首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive ultra performance liquid chromatography–mass spectrometry method has been developed and validated for the quantification of taxifolin in rat plasma. Following liquid/liquid extraction by ethyl acetate, the analytes were separated on a Sunfire? (2.1 mm × 50 mm, 3.5 μm) column and analyzed in the selected ion recording with a negative electrospray ionization mode. The method was linear over the concentration range of 6–6750 ng/mL. Intra- and inter-day precisions were all within 8% and accuracy ranged from 92.9% to 105.1%. The lower limit of quantification was 6 ng/mL. The present method was successfully applied to the estimation of the pharmacokinetic parameters of taxifolin following intravenous and oral administration to rats. The absolute bioavailability of taxifolin was 0.17% in rat.  相似文献   

2.
A rapid and simple liquid chromatography–fluorescence detection (LC–FD) method was developed and validated for the simultaneous quantification of irinotecan (CPT11) and SN38 in sheep plasma. Camptothecin (CPT) was used as the internal standard. A single step protein precipitation with acetonitrile was used for sample preparation. The separation was achieved using a 5 μm C18 column (250 mm × 4.5 mm, 5 μm) with a mobile phase composed of 36 mM sodium dihydrogen phosphate dehydrate and 4 mM sodium 1 heptane sulfonate–acetonitrile (72:28), the pH of the mobile phase was adjusted to 3. The flow rate was 1.45 mL/min and the fluorescence detection was operated at 355/515 nm (excitation/emission wavelengths). The run time was 13 min. The method was validated with respect to selectivity, extraction recovery, linearity, intra- and inter-day precision and accuracy, limit of quantification and stability. The method has a limit of quantification of 5 ng/mL for both CPT11 and SN38. The assay was linear over concentrations ranging from 5 to 5000 ng/mL and to 240 ng/mL for CPT11 and SN38, respectively. This method was used successfully to perform plasma pharmacokinetic studies of CPT11 after pulmonary artery embolization (PACE) in a sheep model. It was also validated for CPT11 and SN38 analysis in sheep lymph and human plasma.  相似文献   

3.
A simple and sensitive high-performance liquid chromatography with ultraviolet detection (HPLC-UV) method has been developed and validated for simultaneous quantification of five local anesthetics in human plasma: procaine, lidocaine, ropivacaine, tetracaine and bupivacaine. In an ice-water bath, 500 μL plasma sample, containing 100 μg/mL neostigmine methylsulfate as anticholinesterase, was spiked with carbamazepine as internal standard and alkalized by sodium hydroxide. Liquid–liquid extraction with ethyl ether was used for plasma sample preparation. The chromatographic separation was achieved on a Kromosil ODS C18 column with a mobile phase consisting of 30 mM potassium dihydrogen phosphate buffer (0.16% triethylamine, pH adjusted to 4.9 with phosphoric acid) and acetonitrile (63/37, v/v). The detection was performed simultaneously at wavelengths of 210 and 290 nm. The chromatographic analysis time was 13 min per sample. The calibration curves of all five analytes were linear between 0.05 and 5.0 μg/mL (r2  0.998). Precision ranged from 1.4% to 7.9% and accuracy was between 91.7% and 106.5%. The validated method is applicable for simultaneous determination of procaine, lidocaine, ropivacaine, tetracaine and bupivacaine for therapeutic drug monitoring and pharmacokinetic study.  相似文献   

4.
A rapid high-performance liquid chromatography–mass spectrometry (HPLC–MS) method was developed and validated for simultaneous quantification of 6-gingerol, 8-gingerol, 10-gingerol and 6-shogaol in rat plasma after oral administration of ginger oleoresin. Plasma samples extracted with a liquid–liquid extraction procedure were separated on an Agilent Zorbax StableBond-C18 column (4.6 mm × 50 mm, 1.8 μm) and detected by MS with electrospray ionization interface in positive selective ion monitoring (SIM) mode. Calibration curves (1/x2 weighted) offered satisfactory linearity (r2 > 0.995) in a wide linear range (0.0104–13.0 μg/mL for 6-gingerol, 0.00357–4.46 μg/mL for 8-gingerol, 0.00920–11.5 μg/mL for 10-gingerol and 0.00738–9.22 μg/mL for 6-shogaol). The lower limit of quantification (LLOQ) was in a range of 3.57–10.4 ng/mL. The analytes and internal standard can be baseline separated within 6 min. Inter- and intra-day assay variation was less than 15%. This developed method was successfully applied to pharmacokinetic studies of ginger oleoresin after oral administration to rats. Glucuronide of 6-gingerol was determined after β-glucuronidase hydrolysis for more information, and the intestinal glucuronidation was further confirmed by comparison of plasma samples of hepatic portal vein and femoral vein.  相似文献   

5.
A rapid, selective and sensitive high performance liquid chromatography–tandem mass spectrometry method (LC–MS/MS) was developed and validated for the determination and pharmacokinetic investigation of cefuroxime in human plasma. Cefuroxime and the internal standard (IS), cefoxitin, were extracted from plasma samples using solid phase extraction with Oasis HLB cartridges. Chromatographic separation was performed on a LiChrospher® 60 RP Select B column (125 mm × 4 mm i.d., 5 μm particle size) using acetonitrile:5 ± 0.2 mM ammonium acetate solution:glacial acetic acid (70:30:0.020, v/v/v) as the mobile phase at a flow rate of 0.8 mL/min. Detection of cefuroxime and cefoxitin was achieved by tandem mass spectrometry with an electrospray ionization (ESI) interface in negative ion mode. The calibration curves were linear over the range of 81.0–15976.2 ng/mL with the lower limit of quantitation validated at 81.0 ng/mL. The intra- and inter-day precisions were within 7.6%, while the accuracy was within ±6.3% of nominal values. No matrix effect was observed in this method. The validated LC–MS/MS method was successfully applied for the evaluation of pharmacokinetic and bioequivalence parameters of cefuroxime after an oral administration of 500 mg cefuroxime tablet to 36 healthy male volunteers.  相似文献   

6.
A sensitive and specific liquid chromatography–tandem mass spectrometry method was developed and validated for the first time for the estimation of Tenacissoside A in the rats’ plasma, which is the major active constituent in Marsdenia tenacissima. Tenacissoside A was extracted from the rats’ plasma by using liquid–liquid extraction (LLE), medroxyprogesterone acetate was used as the internal standard. An Alltech C18 column (250 mm × 4.6 mm, 5 μm) was used to provide chromatographic separation by detection with mass spectrometry operating in selected ion monitoring (SIM) mode. The method was validated over the concentration range of 1–250 ng/mL for Tenacissoside A. The precisions within and between-batch (CV%) were both less than 15% and accuracy ranged from 90 to 102%. The lower limit of quantification was 1 ng/mL and extraction recovery was 88.3% on average. The validated method was used to study the pharmacokinetic profile of Tenacissoside A in rat after administration.  相似文献   

7.
A precise and accurate high-performance liquid chromatography (HPLC) method with photodiode array detection has been developed and validated for raltegravir, a human immunodeficiency virus integrase strand transfer inhibitor (HIV-1 INSTI). Plasma (300 μL) was extracted with dichloromethane/hexane 50:50 (v/v) after addition of the internal standard, 6,7-dimethyl-2,3-di(2-pyridyl) quinoxaline. The compounds were separated using a dC18 column and detected with ultraviolet detection at 320 nm. The limit of quantification was 10 ng/mL for raltegravir. The method was linear and validated over a concentration range of 0–10,000 ng/mL. The intra-day precision ranged from 3.1 to 12.3%, while the intra-day accuracy ranged from ?15.0 to ?0.5%, the inter-day precision and accuracy were less than 7%. The mean recovery was 76.8%. Application to clinical samples taken from patients treated with raltegravir indicated that the method is suitable for measuring plasma concentrations of raltegravir in pharmacokinetic studies of clinical trials.  相似文献   

8.
Taxifolin has been widely used in the treatment of cerebral infarction and sequelae, cerebral thrombus, coronary heart disease and angina pectoris. A reliable sensitive reversed-phase high-performance liquid chromatography (RP-HPLC) method with UV detection for the pharmacokinetic study of taxifolin in rabbit plasma after enzymatic hydrolysis was developed and validated for the first time. Taxifolin, with biochanin A as the internal standard, was extracted from plasma samples by liquid/liquid extraction after hydrolysis with β-glucuronidase and sulfatase. Chromatographic separation was conducted on a Luna C18 column (4.6 mm×150 mm, 5 μm particle size) and pre-column (2.0 mm, the same sorbent). Two-step linear gradient elution with acetonitrile and 0.03% water solution of trifluoroacetic acid as mobile phase at a flow rate of 1.0 ml/min was used. The UV detector is set at 290 nm. The elution time for taxifolin and biochanin A was approximately 7.9 and 18.3 min, respectively. The calibration curve of taxifolin was linear (r>0.9997) over the range of 0.03–5.0 μg/ml in rabbit plasma. The limit of detection (LOD) and limit of quantification (LOQ) for taxifolin were 0.03 and 0.11 μg/ml, respectively. The present method was successfully applied for the estimation of the pharmacokinetic parameters of taxifolin following intravenous and oral administration of lipid solution to rabbits. The absolute bioavailability of taxifolin after oral administration of lipid solution was 36%.  相似文献   

9.
10.
A LC–MS/MS method was developed and validated for determination of nucleoside analog (NA) in rat plasma. The method run time was 6 min and the limit of quantification (LOQ) was estimated at 100 pg/mL. The extraction procedure consisted on plasma samples protein precipitation with an acetonitrile solution which contained the stable isotope labeled internal standard (IS). Chromatography was performed on a newly developed C16 column (150 mm × 4.6 mm, 5 μm) in order to avoid the use ion pair salts. The samples were eluted at 0.8 mL/min with a gradient of mobile phase made of water and acetonitrile both acidified with 0.5% acetic acid and 0.025% trifluoroacetic acid (TFA). A tandem mass spectrometer was used as a detector for quantitative analysis. Intra-run and inter-run precision and accuracy within ±15% were achieved during a 3-run validation for quality control samples at four concentration levels in rat plasma, over a concentration ranging between 0.1 and 1000 ng/mL. The data indicate that our LC–MS/MS assay is an effective method for the pharmacokinetics study of NA in rat plasma.  相似文献   

11.
HPLC–MS/MS methods for the determination of a Hepatitis C NS3/NS4 protease inhibitor (MK-7009) in human plasma and Tween-treated urine were developed and validated over the concentration range 1–1000 ng/mL and 0.2–100 μg/mL respectively. A stable isotope labeled internal standard (ISTD), D4-MK-7009, was employed. Analytes were chromatographed by reversed phase HPLC and quantified by an MS/MS system. Electrospray ionization in the positive mode was employed. Multiple reaction monitoring of the precursor to product ion pairs m/z 758.6  637.4 MK-7009 and m/z 762.5  637.4 ISTD was used for quantitation. Analyte and internal standard were extracted from 250 μL of plasma using an automated 96-well liquid–liquid extraction. Plasma pH adjustment prior to extraction minimized ionization suppression in plasma samples from patients with Hepatitis C. The urine method involved direct dilution in the 96-well format of 0.020 mL Tween-treated urine. These methods have supported several clinical studies. Incurred plasma sample reanalysis demonstrated adequate assay reproducibility and ruggedness.  相似文献   

12.
A rapid, sensitive and specific high performance liquid chromatography–tandem mass spectrometric (HPLC–MS/MS) method has been developed for quantification of mitoxantrone in rat plasma. The analyte and palmatine (internal standard) were extracted from plasma samples with diethyl ether–dichloromethane (3:2, v/v) and separated on a C18 column. The chromatographic separation was achieved within 2.5 min using methanol–10 mM ammonium acetate containing 0.1% acetic acid as the mobile phase at a flow rate of 0.2 mL/min. The method was linear over the range of 0.5–500 ng/mL. The lower limit of quantification (LLOQ) was 0.5 ng/mL. Finally, the method was successfully applied to a pharmacokinetic study of mitoxantrone in rats following intravenous administration.  相似文献   

13.
A rapid and sensitive LC–MS/MS method for the determination of vardenafil and its major metabolite, N-desethylvardenafil, in human plasma using sildenafil as an internal standard was developed and validated. The analytes were extracted from 0.25-mL aliquots of human plasma by liquid–liquid extraction, using 1 mL of ethyl acetate. Chromatographic separation was carried on a Luna C18 column (50 mm × 2.0 mm, 3 μm) at 40 °C, with an isocratic mobile phase consisting of 10 mM ammonium acetate (pH 5.0) and acetonitrile (10:90, v/v), a flow rate of 0.2 mL/min, and a total run time of 2 min. Detection and quantification were performed using a mass spectrometer in the selected reaction-monitoring mode with positive electrospray ionization at m/z 489.1  151.2 for vardenafil, m/z 460.9  151.2 for N-desethylvardenafil, and m/z 475.3  100.1 for the internal standard (IS), respectively. This assay was linear over a concentration range of 0.5–200 ng/mL with a lower limit of quantification of 0.5 ng/mL for both vardenafil and N-desethylvardenafil. The coefficient of variation for the assay precision was <13.6%, and the accuracy was >93.1%. This method was successfully applied to a pharmacokinetic study after oral administration of vardenafil 20 mg tablet in Korean healthy male volunteers.  相似文献   

14.
Gambogic acid (GA), a promising anticancer candidate, is a polyprenylated xanthone abundant in the resin of Garcinia morella and Garcinia hanburyi. The major circulating metabolite of GA in human, 10-hydroxygambogic acid (10-OHGA), was identified by comparison of the retention time and mass spectra with those of reference standard using liquid chromatography–tandem mass spectrometry. The reference standard of 10-OHGA was isolated from bile samples of rats after intravenous injection of GA injection, and its structure was confirmed by NMR. Then, a selective and sensitive method was developed for the quantitative determination of this metabolite in human plasma. After liquid–liquid extraction by ethyl acetate, the analyte and the internal standard were separated on a Sepax HPC18 column (100 mm × 2.1 mm i.d., 3.0 μm) with a mobile phase of 10 mM ammonium acetate water solution containing 0.1% formic acid–acetonitrile (20:80, v/v). The detection was performed on a single quadrupole mass spectrometer equipped with electrospray ionization (ESI) source. The calibration curve was linear over the range of 3–2000 ng/mL for 10-OHGA. The developed quantification method can now be used for the pharmacokinetic and pharmacological studies of 10-OHGA after intravenous infusion of GA injection in human.  相似文献   

15.
A sensitive and specific method using ultra performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) was developed for the determination of levetiracetam (LEV) in plasma of neonates. A plasma aliquot of 50 μl was deproteinized by addition of 500 μl methanol which contained 5 μg/ml UCB 17025 as an internal standard. After centrifugation, 50 μl of supernatant was diluted with 1000 μl of 0.1% formic acid–10 mM ammonium formate in water (pH 3.5) (mobile phase solution A) and 2 μl was injected onto the UPLC-system. Compounds were separated on a Acquity UPLC BEH C18 2.1 mm × 100 mm column using gradient elution with mobile phase solution A and 0.1% formic acid in methanol (mobile phase solution B) with a flow rate of 0.4 ml/min and a total runtime of 4.0 min. LEV and the internal standard were detected using positive ion electrospray ionization followed by tandem mass spectrometry (ESI-MS/MS). The assay allowed quantification of LEV plasma concentrations in the range from 0.5 μg/ml to 150 μg/ml. Inter-assay inaccuracy was within ±2.7% and inter-assay precision was less than 4.5%. Matrix effects were minor: the recovery of LEV was between 97.7% and 100%. The developed method required minimal sample preparation and less plasma sample volume compared to earlier published LC–MS/MS methods. The method was successfully applied in a clinical pharmacokinetic study in which neonates received intravenous administrations of LEV for the treatment of neonatal seizures.  相似文献   

16.
A new simple, rapid, sensitive and accurate quantitative detection method using liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) for the measurement of formononetin (FMN) and daidzein (DZN) levels in rat plasma is described. Analytes were separated on a Supelco Discovery C18 (4.6 × 50 mm, 5.0 μm) column with acetonitrile: methanol (50:50, v/v) and 0.1% acetic acid in the ratio of 90:10 (v/v) as a mobile phase. The method was proved to be accurate and precise at linearity range of 5–100 ng/mL with a correlation coefficient (r) of ≥0.996. The intra- and inter-day assay precision ranged from 1.66–6.82% and 1.87–6.75%, respectively; and intra- and inter-day assay accuracy was between 89.98–107.56% and 90.54–105.63%, respectively for both the analytes. The lowest quantitation limit for FMN and DZN was 5.0 ng/mL in 0.1 mL of rat plasma. Practical utility of this new LC–MS/MS method was demonstrated in a pharmacokinetic study in rats following intravenous administration of FMN.  相似文献   

17.
A method based on the on-line turbulent-flow chromatography and fast high-performance liquid chromatography/mass spectrometry (TFC–LC/MS) was developed for sensitive and high throughput pharmacokinetic study of traditional Chinese medicines (TCMs). In this method, an on-line extraction column (Waters Oasis HLB) and a fast HPLC column with sub-2 μm particle size (Agilent Zorbax StableBond-C18, 4.6 mm × 50 mm, 1.8 μm) in a column-switching set-up were utilized. HLB is a reversed-phase extraction column with hydrophilic–lipophilic balanced copolymer (2.1 mm × 20 mm, 25 μm particle size), which will exhibit some turbulent-flow properties at a high-flow rate. The method combines the speed and robustness of turbulent-flow extraction and the sensitivity and separation efficiency of fast HPLC–MS to analyze multiple and trace constituents of TCMs in plasma matrix. This method was successfully applied for pharmacokinetic study of verticine, verticinone and isoverticine, the chemical markers of Fritillaria thunbergii, after oral administration of total steroidal alkaloids extract of F. thunbergii to rats. Each plasma sample was analyzed within 7 min. The method demonstrated good linearity (R > 0.999) ranged from 0.505 to 96.0 ng/mL with satisfactory accuracy and precision, and the lower limit of quantifications of verticine, verticinone and isoverticine were estimated to be 0.120, 0.595 and 0.505 ng/mL, respectively. These results indicate that the proposed method is fast, sensitive, and feasible for pharmacokinetic study of TCMs.  相似文献   

18.
A reverse-phase liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) method was developed and validated for determination of aminoflavone (AF) in human plasma. Sample preparation involved a liquid–liquid extraction by the addition of 0.25 mL of plasma with 1.0 mL ethyl acetate containing 50 ng/mL of the internal standard zileuton. The analytes were separated on a Waters X-Terra? MS C18 column using a mobile phase consisting of methanol/water containing 0.45% formic acid (70:30, v/v) and isocratic flow at 0.2 mL/min for 6 min. The analytes were monitored by tandem mass spectrometry with electrospray positive ionization. Linear calibration curves were generated over the AF concentration range of 5–2000 ng/mL in human plasma. The lower limit of quantitation (LLOQ) was 5 ng/mL for AF in human plasma. The accuracy and within- and between-day precisions were within the generally accepted criteria for bioanalytical method (<15%). This method was successfully applied to characterize AF plasma concentration-time profile in the cancer patients in a phase I trial.  相似文献   

19.
A sensitive, specific and selective method has been developed for the simultaneous determination of bisoprolol and hydrochlorothiazide in human plasma. The method employed a state of the art LC–MS/MS operated in the positive and negative ionization switching modes. A simple sample preparation step involving protein precipitation with acetonitrile has been optimized; the analytes and the internal standard moxifloxacin were separated on a Purosphere® STAR C8 column (125 mm × 4 mm, 5 μm). The mobile phase was an ammonium acetate solution (1 mM) with formic acid (0.2%): methanol and acetonitrile (65:17.5:17.5, v/v/v (%)), the flow rate was set at 0.65 mL/min. Bisoprolol and hydrochlorothiazide were ionized using ESI source prior to detection by Multiple Reaction Monitoring (MRM) mode while monitoring at the following transitions: positive m/z 326  116 for bisoprolol, negative m/z 296  269 and m/z 296  205 for hydrochlorothiazide. Linearity was demonstrated over the concentration range 0.10–30.0 (ng/mL) for bisoprolol and 1.00–80.00 ng/mL for hydrochlorothiazide. The limits of detection were 0.100 (ng/mL) for bisoprolol and 1.00 (ng/mL) for hydrochlorothiazide. The validated method was successfully applied to a pharmacokinetic study of 5 mg bisoprolol fumarate with 12.5 mg hydrochlorothiazide tablet in healthy volunteers.  相似文献   

20.
We present an implementation of a method we previously reported allowing the newer antiepileptic drugs (AEDs) rufinamide (RFN) and zonisamide (ZNS) to be simultaneously determined with lamotrigine (LTG), oxcarbazepine's (OXC) main active metabolite monohydroxycarbamazepine (MHD) and felbamate (FBM) in plasma of patients with epilepsy using high performance liquid chromatography (HPLC) with UV detection. Plasma samples (250 μL) were deproteinized by 1 mL acetonitrile spiked with citalopram as internal standard (I.S.). HPLC analysis was carried out on a Synergi 4 μm Hydro-RP, 250 mm × 4.6 mm I.D. column. The mobile phase was a mixture of potassium dihydrogen phosphate buffer (50 mM, pH 4.5), acetonitrile and methanol (65:26.2:8.8, v/v/v) at an isocratic flow rate of 0.8 mL/min. The UV detector was set at 210 nm. The chromatographic run lasted 19 min. Commonly coprescribed AEDs did not interfere with the assay. Calibration curves were linear for both AEDs over a range of 2–40 μg/mL for RFN and 2–80 μg/mL for ZNS. The limit of quantitation was 2 μg/mL for both analytes and the absolute recovery ranged from 97% to 103% for RFN, ZNS and the I.S. Intra- and interassay precision and accuracy were lower than 10% at all tested concentrations. The present study describes the first simple and validated method for RFN determination in plasma of patients with epilepsy. By grouping different new AEDs in the same assay the method can be advantageous for therapeutic drug monitoring (TDM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号