首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since a genome is a discrete sequence, the elements of which belong to a set of four letters, the question as to whether or not there is an error-correcting code underlying DNA sequences is unavoidable. The most common approach to answering this question is to propose a methodology to verify the existence of such a code. However, none of the methodologies proposed so far, although quite clever, has achieved that goal. In a recent work, we showed that DNA sequences can be identified as codewords in a class of cyclic error-correcting codes known as Hamming codes. In this paper, we show that a complete intron-exon gene, and even a plasmid genome, can be identified as a Hamming code codeword as well. Although this does not constitute a definitive proof that there is an error-correcting code underlying DNA sequences, it is the first evidence in this direction.  相似文献   

2.

Bacterial vaginosis (BV) has been described as a disease, a disorder, a vaginal inflammation, an infection, a microbial dysbiosis, a condition, and in some women, a normal situation. In order to fit the definition of a disease, BV would have to be a disorder of function that produces specific signs or symptoms or affects the vagina in an aberrant way. Yet, there is little consistency in patients reporting signs and symptoms when BV is diagnosed, nor the appearance of aberrations to the vagina. If BV is not a disease, there are implications for its management and coverage of treatment costs, and for the conclusions drawn in a multitude of previous studies. It is time for BV to be redefined and for the various subsets to be given a separate terminology with specific methods of diagnosis and appropriate treatment and preventive strategies.

  相似文献   

3.
In this perspective we discuss that bacterial genomes have optimized during evolution to control a range of cytoplasm, from immediately after cell division to a maximum amount/volume present just prior to DNA replication and subsequent cell division. The genetic expansion of bacteria via evolution may be limited to a genome size:cytoplasm amount/volume ratios and energetics that have been selected for during 3.6-4 billion years of evolution on the Earth. The optimal genome size is one that is relatively constant, but also has some plasticity for evolutionary change (via gene transfer) and mutational events, and can control a range of cytoplasm during the cell cycle.  相似文献   

4.
5.
The German Neurospora Genome Project has assembled sequences from ordered cosmid and BAC clones of linkage groups II and V of the genome of Neurospora crassa in 13 and 12 contigs, respectively. Including additional sequences located on other linkage groups a total of 12 Mb were subjected to a manual gene extraction and annotation process. The genome comprises a small number of repetitive elements, a low degree of segmental duplications and very few paralogous genes. The analysis of the 3218 identified open reading frames provides a first overview of the protein equipment of a filamentous fungus. Significantly, N.crassa possesses a large variety of metabolic enzymes including a substantial number of enzymes involved in the degradation of complex substrates as well as secondary metabolism. While several of these enzymes are specific for filamentous fungi many are shared exclusively with prokaryotes.  相似文献   

6.
7.
The ability of bacteria to evolve resistance to antibiotics has been much reported in recent years. It is less well-known that within populations of bacteria there are cells which are resistant due to a non-inherited phenotypic switch to a slow-growing state. Although such 'persister' cells are receiving increasing attention, the evolutionary forces involved have been relatively ignored. Persistence has a direct benefit to cells because it allows survival during catastrophes-a form of bet-hedging. However, persistence can also provide an indirect benefit to other individuals, because the reduced growth rate can reduce competition for limiting resources. This raises the possibility that persistence is a social trait, which can be influenced by kin selection. We develop a theoretical model to investigate the social consequences of persistence. We predict that selection for persistence is increased when: (a) cells are related (e.g. a single, clonal lineage); and (b) resources are scarce. Our model allows us to predict how the level of persistence should vary with time, across populations, in response to intervention strategies and the level of competition. More generally, our results clarify the links between persistence and other bet-hedging or social behaviours.  相似文献   

8.
One of the recent exciting developments in the research area of plant-microbe interactions is a breakthrough in understanding part of the initial signalling between avirulent Gram-negative bacteria and resistant plants. For resistance to occur, both interacting organisms need to express matching genes, the plant resistance gene and the bacterial avirulence gene. The biochemical function of bacterial avirulence genes and the nature of the signal molecules recognized by the plant have been a mystery for a long time. Recently, several laboratories have shown that bacterial avirulence proteins function as elicitors that are perceived within the plant cell.  相似文献   

9.
10.
The cytoplasmic membrane protein FeoB of Escherichia coli, Helicobacter pylori, Legionella pneumophila and Synechocystis sp. strain PCC 6803 is necessary for Fe(2+) uptake. The C-terminal part of FeoB is predicted to contain 8-12 membrane-spanning helices. The N-terminal domain shows much similarity to eukaryotic and prokaryotic G proteins and, indeed, GTPase activity is necessary for Fe(2+) transport. Four of the five characteristic conserved G protein motifs have been identified in FeoB proteins. Whether FeoB is involved directly, via its Me(2+) binding site, or indirectly in Fe(2+) transport, remains to be investigated.  相似文献   

11.
12.
13.
The “mitochondrial cascade hypothesis” could explain many of the biochemical, genetic and pathological features of sporadic Alzheimer’s disease (AD). Somatic mutations in mitochondrial DNA (mtDNA) could cause energy failure, increased oxidative stress and accumulation of amyloid β, which in a vicious cycle reinforces mtDNA damage and oxidative stress. Despite the evidence of mitochondrial dysfunction in AD, and despite the cognitive impairment frequently reported in patients with mtDNA mutation, no causative mutation in the mtDNA have been linked to AD. Indeed, results of studies on the role of mtDNA polymorphisms or haplogroups in AD are controversial. In this minireview, we summarize the actual knowledge about the involvement of mtDNA in AD pathology.  相似文献   

14.
15.
16.
Some notable exceptions aside, eukaryotic genomes are distinguished from those of Bacteria and Archaea in a number of ways, including chromosome structure and number, repetitive DNA content, and the presence of introns in protein-coding regions. One of the most notable differences between eukaryotic and prokaryotic genomes is in size. Unlike their prokaryotic counterparts, eukaryotes exhibit enormous (more than 60 000-fold) variability in genome size which is not explained by differences in gene number. Genome size is known to correlate with cell size and division rate, and by extension with numerous organism-level traits such as metabolism, developmental rate or body size. Less well described are the relationships between genome size and other properties of the genome, such as gene content, transposable element content, base pair composition and related features. The rapid expansion of ‘complete’ genome sequencing projects has, for the first time, made it possible to examine these relationships across a wide range of eukaryotes in order to shed new light on the causes and correlates of genome size diversity. This study presents the results of phylogenetically informed comparisons of genome data for more than 500 species of eukaryotes. Several relationships are described between genome size and other genomic parameters, and some recommendations are presented for how these insights can be extended even more broadly in the future.  相似文献   

17.
Thanks to the exponentially increasing number of publicly available bacterial genome sequences, one can now estimate the important contribution of integrated viral sequences to the diversity of bacterial genomes. Indeed, temperate bacteriophages are able to stably integrate the genome of their host through site‐specific recombination and transmit vertically to the host siblings. Lysogenic conversion has been long acknowledged to provide additional functions to the host, and particularly to bacterial pathogen genomes where prophages contribute important virulence factors. This review aims particularly at highlighting the current knowledge and questions about lysogeny in Salmonella genomes where functional prophages are abundant, and where genetic interactions between host and prophages are of particular importance for human health considerations.  相似文献   

18.
Shen Y  Chou CY  Chang GG  Tong L 《Molecular cell》2006,22(6):807-818
Acetyl-coenzyme A carboxylases (ACCs) have crucial roles in fatty acid metabolism. The biotin carboxylase (BC) subunit of Escherichia coli ACC is believed to be active only as a dimer, although the crystal structure shows that the active site of each monomer is 25 A from the dimer interface. We report here biochemical, biophysical, and structural characterizations of BC carrying single-site mutations in the dimer interface. Our studies demonstrate that two of the mutants, R19E and E23R, are monomeric in solution but have only a 3-fold loss in catalytic activity. The crystal structures of the E23R and F363A mutants show that they can still form the correct dimer at high concentrations. Our data suggest that dimerization is not an absolute requirement for the catalytic activity of the E. coli BC subunit, and we propose a new model for the molecular mechanism of action for BC in multisubunit and multidomain ACCs.  相似文献   

19.
20.
G Schneider 《Gene》1999,237(1):113-121
Artificial neural networks were trained on the prediction of the subcellular location of bacterial proteins. A cross-validated average prediction accuracy of 93% was reached for distinction between cytoplasmic and non-cytoplasmic proteins, based on the analysis of protein amino-acid composition. Principal component analysis and self-organizing maps were used to create graphical representations of amino-acid sequence space. A clear separation of cytoplasmic, periplasmic, and extracellular proteins was observed. The neural network system was applied to predicting potentially secreted proteins in 15 complete genomes. For mesophile bacteria the predicted fractions of non-cytoplasmic proteins agree with previously published estimates, ranging between 15% and 30%. Characteristics of thermophile genomes might lead to an under-estimation of the fraction of secreted proteins by presently available prediction systems. A self-organizing map was constructed from all 15 bacterial genomes. This technique can reveal additional sequence features independent from exhaustive pair-wise sequence alignment. The Treponema pallidum and Mycobacterium tuberculosis data formed separate clusters indicating unusual characteristics of these genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号