous addition of a cofactor. The decrease of reaction velocity at higher concentration of hydroxyacetone was markedly reduced by application of an in vivo coupling system. Production of (R)-1,2-propanediol (99.8% e.e.) reached 67.7 g/l in 76 hr with almost a constant rate using a jar fermenter. The reaction velocity under 10% PH2 was almost equivalent to that under 100% hydrogen, indicating the availability of crude hydrogen gas from various sources. The in vivo coupling system enabled cell-recycling as catalysts.

Conclusions

Asymmetric reduction of hydroxyacetone by a coupling reaction of the two enzymes continued in both in vitro and in vivo systems in the presence of hydrogen. The in vivo reaction system using R. eutropha transformant expressing heterologous alcohol dehydrogenase showed advantages for practical usage relative to the in vitro coupling system. The results suggest a hopeful perspective of the hydrogen-driven bioprocess as an environmentally outstanding method to achieve industrial green innovation. Hydrogen-oxidizing bacteria can be useful hosts for the development of hydrogen-driven microbial cell factories.  相似文献   

16.
Photosynthetic manipulation provides new opportunities for enhancing crop yield. However, understanding and quantifying the importance of individual and multiple manipulations on the seasonal biomass growth and yield performance of target crops across variable production environments is limited. Using a state-of-the-art cross-scale model in the APSIM platform we predicted the impact of altering photosynthesis on the enzyme-limited (Ac) and electron transport-limited (Aj) rates, seasonal dynamics in canopy photosynthesis, biomass growth, and yield formation via large multiyear-by-location crop growth simulations. A broad list of promising strategies to improve photosynthesis for C3 wheat and C4 sorghum were simulated. In the top decile of seasonal outcomes, yield gains were predicted to be modest, ranging between 0% and 8%, depending on the manipulation and crop type. We report how photosynthetic enhancement can affect the timing and severity of water and nitrogen stress on the growing crop, resulting in nonintuitive seasonal crop dynamics and yield outcomes. We predicted that strategies enhancing Ac alone generate more consistent but smaller yield gains across all water and nitrogen environments, Aj enhancement alone generates larger gains but is undesirable in more marginal environments. Large increases in both Ac and Aj generate the highest gains across all environments. Yield outcomes of the tested manipulation strategies were predicted and compared for realistic Australian wheat and sorghum production. This study uniquely unpacks complex cross-scale interactions between photosynthesis and seasonal crop dynamics and improves understanding and quantification of the potential impact of photosynthesis traits (or lack of it) for crop improvement research.  相似文献   

17.
We have developed a mathematical model based on the underlying mechanisms concerning the responses of the photosynthetic apparatus of a microalga cell which grows under constant incident light intensity and ambient CO(2) concentration. Photosynthesis involves light and carbon-fixation reactions which are mutually dependent and affect each other, but existing models for photosynthesis don't account for both reactions at once. Our modeling approach allows us to derive distinct equations for the rates of oxygen production, NADPH production, carbon dioxide fixation, carbohydrate production, and rejected energy, which are generally different. The production rates of the photosynthesis products are hyperbolic functions of light and CO(2) concentration. The model predicts that in the absence of photoinhibition, CO(2)-inhibition, photorespiration, and chlororespiration, a cell acclimated to high light and/or CO(2) concentration has higher photosynthetic capacity and lower photosynthetic efficiency than does a cell acclimated to low conditions. This results in crossing between the two curves which represent the oxygen production rates and carbon fixation rates in low and high conditions. Finally, in the absence of photoinhibition and CO(2)-inhibition, the model predicts the carbohydrate production rate in terms of both light intensity and CO(2) concentration.  相似文献   

18.
The relative increase with elevated CO2 of canopy CO2 uptake rate (A), derived from continuous measurements during the day, was examined in full-cover vegetative Lolium perenne canopies after 17 days of regrowth. The stands were grown at ambient (358±50 mol mol-1) and increased (626±50 mol mol-1) CO2 concentration in sunlit growth chambers. Over the entire range of temperature and light conditions (which were strongly coupled and increased simultaneously), A was on average twice as large in high compared to ambient CO2. This response (called M=A in high CO2/A in ambient CO2) could not be explained by changes in canopy conductance for CO2 diffusion (GC). In spite of interaction and strong coupling between temperature and light intensity, there was evidence that temperature rather than light determined M. Further, high CO2 treatment was found to alleviate the afternoon depression in A observed in ambient CO2. A temperature optimum shift or/and a larger carbohydrate sink capacity through altered root/shoot ratio are proposed in explanation.Abbreviations A CO2 uptake rate - C350 ambient CO2 treatment - C600 elevated CO2 treatment - E canopy evapotranspiration rate - GC canopy conductance for CO2 diffusion - M high CO2 modification factor  相似文献   

19.
20.
Photosynthesis is the largest organic synthesis on Earth, salinity limits crop yield and quality worldwide directly or indirectly related to the decrease in photosynthetic efficiency. The mechanism by which photosynthetic apparatus responds to salt stress is extremely complex and varies with plant genotype, developmental stage, the history of the plant cell and duration of stress imposed. Recent studies have partially revealed the mechanisms from different levels: molecular, physiological and biochemical, morphological; but there is currently no unified mechanism to explain the effect of stress on photosynthesis. This study comprehensively reviews the adaptive mechanism of photosynthetic apparatus under salt stress, summarises methods for increasing the resistance and provides a practical way to increase grain yield in saline soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号