首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variability and phylogenetic relationships of sequences of the hypervariable domain I (HVI) of the mitochondrial DNA was studied in 46 brown hares (Lepus europaeus) from Anatolia, to test the hypotheses that (i) hares from several islands off the Anatolian coast and from Cyprus are phylogenetically close to mainland Anatolian hares, (ii) Anatolian hare sequence variability is higher than that of typical European brown hares, and to iii) infer possible Anatolian source populations of hares from some islands in the eastern Mediterranean. Neighbor joining and Maximum Parsimony analyses revealed reciprocal monophyly for sequences from Anatolia, the considered eastern Mediterranean islands off the Anatolian coast, Cyprus, and those sequences published earlier form NE Greece that were supposed to originate from earlier immigration via the late-Pleistocene/early-Holocene land bridge that connected SE Europe and W Anatolia (Kasapidis et al., 2005. Mol. Phylogenet. Evol. 34, 55–66). A high sequence idiosyncrasy was found among the Anatolian samples. Almost all approaches to compare variability between Anatolian and the downloaded European sequence data indicated higher sequence diversity in Anatolia, in accordance with earlier findings for allozyme loci. Network and principal coordinate analyses of the Anatolian sequences and those from the islands off the Anatolian coast as well as the Anatolian-type NE Greek sequences suggested high mitochondrial gene exchange among local populations in Anatolia with little effect of possible geographic barriers, and did not provide clues for tracing possible origins of island populations.  相似文献   

2.
The brown hareLepus europaeus Pallas, 1778 occurs naturally in central Eurasia, but has been introduced to parts of northern Europe, South- and North America, Australia and New Zealand. Brown hares were introduced to Sweden from central Europe for hunting purposes during the 19th century. We investigated how the human--mediated brown hare colonisation of Sweden is reflected in the amount of genetic variation present by assessing variation and composition of mitochondrial DNA (mtDNA) lineages among Swedish brown hares. MtDNA from a total of 40 brown hare specimens from 15 localities were analysed for Restriction Fragment Length Polymorphisms. The haplotype diversity is surprisingly high (0.893 ± 0.002) when compared to the mtDNA diversity among brown hares on the European continent as well as to other mammalian species. Admixture of haplotypes from different source populations combined with a reduced effect of random genetic drift and a relaxed selection pressure due to rapid population growth after introduction are mechanisms that are likely to account for the observed high mtDNA haplotype diversity.  相似文献   

3.
A study on the inter- and intraspecies variation of MC1R gene was performed in Lepus species inhabiting the Mediterranean basin (L. granatansis, L. europaeus, L. corsicanus, L. castroviejoi and L. mediterraneus) and their neighboring species in Europe (L. timidus) and Africa (L. saxatilis, L. capensis), in order to infer micro- versus macroevolutionary adaptation. Eleven different sequences were isolated that corresponded to five amino acid sequences. Comparison of MC1R nucleotide phylogenetic tree with phylogenies resulting from mtDNA regions of the same species showed absence of congruence between these sets of markers. The Mediterranean area that offered refugia during last glaciation retains more MC1R genotypes compared with populations of North and Central Europe as a consequence of founder effects. L. corsicanus and L. castroviejoi bore identical alleles supportive of their conspecificity, as indicated by other molecular markers. Within L. europaeus, a group of Israeli hares were distinguished by a different MC1R functional allele; additional differences in coat colour and other genetic markers raise doubts about its taxonomic status. Finally, the present data reinforced the idea of bi-directional introgressive hybridization between L. europaeus and L. timidus in Switzerland.  相似文献   

4.
Aim We analysed the population genetics of the brown hare (Lepus europaeus) in order to test the hypothesis that this species migrated into central Europe from a number of late glacial refugia, including some in Asia Minor. Location Thirty‐three localities in Greece, Bulgaria, Italy, Croatia, Serbia, Poland, Switzerland, Austria, France, Germany, the Netherlands, Spain, the United Kingdom, Turkey and Israel. Methods In total, 926 brown hares were analysed for mitochondrial DNA (mtDNA) variation by restriction fragment length polymorphism (RFLP) performed on polymerase chain reaction‐amplified products spanning cytochrome b (cyt b)/control region (CR), cytochrome oxidase I (COI) and 12S–16S rRNA. In addition, sequence analysis of the mtDNA CR‐I region was performed on 69 individuals, and the data were compared with 137 mtDNA CR‐I sequences retrieved from GenBank. Results The 112 haplotypes detected were partitioned into five phylogeographically well‐defined major haplogroups, namely the ‘south‐eastern European type haplogroup’ (SEEh), ‘Anatolian/Middle Eastern type haplogroup’ (AMh), ‘European type haplogroup, subgroup A’ (EUh‐A), ‘European type haplogroup, subgroup B’ (EUh‐B) and ‘Intermediate haplogroup’ (INTERh). Sequence data retrieved from GenBank were consistent with the haplogroups determined in this study. In Bulgaria and north‐eastern Greece numerous haplotypes of all five haplogroups were present, forming a large overlap zone. Main conclusions The mtDNA results allow us to infer post‐glacial colonization of large parts of Europe from a late glacial/early Holocene source population in the central or south‐central Balkans. The presence of Anatolian/Middle Eastern haplotypes in the large overlap zone in Bulgaria and north‐eastern Greece reveals gene flow from Anatolia to Europe across the late Pleistocene Bosporus land‐bridge. Although various restocking operations could be partly responsible for the presence of unexpected haplotypes in certain areas, we nevertheless trace a strong phylogeographic signal throughout all regions under study. Throughout Europe, mtDNA results indicate that brown hares are not separated into discernable phyletic groups.  相似文献   

5.
Mitochondrial DNA (mtDNA) variation among specimens of the northwestern African hare (Lepus capensis schlumbergeri) and three European hares sampled in Spain (L. castroviejoi andL. granatensis, which are endemic to the Iberian Peninsula, andL. europaeus) was analyzed using seven restriction endonucleases. Fourteen haplotypes were found among the 34 animals examined. Restriction site maps were constructed and the phylogeny of the haplotypes was inferred. mtDNA ofL. capensis was the most divergent, which is consistent with its allopatric African distribution and with an African origin of European hares. We estimated that mtDNA in hares diverges at a rate of 1.5–1.8% per MY assuming that the European and African populations separated 5–6 MYBP. Maximum intraspecies nucleotide divergences were 1.3% inL. capensis, 2.7% inL. castroviejoi, and 2.3% inL. granatensis but 13.0% inL. europaeus. The latter species contained two main mtDNA lineages, one on the branch leading toL. castroviejoi and the other on that leading toL. granatensis. The separation of these two lineages from theL. castroviejoi orL. granatensis lineages appears to be much older than the first paleontological record ofL. europaeus in the Iberian peninsula. This suggests that the apparent polyphyly ofL. europaeus is due not to secondary introgression, but to the retention of ancestral polymorphism inL. europaeus. The results suggest thatL. europaeus either has evolved as a very large population for a long time or has been fractionated. Such a pattern of persistence of very divergent lineages has also been reported in other species of highly mobile terrestrial mammals. As far as mtDNA is concerned,L. europaeus appears to be the common phylogenetic trunk which has diversified during dispersion over the European continent and from whichL. castroviejoi andL. granatensis speciated separately in southwest Europe.  相似文献   

6.
Although only of medium size, and thus of little nutritional value compared to big game such as mammoths and ungulates, hares (Lepus spp.) probably have always been a food source for humans, as documented in archaeological finds. Nowadays, hares, particularly such species as the brown hare (L. europaeus), are among the most important game species in many European countries. For hunting, perhaps religious reasons, and in connection with certain myths, hares have been and are still being intentionally translocated. Ancient translocations by humans can be inferred from the presence of hares on islands that had no mainland connections, at least during the Pleistocene, the major evolutionary period of the genus Lepus. We review some of the literature on anthropogenic translocations of hares. We focus on three examples [the brown hare (L. europaeus), the Corsican hare (L. corsicanus), and the Sardinian hare (L. capensis)], where some molecular data could be used to trace the translocation routes and possible origins of introduced hare populations. Certain molecular marker systems, such as sequences of the hypervariable part I (HV-1) of the mitochondrial control region, show high variability in hare species and are thus promising for tracing both recent and ancient origins of translocated hares. Some other molecular marker systems as well as caveats connected with the use of such marker systems in the genus Lepus are also discussed.  相似文献   

7.
8.
Given its relevance as a game species, the brown hare (Lepus europaeus Pallas, 1778) is one of the most managed and translocated mammals in Europe. In Italy, the species shows a genepool consisting of a mix of native and exotic lineages, due to translocations and introductions for hunting purposes. Some authors argued that the introduction of exotic brown hares could have caused the extinction of an endemic subspecies, L. e. meridiei Hilzheimer 1906, once present in central and northern Italy. Here we genetically characterized for the first time the brown hare population living in Pianosa island (part of the Tuscan Archipelago National Park) using 13 STR loci and a fragment of the mtDNA control region. All individuals analyzed share a unique haplotype, the L. europaeus haplotype Leu2, recognized as the ancestral mitochondrial lineage corresponding to the subspecies L. e. meridiei. Furthermore, considering autosomal markers, Pianosa brown hare population and current Italian peninsular population are genetically distinct. The discovery of this ancient population in a protected area, isolated and not affected by recent translocation/restocking events, has a great relevance in conservation and confirms the current presence of the endemic subspecies L. e. meridiei in Italy.  相似文献   

9.
North African hares are currently considered belonging to cape hares (Lepus capensis), except for an isolated occurrence of L. victoriae in NW Algeria. However, the few existing molecular data are not unequivocal. Here, we study sequence variation (415 bp) in the hypervariable domain-1 of the mitochondrial (mt) control region, of hares with different coat colour from north-central Tunisia and NW Egypt, to test Petter's [(1959): Eléments d’une révision des Lièvres africains du sous-genre Lepus. Mammalia 23, 41–67] hypothesis that North African hares belong to L. capensis. Seven Tunisian and one Egyptian haplotypes were revealed from 28 hares and compared phylogenetically to 245 haplotypes of various Lepus species downloaded from GenBank. Neighbour joining (NJ) and principal coordinate (PCO) analyses based on a Tamura-Nei 93 distance matrix, as well as maximum parsimony (MP) analysis concordantly grouped all currently obtained haplotypes together into one monophyletic clade, and revealed relatively close relationships to the clades of African scrub hares (L. saxatilis) and brown hares (L. europaeus). The three distinguished coat colour types of Tunisian hares were paralleled only to a small extent by sequence differentiation. Haplotypes of L. capensis from the nominal Cape province of South Africa, North Africa, and China clustered into different major clades, respectively, with Chinese L. capensis haplotypes forming only a subclade within a major clade that encompassed predominantly “mountain/arctic hare-type sequences” in addition to sequences of several other palaearctic and nearctic species. One further Chinese L. capensis haplotype clustered into the L. comus clade. These results indicated occurrence of introgression and/or shared ancestral polymorphism. Such an evolutionary scenario implies using nucelar markers in addition to mtDNA for phylogenetic inferences in the genus Lepus; nevertheless, mtDNA is still useful for inferring phylogenetic history and biogeography of hares.  相似文献   

10.
Hybridization occurs among many species, and may have implications for conservation as well as for evolution. Interspecific gene flow between brown hares Lepus europaeus and mountain hares L. timidus has been documented in Sweden and in continental Europe, and has probably to some extent occurred throughout history in sympatric areas. What local factors or ecological relationships that correlate with or trigger hybridization between these species has however been unclear. We studied spatial distribution of hybrids between brown hares and mountain hares in Sweden in relation to characteristics of the sampled localities (hunting grounds). In a sample of 70 brown hares collected from 39 populations in south‐central Sweden during 2003–2005, 11 (16%) showed introgressed mtDNA from mountain hares. Among the brown hares from their northern range, i.e. in general the most recent establishments, the corresponding figure was 75% (9/12). The frequency of samples with hybrid ancestry increased significantly with latitude, altitude and hilliness, and were higher (p<0.1) in recently established populations and/or where the proportion of arable land was low. Several site‐specific parameters were correlated, e.g. latitude as expected to hilliness, and no parameter explained the occurrence of hybrids exclusively. Instead, the appearance of mountain hare mtDNA among brown hares was associated with a conglomerate of parameters reflecting landscapes atypical for the brown hare, e.g. forest dominated and steep areas where the species quite recently was established. We suggest that these abiotic factors mirror the main aspect influencing hybridization frequency, namely the density or relative frequency of the two species. In atypical brown hare landscapes with recent establishment, mountain hares are probably relatively more common. When one species dominate in numbers, or when both species display low densities, increased frequency of hybridization is expected due to low availability of conspecific partners, a phenomenon referred to as Hubbs’ principle.  相似文献   

11.
Systematics and taxonomy of hares of the genus Lepus (Lagomorpha) are under contentious debate, and phylogenetic relationships among many taxa are not well understood. Here we study genetic differentiation and evolutionary relationships among North African hares, currently considered subspecies of Lepus capensis , cape hares ( L. capensis ) from the Cape province in South Africa, and brown hares ( L. europeaus ) from Europe and Anatolia, using maternally (mtDNA) and biparentally (allozymes) inherited markers. A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of a c. 1.8 kb long segment of the mitochondrial control region using eight hexanucleotide-recognizing restriction endonucleases yielded 28 haplotypes, and horizontal starch gel electrophoresis of proteins encoded by 25 structural gene loci revealed 52 alleles at 18 polymorphic loci. Diverse phylogenetic analyses (neighbor joining dendrogram, median joining network, multidimensional scaling of pairwise distances, AMOVA, F -statistics, hierarchical F -statistics) of genetic variants revealed marked substructuring of mtDNA into three phylogeographic groups, namely an African, a central European, and an Anatolian, but a somewhat less pronounced overall differentiation of the nuclear genome, despite a relatively high number of population-specific (private) alleles. However, all our results are not incongruent with Petter's (1959: Mammalia 23 , 41; 1961: Z. f. Säugetierkunde 26 , 30; 1972 : Société Des Sciences Naturelles et Physiques du Maroc 52 , 122) hypothesis that North African hares generally belong to L. capensis and that brown hares should be included in this species as well.  相似文献   

12.
Genetic introgression from a resident species into an invading close relative can result from repeated hybridisation along the invasion front and/or allele surfing on the expansion wave. Cases where the phenomenon is massive and systematic, such as for hares (genus Lepus) in Iberia, would be best explained by recurrent hybridisation but this is difficult to prove because the donor populations are generally extinct. In the Pyrenean foothills, Lepus europaeus presumably replaced Lepus granatensis recently and the present species border is parallel to the direction of invasion, so that populations of L. granatensis in the contact zone represent proxies of existing variation before the invasion. Among three pairs of populations sampled across this border, we find less differentiation of mitochondrial DNA (mtDNA) across than along it, as predicted under recurrent hybridisation at the invasion front. Using autosomal microsatellite loci and X- and Y-linked diagnostic loci, we show that admixture across the border is quasi-absent, making it unlikely that lack of interspecific mtDNA differentiation results from ongoing gene flow. Furthermore, we find that the local species ranges are climatically contrasted, making it also unlikely that ongoing ecology-driven movement of the contact account for mtDNA introgression. The lack of mtDNA differentiation across the boundary is mostly due to sharing of mtDNA from a boreal species currently extinct in Iberia (Lepus timidus) whose mitochondria have thus remained in place since the last deglaciation despite successive invasions by two other species. Home-loving mitochondria thus witness past species distribution rather than ongoing exchanges across stabilised contact zones.  相似文献   

13.
The occurrence of mountain hare mitochondrial DNA in wild brown hares   总被引:4,自引:0,他引:4  
If interspecific hybrids are fertile and backcross to either parental species, transmission of mitochondrial DNA over the species barrier can occur. To investigate if such transmission has occurred between the brown hare Lepus europeus Pall and the mountain hare L. timidus L. in Scandinavia, an analysis of genetic variation in mitochondrial DNA from 36 hares, collected from 15 localities, was performed. Sequence divergence of mtDNA between species was estimated at 8 ± 1% (SD). Intraspecific mtDNA sequence divergence varied between 0.09 and 0.38% in brown hares and 0.10 and 1.44% in mountain hares. In six out of 18 brown hares examined, two different haplotypes of mountain hare origin were detected, demonstrating a transmission of mtDNA haplotypes from mountain hares to brown hares. The results indicate that interspecific hybridization between the two species occurs in wild populations.  相似文献   

14.
Genetic variability of Anatolian hares and relationships between Anatolian and European populations were assessed by a multilocus allozyme approach to infer evolutionary relationships between hares from Asia Minor and Europe. Of the 48 loci assayed, 19 (39.6%) were polymorphic with two to four alleles in the Anatolian hares. Among all Anatolian alleles, 14 were so far not found in the compared 717 brown hares from Europe. Overall, genetic diversity was highest in Anatolian hares, intermediate in brown hares from the southern and southeastern Balkans and lowest in central European populations. The rich genetic diversity in Anatolian hares might be a consequence of Anatolias biogeographic position with the chance of multiple gene flow from neighbouring regions, and the likelihood of long-term presence of hares during the last ice age, when large parts of more northern latitudes did not provide suitable habitats.However, among 28 loci used for the comparison between European and Anatolian populations, most common alleles of European brown hares were also common in Anatolian populations and no alternately fixed alleles were found for Anatolian and European populations. This together with only little or moderately varying allele frequencies produced low genetic divergence between Anatolian and European populations. Genetic differentiation among Anatolian populations was also low. Even between the two forms with different coat colour (brownish and yellowish) in Anatolian hares, there was little genetic differentiation. Altogether, all Anatolian hares studied presently are closely related to European brown hare populations, and only some distantly spaced population pairs revealed increased genetic divergence.

Zusammenfassung

Genetische Diversität anatolischer Feldhasen (Lepus europaeus Pallas, 1778) und Differenzierung zwischen anatolischen und europäischen PopulationenZur Beurteilung der phylogenetischen Beziehungen zwischen anatolischen Hasen und europäischen Feldhasenpopulationen wurde die allelische Variabilität anatolischer Hasen mittels horizontaler Stärkegelelektrophorese erfaßt und gemeinsam mit unmittelbar vergleichbaren Daten griechischer, bulgarischer und österreichischer Populationen aus früheren Studien populationsgenetischen Analysen unterzogen. Neunzehn der 48 untersuchten Loci der anatolischen Hasen zeigten allelische Variabilität. Unter den anatolischen Allelen kamen 14 bisher in den europäischen Polulationen nicht vor. Insgesamt zeigten anatolische Hasen die höchste und österreichische Populationen die niedrigste genetische Diversität; die jeweiligen Werte der griechischen und bulgarischen Populationen lagen dazwischen. Dies entspricht unserer Hypothese hoher genetischer Diversität in Anatolien, auf Grund der biogeografischen Position und der klimatischen bzw. Lebensraumbedingungen während des Pleistozäns, die, im Gegensatz zu Mitteleuropa, kontinuierliche Hasenpopulation in Anatolien wahrscheinlich erscheinen lassen. Kontinuierliche Populationen und Genflüsse aus verschiedenen Nachbarregionen könnten bei langfristig relative ungestörten Populationen zur Anreicherung genetischer Varianten in Anatolien geführt haben, während mitteleuropäische Feldhasenpopulationen im Zuge ihrer postglazialen Einwanderung aus Refugial-gebieten an genetischer Vielfalt eingebüßt haben. Allerdings waren die häufigen Allele der anatolischen Hasen ebenfalls häufig bei den europäischen Feldhasen vertreten; somit ergab sich insgesamt nur eine geringe genetische Differenzierung zwischen anatolischen und europäischen Feldhasen. Die zwei in Anatolien gefundenen Fellfärbungstypen (brauner vs. gelber Grundton) zeigten ebenfalls keine besondere genetische Differenzierung.  相似文献   

15.
Tunisian hares (n = 45), currently assigned to Lepus capensis, were assayed for allelic variation at 40 allozyme loci, and allele frequencies at 32 loci were directly compared with earlier data of South African cape hares (L. capensis, n = 9) and European brown hares (L. europaeus, n = 244) to reveal genetic relationships among them. European mountain hares (L. timidus, n = 200) were used for outgroup comparison. In the Tunisian hares 27.5% of the loci were polymorphic with 2–4 alleles. Among all alleles at polymorphic loci, 15.1% occurred exclusively in Tunisian hares, 5.7% exclusively in cape hares, and 7.5% exclusively in brown hares at low frequencies. Not a single locus showed alternately fixed alleles between the samples of the L. capensis/L. europaeus complex. Levels of absolute and relative genetic differentiation among the samples of the L. capensis/ L. europaeus complex were low, relative to pairwise comparisons involving mountain hares. Diverse cluster analyses and multidimensional scaling of various pairwise genetic distance matrices concordantly grouped Tunisian hares with brown hares, and South African cape hares clustered only slightly farther apart, whereas mountain hares were distinctly separate. These results suggest regionally distinct phylogenetic units within an overall cohesive gene pool in the L. capensis/ L. europaeus complex, supporting Petter's view that all North African hares belong to L. capensis except for one local population of savanna hares, and that cape hares and brown hares are conspecific.  相似文献   

16.
1. Throughout the most recent glacial period (Weichsel), the mountain hare Lepus timidus had a continuous distribution in the tundra habitat south of the ice‐rim. When the ice retreated, mountain hares colonized deglaciated land, and spread over northern Europe. 2. Since the Weichsel, the mountain hare's distribution in Europe has been gradually reduced and at present comprises Ireland and the Scottish Highlands, high altitudes in the Alps, isolated forests in eastern Poland, most of Fennoscandia and from the Baltic countries eastwards through Russia. Declines during the last century have been observed in Sweden and Russia. 3. This review defines and evaluates causes for this gradual reduction and fragmentation of the mountain hare's distribution, with special focus on interactions with brown hares Lepus europaeus. The relative importance of diseases, predation, cultivation and interactions with other herbivores than brown hares are discussed. 4. A plausible cause of the possible permanent disappearance of mountain hares in Europe appears to be exclusion by interspecific competition and hybridization with, and/or epidemic diseases mediated by, the congeneric brown hare.  相似文献   

17.
High‐resolution, male‐inherited Y‐chromosomal markers are a useful tool for population genetic analyses of wildlife species, but to date have only been applied in this context to relatively few species besides humans. Using nine Y‐chromosomal STRs and three Y‐chromosomal single nucleotide polymorphism markers (Y‐SNPs), we studied whether male gene flow was important for the recent recovery of the brown bear (Ursus arctos) in Northern Europe, where the species declined dramatically in numbers and geographical distribution during the last centuries but is expanding now. We found 36 haplotypes in 443 male extant brown bears from Sweden, Norway, Finland and northwestern Russia. In 14 individuals from southern Norway from 1780 to 1920, we found two Y chromosome haplotypes present in the extant population as well as four Y chromosome haplotypes not present among the modern samples. Our results suggested major differences in genetic connectivity, diversity and structure between the eastern and the western populations in Northern Europe. In the west, our results indicated that the recovered population originated from only four male lineages, displaying pronounced spatial structuring suggestive of large‐scale population size increase under limited male gene flow within the western subpopulation. In the east, we found a contrasting pattern, with high haplotype diversity and admixture. This first population genetic analysis of male brown bears shows conclusively that male gene flow was not the main force of population recovery.  相似文献   

18.
Anatolian mountain frogs (Rana macrocnemis, Rana camerani, Rana holtzi, and Rana tavasensis) are one of the most specious amphibian groups in Turkey containing two endemic taxa (R. holtzi and R. tavasensis). The taxonomy of this group remains controversial as there are several unresolved issues.In the present study, we aimed to resolve the taxonomic uncertainty of the Anatolian mountain frogs through two mitochondrial genes (CYTB, 481 bp and COI, 743 bp) and two protein-coding nuclear genes (POMC, 401 bp and RAG1, 717 bp). The mitochondrial DNA (mtDNA) markers were found to be highly polymorphic in this group. Haplotype network analysis revealed that R. tavasensis was different for at least 33 and 52 mutational steps according to CYTB and COI gene regions, respectively. High bootstrap and posterior probability values obtained from the mtDNA genes support the idea that Anatolian mountain frogs are represented by two distinct species in Anatolia: R. macrocnemis and R. tavasensis. However, no genetic variation was detected according to nuclear DNA (nDNA) markers.The analysis of molecular variance (AMOVA) revealed no differences among the groups of R. macrocnemis, R. camerani, and R. holtzi. Despite the low genetic distance among R. macrocnemis, R. camerani, and R. holtzi species, the pairwise distances estimated from R. tavasensis were higher compared with other Anatolian mountain frog lineages.  相似文献   

19.
Hybridization drives the evolutionary trajectory of many species or local populations, and assessing the geographic extent and genetic impact of interspecific gene flow may provide invaluable clues to understand population divergence or the adaptive relevance of admixture. In North America, hares (Lepus spp.) are key species for ecosystem dynamics and their evolutionary history may have been affected by hybridization. Here we reconstructed the speciation history of the three most widespread hares in North America – the snowshoe hare (Lepus americanus), the white‐tailed jackrabbit (L. townsendii) and the black‐tailed jackrabbit (L. californicus) – by analysing sequence variation at eight nuclear markers and one mitochondrial DNA (mtDNA) locus (6240 bp; 94 specimens). A multilocus–multispecies coalescent‐based phylogeny suggests that L. americanus diverged ~2.7 Ma and that L. californicus and L. townsendii split more recently (~1.2 Ma). Within L. americanus, a deep history of cryptic divergence (~2.0 Ma) was inferred, which coincides with major speciation events in other North American species. While the isolation‐with‐migration model suggested that nuclear gene flow was generally rare or absent among species or major genetic groups, coalescent simulations of mtDNA divergence revealed historical mtDNA introgression from L. californicus into the Pacific Northwest populations of L. americanus. This finding marks a history of past reticulation between these species, which may have affected other parts of the genome and influence the adaptive potential of hares during climate change.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号