首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
S R Kristensen  M H?rder 《Enzyme》1988,39(4):205-212
The association between ATP depletion and enzyme release from cells has been described in two different ways: as a more or less linear dependence, or with a threshold value below which the enzyme release will start. We have investigated the association between ATP depletion caused by various metabolic inhibitors and enzyme release on quiescent fibroblasts. We found that the enzyme release never started before the ATP had decreased to a critical low level. Addition of glucose to cells while ATP was still above this critical level led to a regeneration of ATP and enzyme release did not occur. If ATP was lowered to 35-40% and kept there for 24 h, the enzyme release was minimal. These results support the threshold theory for release of enzymes from cells.  相似文献   

5.
The relationship between total glutathione (GSH) content and cell growth was examined in 3T3 fibroblasts. The intracellular GSH level of actively growing cultures gradually decreases as these cells become quiescent by either serum deprivation or high cell density. Upon mitogenic stimulation of sparse, quiescent (G0/G1) cultures with serum, there is a rapid 2.3-fold elevation in intracellular GSH levels which is maximal by 1 h and returns to baseline by 2 h. This is followed by a more gradual increase in GSH content as cells enter the S phase. In addition, the elevation in GSH content is required for maximum induction of DNA synthesis. Treatments that prevent the early increase in intracellular GSH levels do not affect protein synthesis but result in a reversible dose-dependent decrease in the percent of cells capable of entering S phase. These results indicate that GSH may be important in the regulation of cellular proliferation.  相似文献   

6.

Background

Mutations in Parkin are the most common cause of autosomal recessive Parkinson disease (PD). The mitochondrially localized E3 ubiquitin-protein ligase Parkin has been reported to be involved in respiratory chain function and mitochondrial dynamics. More recent publications also described a link between Parkin and mitophagy.

Methodology/Principal Findings

In this study, we investigated the impact of Parkin mutations on mitochondrial function and morphology in a human cellular model. Fibroblasts were obtained from three members of an Italian PD family with two mutations in Parkin (homozygous c.1072delT, homozygous delEx7, compound-heterozygous c.1072delT/delEx7), as well as from two relatives without mutations. Furthermore, three unrelated compound-heterozygous patients (delEx3-4/duplEx7-12, delEx4/c.924C>T and delEx1/c.924C>T) and three unrelated age-matched controls were included. Fibroblasts were cultured under basal or paraquat-induced oxidative stress conditions. ATP synthesis rates and cellular levels were detected luminometrically. Activities of complexes I-IV and citrate synthase were measured spectrophotometrically in mitochondrial preparations or cell lysates. The mitochondrial membrane potential was measured with 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide. Oxidative stress levels were investigated with the OxyBlot technique. The mitochondrial network was investigated immunocytochemically and the degree of branching was determined with image processing methods. We observed a decrease in the production and overall concentration of ATP coinciding with increased mitochondrial mass in Parkin-mutant fibroblasts. After an oxidative insult, the membrane potential decreased in patient cells but not in controls. We further determined higher levels of oxidized proteins in the mutants both under basal and stress conditions. The degree of mitochondrial network branching was comparable in mutants and controls under basal conditions and decreased to a similar extent under paraquat-induced stress.

Conclusions

Our results indicate that Parkin mutations cause abnormal mitochondrial function and morphology in non-neuronal human cells.  相似文献   

7.

Introduction  

Synovial hyperplasia is a main feature of rheumatoid arthritis pathology that leads to cartilage and bone damage in the inflamed joints. Impaired apoptosis of resident synoviocytes is pivotal in this process. Apoptosis resistance seems to involve defects in the extrinsic and intrinsic apoptotic pathways. The aim of this study was to investigate the association of PI3Kinase/Akt and the mitochondrial apoptotic pathway in the resistance of rheumatoid arthritis (RA) fibroblast like synovial cells (FLS) to Fas-mediated apoptosis.  相似文献   

8.
The amount of manganese superoxide dismutase (MnSOD) and the activity of copper-zinc superoxide dismutase (CuZnSOD) have been studied in five karyotypically normal human fibroblast strains, using nuclear magnetic resonance (NMR) and polarographic methods. A significant correlation between the two enzyme activities, and a linear increase of MnSOD with the increase of CuZnSOD have been demonstrated. Both enzymes are present in nuclei, mitochondria, lysosome-microsome fraction and cytosol. These findings suggest that the two enzymes dismutate the O-2 cooperatively and that a common genetic control maintains the relative amounts of the two enzymes constant.  相似文献   

9.
Cultures of normal rat kidney (NRK) fibroblasts may display spontaneous calcium action potentials which propagate throughout the cellular monolayer. Pacemaking activity of NRK cells was studied by patch clamp electrophysiology and vital calcium imaging, using a new experimental approach in which a ring was placed on the monolayer in order to physically separate pacemakers within or under the ring and follower cells outside the ring. Stimulation of cells inside the ring with IP(3)-generating hormones such as prostaglandin F(2alpha) (PGF(2alpha)) resulted in the induction of periodic action potentials outside the ring, which were abolished when the L-type calcium channel blocker nifedipine was added outside the ring, but not inside the ring. PGF(2alpha)-treated cells displayed asynchronous IP(3)-mediated calcium oscillations of variable frequency, while follower cells outside the ring showed synchronous calcium transients which coincided with the propagating action potential. Mathematical modelling indicated that addition of PGF(2alpha) inside the ring induced both a membrane potential gradient and an intracellular IP(3) gradient, both of which are essential for the induction of pacemaking activity under the ring. These data show that intercellular coupling between PGF(2alpha)-treated and non-treated cells is essential for the generation of a functional pacemaker area whereby synchronization of calcium oscillations occurs by activation of L-type calcium channels.  相似文献   

10.
《Current biology : CB》2021,31(18):4038-4051.e7
  1. Download : Download high-res image (270KB)
  2. Download : Download full-size image
  相似文献   

11.
Mitochondria play crucial role in the energetic metabolism, thermogenesis, maintenance of calcium homeostasis and apoptosis. Cyclic changes in fusion and fission of mitochondria are required for properly functioning organelles, especially in tissues with high dependence on energy supply such as skeletal muscles, heart, or neurons. The key role of mitochondrial fusion is observed in embryonic development and maintaining unchanged mtDNA pool under conditions of oxidative stress. There is a large number of data indicating that mitochondrial networks often accompany the resistance to apoptotic stimuli. In contrast to fusion--the mitochondrial fission precedes apoptosis. According to the newest knowledge precise interactions between a few proteins are required for mitochondrial fusion and division. Among them Drp1, Mfn1, Mfn2 and Opal are considered the most important. Recent reports shed some light on the physiological importance of proteins participating in mitochondrial membrane dynamics in energy production, apoptosis and cellular signaling. In this review the authors report on the recent knowledge concerning structural changes of mitochondria with a particular interest to transmembrane GTPases and their role in cellular physiology.  相似文献   

12.
Cells in the inner region of multicellular spheroids markedly reduce their oxygen consumption rate, presumably in response to their stressful microenvironment. To determine the mechanism behind this metabolic adaptation, we have investigated relative mitochondrial mass and mitochondrial function in cells isolated from different regions of tumor spheroids by using a combination of mitochondrial-specific fluorescent stains and flow cytometric analysis. Uptake of rhodamine 123 (R123) is driven by the mitochondrial membrane potential and thus reflects mitochondrial activity. Uptake of 10-nonyl-acridine orange (NAO) reflects total mitochondrial mass independently of activity because this compound binds to cardiolipin in the inner mitochondrial membrane. NAO fluorescence per unit cell volume only decreased 10–20% for cells from the inner spheroid region compared with those near the surface. There was greater than a twofold reduction in R123 fluorescence in the inner region cells, however. Thus, tumor cells in spheroids alter their rate of respiration predominately by downregulating mitochondrial function as opposed to degradation of mitochondria. There was a correlation between R123 staining per unit cell volume and the growth fraction of the cells from spheroids, but not for monolayer cultures. We also show a linear correlation between R123 staining and the rate of oxygen consumption for both monolayer- and spheroid-derived cells. After separating the inner region cells from the spheroid and replating them in monolayer culture, the R123 uptake recovered to normal levels prior to entry of the cells into S-phase. This reduction in mitochondrial function in quiescent cells from spheroids can explain the long period required for these cells to re-enter the cell cycle and may have important implications for the regulation of tumor cell oxygenation in vivo. J. Cell. Physiol. 176:138–149, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    13.
    K-ras transformed fibroblasts have been shown to have a stronger dependence from glycolysis, reduced oxidative phosphorylation ability and a fragility towards glucose depletion compared to their immortalized, normal counterparts. In this paper, using RNA profiling assays and metabolic perturbations, we report changes in expression of genes encoding mitochondrial proteins and alterations in mitochondrial morphology that correlate with mitochondrial functionality. In fact, unlike normal cells, transformed cells show reduced ATP content and inability to modify mitochondria morphology upon glucose depletion. Being reverted by GEF-DN expression, such morphological and functional changes are directly connected to Ras activation. Taken together with reported partial mitochondrial uncoupling and more sustained apoptosis of transformed cells, our results indicate that activation of the Ras pathway strikingly impacts on energy and signaling-related aspects of mitochondria functionality, that in turn may affect the terminal phenotype of transformed cells.  相似文献   

    14.
    Mitochondrial (mt) DNA depletion syndromes can arise from genetic deficiencies for enzymes of dNTP metabolism, operating either inside or outside mitochondria. MNGIE is caused by the deficiency of cytosolic thymidine phosphorylase that degrades thymidine and deoxyuridine. The extracellular fluid of the patients contains 10-20 microM deoxynucleosides leading to changes in dTTP that may disturb mtDNA replication. In earlier work, we suggested that mt dTTP originates from two distinct pathways: (i) the reduction of ribonucleotides in the cytosol (in cycling cells) and (ii) intra-mt salvage of thymidine (in quiescent cells). In MNGIE and most other mtDNA depletion syndromes, quiescent cells are affected. Here, we demonstrate in quiescent fibroblasts (i) the existence of small mt dNTP pools, each usually 3-4% of the corresponding cytosolic pool; (ii) the rapid metabolic equilibrium between mt and cytosolic pools; and (iii) the intra-mt synthesis and rapid turnover of dTTP in the absence of DNA replication. Between 0.1 and 10 microM extracellular thymidine, intracellular thymidine rapidly approaches the extracellular concentration. We mimic the conditions of MNGIE by maintaining quiescent fibroblasts in 10-40 microM thymidine and/or deoxyuridine. Despite a large increase in intracellular thymidine concentration, cytosolic and mt dTTP increase at most 4-fold, maintaining their concentration for 41 days. Other dNTPs are marginally affected. Deoxyuridine does not increase the normal dNTP pools but gives rise to a small dUTP and a large dUMP pool, both turning over rapidly. We discuss these results in relation to MNGIE.  相似文献   

    15.
    Fourteen oligomycin-resistant LM(TK-) clones were isolated following the mutagenesis of minicells. In the absence of oligomycin, the mutants grew with population doubling times similar to that of the wild type (1 day). In 3 or 5 microgram oligomycin/ml the doubling times of the mutants were 1.2-2.5 days. Both stable and unstable classes were represented among the oligomycin-resistant mutants. Mitochondrial ATPase activities of the mutants were 1.3-1130 times more resistant to oligomycin than the wild type. The mitochondrial ATPase of OLI 14 was found to be bound firmly to the mitochondrial membrane, showed no alteration in the pH optimum compared to wild-type, and exhibited increased resistance to DCCD and venturicidin. These results are consistent with the conclusion that oligomycin resistance in these mutants results from altered mitochondrial ATPase.  相似文献   

    16.
    In response to the attack of reactive oxygen species (ROS) produced upon UV irradiation, the skin has developed a complex antioxidant defense system. Here we report that, in addition to the previously published induction of manganese superoxide dismutase (MnSOD) activity, single and, to a higher extent, repetitive low-dose UVA irradiation also leads to a substantial upregulation of glutathione peroxidase (GPx) activity. This concomitant adaptive response of two antioxidant enzymes acting in the same detoxification pathway coincided with the protection from high-UVA-dose-induced cytotoxicity conferred by low-dose UVA preirradiation. Whereas an interval of 24 h did not, an interval of 12 h did lead to the induction of MnSOD activity and, under selenium-supplemented conditions, of GPx activity as well, conferring definite cellular protection from UVA-induced phototoxicity. Moreover, under selenium-deficient conditions, which abrogate the UVA-mediated induction of GPx activity, adaptive protection against the cytotoxic effects of high UVA doses was significantly lower compared with selenium supplementation. Isolated 4.6-fold overexpression of MnSOD activity in stably transfected fibroblasts led to specific resistance from UVA-mediated phototoxicity under selenium-deficient conditions. Collectively, these data indicate that the concomitant induction of MnSOD and GPx activity is related to the optimal adaptive protection from photooxidative damage. This adaptive antioxidant protection clearly depends on the irradiation interval and a sufficient selenium concentration, findings that may have important implications for the improvement of photoprotective and phototherapeutic strategies in medicine.  相似文献   

    17.
    We determined whether manganese superoxide dismutase (MnSOD)-plasmid liposome (PL) transfection of C57BL/ 6NHsd mouse bone marrow protected cells irradiated at room temperature (24 degrees C) or in the cryopreserved state. MnSOD-overexpressing hematopoietic progenitor 2C6 cells were radioresistant compared to the parent 32D cl 3 cells when irradiated frozen or at 24 degrees C. Fresh whole marrow from mice injected intravenously with MnSOD-PL prior to explant as well as explanted marrow single cell suspensions transfected in vitro were irradiated at 24 degrees C or -80 degrees C. In vivo or in vitro transfection of marrow with MnSOD-PL produced significant radiation protection of irradiated marrow progenitor cells compared to controls at 24 degrees C or -80 degrees C. (in vivo transfection D(0) 2.19 +/- 0.21 at 24 degrees C, D(0) 2.10 +/- 0.07 at -80 degrees C compared to control D(0) 1.56 +/- 0.06 or 1.66 +/- 0.04, P = 0.047 and 0.017 respectively; in vitro transfection D(0) 2.35 +/- 0.11 at 24 degrees C, D(0) 3.42 +/- 0.13 at -80 degrees C compared to D(0) 1.81 +/- 0.01 or 2.53 +/- 0.05, P = 0.0087 and 0.0026, respectively). Thus the MnSOD transgene product protects frozen marrow cells as well as marrow cells irradiated at 24 degrees C.  相似文献   

    18.
    We used HeLa cells as recipients in a gene transfer assay to characterize DNA sequences that negatively regulate mammalian cell growth. In this assay, genomic DNA from quiescent human embryo fibroblasts was more inhibitory for HeLa replication than was DNA from either Escherichia coli or HeLa cells. Surprisingly, growth inhibitory activity depended on the growth state of the cells from which genomic DNA was prepared; it was strongest in DNA prepared from serum-deprived, quiescent embryo fibroblasts. This latter observation implies a role for DNA modification(s) in regulating the activity of the inhibitory sequences detected in our assay. The level of the observed growth inhibitory activity was sometimes high, suggesting that the relevant sequences may be abundantly represented in the mammalian genome. We speculate that these findings may provide new insights into the molecular mechanisms involved in cellular quiescence and in vitro senescence.  相似文献   

    19.
    Platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1), and insulin protect density-inhibited murine Balb/c-3T3 fibroblasts against death by distinctive mechanisms. Determination of the cell survival-enhancing activity of growth factors by cell enumeration and neutral red uptake measurement gives equivalent results. PDGF displays a steep dose-response relationship in the 1-5 ng/ml range. The other factors display shallow log-linear relationships in the following ranges: EGF: 0.2-5 ng/ml; IGF-1: 2-80 ng/ml; and insulin: 57-4,500 ng/ml. Agonists that lead to the activation of protein kinase A, including forskolin, 8-bromoadenosine 3':5'-cyclic monophosphate (Br-cAMP) and N6,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate (db-cAMP), markedly increase both short-term (5-h) and long-term (20-h) survival of cells. 2-Isobutyl-1-methylxanthine (IBMX) markedly enhances short-term survival, but its effect decays with time. The protein kinase C agonist 12-O-tetradecanoyl phorbol-13-acetate (TPA) has a moderate protective effect at concentrations of 16-32 nM, and 64 nM TPA is highly effective. The synthetic diaclglycerols 1,2-dioctanoylglycerol (DiC8) and 1-oleoyl-2-acetylglycerol (OAG) and the calcium ionophore ionomycin show low activity. Supplementation of EGF with a protein kinase A or C agonist results in a varying additive increase in short-term (5-h) cell survival and supplementation of EGF + insulin or PDGF + EGF + insulin increases further the already high level of protection given by the growth factor combinations. Combining a protein kinase A and a protein kinase C agonist in the absence of growth factors gives an approximately additive increase in cell survival. Results obtained with kinase, RNA, and protein synthesis inhibitors suggest that: 1) activated protein kinase C catalyzes one or more phosphorylation events in quiescent Balb/c-3T3 cells that lead to gene expression with the protein product(s) mediating protection of quiescent cells against death, and 2) phosphorylation events catalyzed by protein kinase A largely serve to protect cells by a mechanism not requiring de novo RNA and protein biosynthesis.  相似文献   

    20.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号