首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extracellular levels of the neurotransmitter glycine in the brain are tightly regulated by the glycine transporter 1 (GlyT1) and the clearance rate for glycine depends on its rate of transport and the levels of cell surface GlyT1. Over the years, it has been shown that PKC tightly regulates the activity of several neurotransmitter transporters. In the present work, by stably expressing three N-terminus GlyT1 isoforms in porcine aortic endothelial cells and assaying for [32P]-orthophosphate metabolic labeling, we demonstrated that the isoforms GlyT1a, GlyT1b, and GlyT1c were constitutively phosphorylated, and that phosphorylation was dramatically enhanced, in a time dependent fashion, after PKC activation by phorbol ester. The phosphorylation was PKC-dependent, since pre-incubation of the cells with bisindolylmaleimide I, a selective PKC inhibitor, abolished the phorbol ester-induced phosphorylation. Blotting with specific anti-phospho-tyrosine antibodies did not yield any signal that could correspond to GlyT1 tyrosine phosphorylation, suggesting that the phosphorylation occurs at serine and/or threonine residues. In addition, a 23-40%-inhibition on Vmax was obtained by incubation with phorbol ester without a significant change on the apparent Km value. Furthermore, pre-incubation of the cells with the selective PKCα/β inhibitor Gö6976 abolished the downregulation effect of phorbol ester on uptake and phosphorylation, whereas the selective PKCβ inhibitors (PKCβ inhibitor or LY333531) prevented the phosphorylation without affecting glycine uptake, defining a specific role of classical PKC on GlyT1 uptake and phosphorylation. Taken together, these data suggest that conventional PKCα/β regulates the uptake of glycine, whereas PKCβ is responsible for GlyT1 phosphorylation.  相似文献   

2.
The checkpoint clamp Rad9–Hus1–Rad1 (9–1–1) interacts with TopBP1 via two casein kinase 2 (CK2)-phosphorylation sites, Ser-341 and Ser-387 in Rad9. While this interaction is known to be important for the activation of ATR-Chk1 pathway, how the interaction contributes to their accumulation at sites of DNA damage remains controversial. Here, we have studied the contribution of the 9–1–1/TopBP1 interaction to the assembly and activation of checkpoint proteins at damaged DNA. UV-irradiation enhanced association of Rad9 with chromatin and its localization to sites of DNA damage without a direct interaction with TopBP1. TopBP1, as well as RPA and Rad17 facilitated Rad9 recruitment to DNA damage sites. Similar to Rad9, TopBP1 also localized to sites of UV-induced DNA damage. The DNA damage-induced TopBP1 redistribution was delayed in cells expressing a TopBP1 binding-deficient Rad9 mutant. Pharmacological inhibition of ATR recapitulated the delayed accumulation of TopBP1 in the cells, suggesting that ATR activation will induce more efficient accumulation of TopBP1. Taken together, TopBP1 and Rad9 can be independently recruited to damaged DNA. Once recruited, a direct interaction of 9–1–1/TopBP1 occurs and induces ATR activation leading to further TopBP1 accumulation and amplification of the checkpoint signal. Thus, we propose a new positive feedback mechanism that is necessary for successful formation of the damage-sensing complex and DNA damage checkpoint signaling in human cells.  相似文献   

3.
4.
Specification of the centromere location in most eukaryotes is not solely dependent on the DNA sequence. However, the non-genetic determinants of centromere identity are not clearly defined. While multiple mechanisms, individually or in concert, may specify centromeres epigenetically, most studies in this area are focused on a universal factor, a centromere-specific histone H3 variant CENP-A, often considered as the epigenetic determinant of centromere identity. In spite of variable timing of its loading at centromeres across species, a replication coupled early S phase deposition of CENP-A is found in most yeast centromeres. Centromeres are the earliest replicating chromosomal regions in a pathogenic budding yeast Candida albicans. Using a 2-dimensional agarose gel electrophoresis assay, we identify replication origins (ORI7-LI and ORI7-RI) proximal to an early replicating centromere (CEN7) in C. albicans. We show that the replication forks stall at CEN7 in a kinetochore dependent manner and fork stalling is reduced in the absence of the homologous recombination (HR) proteins Rad51 and Rad52. Deletion of ORI7-RI causes a significant reduction in the stalled fork signal and an increased loss rate of the altered chromosome 7. The HR proteins, Rad51 and Rad52, have been shown to play a role in fork restart. Confocal microscopy shows declustered kinetochores in rad51 and rad52 mutants, which are evidence of kinetochore disintegrity. CENP-ACaCse4 levels at centromeres, as determined by chromatin immunoprecipitation (ChIP) experiments, are reduced in absence of Rad51/Rad52 resulting in disruption of the kinetochore structure. Moreover, western blot analysis reveals that delocalized CENP-A molecules in HR mutants degrade in a similar fashion as in other kinetochore mutants described before. Finally, co-immunoprecipitation assays indicate that Rad51 and Rad52 physically interact with CENP-ACaCse4 in vivo. Thus, the HR proteins Rad51 and Rad52 epigenetically maintain centromere functioning by regulating CENP-ACaCse4 levels at the programmed stall sites of early replicating centromeres.  相似文献   

5.
Rad9–Rad1–Hus1 (9–1–1) is a checkpoint protein complex playing roles in DNA damage sensing, cell cycle arrest, DNA repair or apoptosis. Human 8-oxoguanine DNA glycosylase (hOGG1) is the major DNA glycosylase responsible for repairing a specific aberrantly oxidized nucleotide, 7,8-dihydro-8-oxoguanine (8-oxoG). In this study, we identified a novel interaction between hOGG1 and human 9–1–1, and investigated the functional consequences of this interaction. Co-immunoprecipitation assays using transiently transfected HEK293 cells demonstrated an interaction between hOGG1 and the 9–1–1 proteins. Subsequently, GST pull-down assays using bacterially expressed and purified hOGG1-His and GST-fused 9–1–1 subunits (GST-hRad9, GST-hRad1, and GST-hHus1) demonstrated that hOGG1 interacted directly with the individual subunits of the human 9–1–1 complex. In vitro excision assay, which employed a DNA duplex containing an 8-oxoG/C mismatch, showed that hRad9, hRad1, and hHus1 enhanced the 8-oxoG excision and β-elimination activities of hOGG1. In addition, the presence of hRad9, hRad1, and hHus1 enhanced the formation of covalently cross-linked hOGG1–8-oxoG/C duplex complexes, as determined by a trapping assay using NaBH4. A trimeric human 9–1–1 complex was purified from Escherichia coli cell transformed with hRad9, His-fused hRad1, or His-fused hHus1 expressing vectors. It also showed the similar activity to enhance in vitro hOGG1 glycosylase activity, compared with individual human 9–1–1 subunits. Detection of 8-oxoG in HEK293 cells using flow cytometric and spectrofluorometric analysis revealed that over-expression of hOGG1 or human 9–1–1 reduced the formation of 8-oxoG residues following the H2O2 treatment. The highest 8-oxoG reduction was observed in HEK293 cells over-expressing hOGG1 and all the three subunits of human 9–1–1. These indicate that individual human 9–1–1 subunits and human 9–1–1 complex showed almost the same abilities to enhance the in vitro 8-oxoG excision activity of hOGG1, but that the greatest effect to remove 8-oxoG residues in H2O2-treated cells was derived from the 9–1–1 complex as a whole.  相似文献   

6.
7.
Increasing evidence has shown the aberrant expression of inflammasome-related proteins in Alzheimer''s disease (AD) brain; these proteins, including NLRP1 inflammasome, are implicated in the execution of inflammatory response and pyroptotic death. Although current data are associated NLRP1 genetic variants with AD, the involvement of NLRP1 inflammasome in AD pathogenesis is still unknown. Using APPswe/PS1dE9 transgenic mice, we found that cerebral NLRP1 levels were upregulated. Our in vitro studies further showed that increased NLRP1-mediated caspase-1-dependent ‘pyroptosis'' in cultured cortical neurons in response to amyloid-β. Moreover, we employed direct in vivo infusion of non-viral small-interfering RNA to knockdown NLRP1 or caspase-1 in APPswe/PS1dE9 brain, and discovered that these NLRP1 or caspase-1 deficiency mice resulted in significantly reduced neuronal pyroptosis and reversed cognitive impairments. Taken together, our findings indicate an important role for NLRP1/caspase-1 signaling in AD progression, and point to the modulation of NLRP1 inflammasome as a promising strategy for AD therapy.Alzheimer''s disease (AD), the most common cause of dementia, is characterized clinically by a progressive and irreversible loss of cognitive functions and pathologically by the loss of synapses and neuronal death, as well as the presence of extracellular deposits of amyloid-β (Aβ) peptides in senile plaques.1 The main factors responsible for Aβ accumulation are disease-causing inherited variants of amyloid precursor protein (APP), presenilin 1 and 2 (PS1, PS2), or apolipoprotein E (ApoE) genes, and increased extracellular Aβ levels that cause neuronal death via a number of possible mechanisms including oxidative stress, excitotoxicity, energy depletion, inflammation, and apoptosis.2, 3 However, the detailed mechanisms that underlie the pathogenic nature of Aβ-induced neuronal degeneration in AD are not completely understood.Recently, a novel inflammasome signaling pathway has been uncovered and the aberrant expression of inflammasome-related proteins have been found in AD brain and transgenic mouse models of AD.4, 5, 6 Meanwhile, increasing evidence has supported that Aβ and misfolded protein aggregates can activate the inflammasome,7, 8 which serves as a caspase-1-activation platform for subsequent pro-inflammatory cytokine secretion and pyroptotic cell death.9, 10 In contrast to apoptosis, pyroptosis is caspase-1-mediated inflammatory cell death characterized by early plasma membrane rupture and release of pro-inflammatory intracellular contents.11, 12 Besides the neuronal loss as a prominent cause of cognitive deficits in AD, current studies have pointed out that inflammatory mechanisms are also powerful pathogenic forces in the process of neurodegeneration.13, 14, 15The NLRP1 (NOD-like receptor (NLR) family, pyrin domain containing 1; previously known as NALP1) inflammasome was the first member of the NLR family to be discovered. As a critical component of the inflammasome, NLRP1 appears to be expressed rather ubiquitously, and high NLRP1 levels were also found in the brain, in particular in pyramidal neurons and oligodendrocytes.16 It has been reported that active NLRP1 can generate a functional caspase-1-containing inflammasome in vivo to drive the inflammatory response and pyroptotic death.17 Moreover, inhibition of the NLRP1 inflammasome could reduce the innate immune response and ameliorate age-related cognitive deficits in different animal models.18, 19, 20 Although current data regarding NLRP1 functions are far scarcer than those described for other inflammasomes, various immune inflammation diseases have been associated with mutations and polymorphisms in the NLRP1 gene. This genetic association has also been validated independently in AD patients,21 thus indicating a potential role for the NLRP1 inflammasome in AD pathogenesis.In this study, we first investigated whether NLRP1 expression is altered in the brains of APPswe/PS1dE9 double transgenic mice, and found an upregulated NLRP1 expression in the neurons of the brain. Meanwhile, our in vitro study showed that Aβ could increase NLRP1 levels in primary cortical neurons; this increase, in turn, activates caspase-1 signaling responsible for neuronal pyroptosis and inflammation-induced cytokine release, suggesting that NLRP1/caspase-1 signaling is one of the key pathways responsible for Aβ neurotoxicity. Using the pump-mediated in vivo infusion of non-viral small-interfering RNA (siRNA) to knockdown NLRP1 or caspase-1 in the brain of APP/PS1 mice, our study further indicated that inhibition of NLRP1 inflammasome represents a promising strategy for the development of AD therapy.  相似文献   

8.
L-selectin–PSGL-1-mediated polymorphonuclear (PMN) leukocyte homotypic interactions potentiate the extent of PMN recruitment to endothelial sites of inflammation. Cell–cell adhesion is a complex phenomenon involving the interplay of bond kinetics and hydrodynamics. As a first step, a 3-D computational model based on the Immersed Boundary Method is developed to simulate adhesion-detachment of two PMN cells in quiescent conditions. Our simulations predict that the total number of bonds formed is dictated by the number of available receptors (PSGL-1) when ligands (L-selectin) are in excess, while the excess amount of ligands influences the rate of bond formation. Increasing equilibrium bond length results in a higher number of receptor–ligand bonds due to an increased intercellular contact area. On-rate constants determine the rate of bond formation, while off-rates control the average number of bonds by modulating bond lifetimes. Application of an external pulling force leads to time-dependent on- and off-rates and causes bond rupture. Moreover, the time required for bond rupture in response to an external force is inversely proportional to the applied load and decreases with increasing off-rate.  相似文献   

9.
Eukaryotic mitotic entry is controlled by Cdk1, which is activated by the Cdc25 phosphatase and inhibited by Wee1 tyrosine kinase, a target of the ubiquitin proteasome pathway. Here we use a reporter of Wee1 degradation, K328M-Wee1-luciferase, to screen a kinase-directed chemical library. Hit profiling identified CK1δ-dependent Wee1 degradation. Small-molecule CK1δ inhibitors specifically disrupted Wee1 destruction and arrested HeLa cell proliferation. Pharmacological inhibition, siRNA knockdown, or conditional deletion of CK1δ also reduced Wee1 turnover. Thus, these studies define a previously unappreciated role for CK1δ in controlling the cell cycle.  相似文献   

10.
Macrophages view as double agents in tumor progression. Trafficking of macrophages to the proximity of tumors is mediated by colony-stimulating factor-1 (CSF-1), a growth factor. In this study, we investigated the role of complement1q-binding protein (C1QBP)/ atypical protein kinase C ζ (PKCζ) in CSF-1-induced macrophage migration. Disruption of C1QBP expression impaired chemotaxis and adhesion of macrophage. Phosphorylation of PKCζ is an essential component in macrophage chemotaxis signaling pathway. C1QBP could interact with PKCζ in macrophage. C1QBP knockdown inhibited CSF-1 induced phosphorylation of PKCζ and integrin-β1. However, C1QBP knockdown didn’t affect the phosphorylation of PKCζ induced by MCP-1. Furthermore, CSF-1 from RCC cell condition medium promoted macrophage chemotaxis and adhesion. Taken together, our results demonstrated that C1QBP plays an essential role in CSF-1 induced migration of macrophages.  相似文献   

11.
Autophagy, a highly conserved process conferring cytoprotection against stress, contributes to the progression of cerebral ischemia. β-arrestins are multifunctional proteins that mediate receptor desensitization and serve as important signaling scaffolds involved in numerous physiopathological processes. Here, we show that both ARRB1 (arrestin, β 1) and ARRB2 (arrestin, β 2) were upregulated by cerebral ischemic stress. Knockout of Arrb1, but not Arrb2, aggravated the mortality, brain infarction, and neurological deficit in a mouse model of cerebral ischemia. Accordingly, Arrb1-deficient neurons exhibited enhanced cell injury upon oxygen-glucose deprivation (OGD), an in vitro model of ischemia. Deletion of Arrb1 did not affect the cerebral ischemia-induced inflammation, oxidative stress, and nicotinamide phosphoribosyltransferase upregulation, but markedly suppressed autophagy and induced neuronal apoptosis/necrosis in vivo and in vitro. Additionally, we found that ARRB1 interacted with BECN1/Beclin 1 and PIK3C3/Vps34, 2 major components of the BECN1 autophagic core complex, under the OGD condition but not normal conditions in neurons. Finally, deletion of Arrb1 impaired the interaction between BECN1 and PIK3C3, which is a critical event for autophagosome formation upon ischemic stress, and markedly reduced the kinase activity of PIK3C3. These findings reveal a neuroprotective role for ARRB1, in the context of cerebral ischemia, centered on the regulation of BECN1-dependent autophagosome formation.  相似文献   

12.
13.
14.
15.
16.
α-Tocopheryl succinate (α-TOS) is a promising anti-cancer agent due to its selectivity for cancer cells. It is important to understand whether long-term exposure of tumour cells to the agent will render them resistant to the treatment. Exposure of the non-small cell lung carcinoma H1299 cells to escalating doses of α-TOS made them resistant to the agent due to the upregulation of the ABCA1 protein, which caused its efflux. Full susceptibility of the cells to α-TOS was restored by knocking down the ABCA1 protein. Similar resistance including ABCA1 gene upregulation was observed in the A549 lung cancer cells exposed to α-TOS. The resistance of the cells to α-TOS was overcome by its mitochondrially targeted analogue, MitoVES, that is taken up on the basis of the membrane potential, bypassing the enhanced expression of the ABCA1 protein. The in vitro results were replicated in mouse models of tumours derived from parental and resistant H1299 cells. We conclude that long-term exposure of cancer cells to α-TOS causes their resistance to the drug, which can be overcome by its mitochondrially targeted counterpart. This finding should be taken into consideration when planning clinical trials with vitamin E analogues.  相似文献   

17.

Background

Evidence suggests that dendritic cells accumulate in the lungs of COPD patients and correlate with disease severity. We investigated the importance of IL-1R1 and its ligands IL-1α and β to dendritic cell accumulation and maturation in response to cigarette smoke exposure.

Methods

Mice were exposed to cigarette smoke using a whole body smoke exposure system. IL-1R1-, TLR4-, and IL-1α-deficient mice, as well as anti-IL-1α and anti-IL-1β blocking antibodies were used to study the importance of IL-1R1 and TLR4 to dendritic cell accumulation and activation.

Results

Acute and chronic cigarette smoke exposure led to increased frequency of lung dendritic cells. Accumulation and activation of dendritic cells was IL-1R1/IL-1α dependent, but TLR4- and IL-1β-independent. Corroborating the cellular data, expression of CCL20, a potent dendritic cells chemoattractant, was IL-1R1/IL-1α-dependent. Studies using IL-1R1 bone marrow-chimeric mice revealed the importance of IL-1R1 signaling on lung structural cells for CCL20 expression. Consistent with the importance of dendritic cells in T cell activation, we observed decreased CD4+ and CD8+ T cell activation in cigarette smoke-exposed IL-1R1-deficient mice.

Conclusion

Our findings convey the importance of IL-1R1/IL-1α to the recruitment and activation of dendritic cells in response to cigarette smoke exposure.  相似文献   

18.
Transformer 2β1 (Tra2β1) is a splicing effector protein composed of a core RNA recognition motif flanked by two arginine-serine-rich (RS) domains, RS1 and RS2. Although Tra2β1-dependent splicing is regulated by phosphorylation, very little is known about how protein kinases phosphorylate these two RS domains. We now show that the serine-arginine protein kinase-1 (SRPK1) is a regulator of Tra2β1 and promotes exon inclusion in the survival motor neuron gene 2 (SMN2). To understand how SRPK1 phosphorylates this splicing factor, we performed mass spectrometric and kinetic experiments. We found that SRPK1 specifically phosphorylates 21 serines in RS1, a process facilitated by a docking groove in the kinase domain. Although SRPK1 readily phosphorylates RS2 in a splice variant lacking the N-terminal RS domain (Tra2β3), RS1 blocks phosphorylation of these serines in the full-length Tra2β1. Thus, RS2 serves two new functions. First, RS2 positively regulates binding of the central RNA recognition motif to an exonic splicing enhancer sequence, a phenomenon reversed by SRPK1 phosphorylation on RS1. Second, RS2 enhances ligand exchange in the SRPK1 active site allowing highly efficient Tra2β1 phosphorylation. These studies demonstrate that SRPK1 is a regulator of Tra2β1 splicing function and that the individual RS domains engage in considerable cross-talk, assuming novel functions with regard to RNA binding, splicing, and SRPK1 catalysis.  相似文献   

19.
Rad54: the Swiss Army knife of homologous recombination?   总被引:14,自引:5,他引:9  
Homologous recombination (HR) is a ubiquitous cellular pathway that mediates transfer of genetic information between homologous or near homologous (homeologous) DNA sequences. During meiosis it ensures proper chromosome segregation in the first division. Moreover, HR is critical for the tolerance and repair of DNA damage, as well as in the recovery of stalled and broken replication forks. Together these functions preserve genomic stability and assure high fidelity transmission of the genetic material in the mitotic and meiotic cell divisions. This review will focus on the Rad54 protein, a member of the Snf2-family of SF2 helicases, which translocates on dsDNA but does not display strand displacement activity typical for a helicase. A wealth of genetic, cytological, biochemical and structural data suggests that Rad54 is a core factor of HR, possibly acting at multiple stages during HR in concert with the central homologous pairing protein Rad51.  相似文献   

20.
In this study, the function of nitric oxide (NO) in endoplasmic reticulum (ER)-related cell death in human glioma cells was investigated. Treatment of human CRT-MG cells with the NO donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP) and thapsigargin, an ER stress inducer, increased cytosolic Ca2+ and caused apoptosis in a dose-dependent manner. Expression of the ER-associated molecules inositol-requiring enzyme 1 (IRE1)-α, p-eIF, and Ero1-α were also elevated in thapsigargin- or NO donor-treated cells. Furthermore, thapsigargin and SNAP treatment increased IRE1-α nuclease activity, induced IRE1-α/TRAF2 complex formation, and increased p-JNK1/2 levels, suggesting that NO activates the IRE1-α/TRAF2/JNK pathway in the ER. Expression of IRE1-α increased concomitantly with cAMP responsive element binding protein (CREB) phosphorylation. siRNA knock down of IRE1-α reduced phospho-CREB levels and abolished its nuclear translocation. The levels of phospho-CREB and IRE1-α increased with NO donor concentration, which resulted in cell death. IRE1-α and phospho-CREB levels in glioblastoma U87MG cells were higher than those in normal astrocytes in response to NO. In addition, treatment with the intracellular cytokine interleukin-1β induced cell death associated with NO and increased IRE1-α and p-CREB levels. These data reveal that intracellular NO affects IRE1-α-dependent CREB phosphorylation in human glioma cells. Therefore, an IRE1-α-dependent phospho-CREB signaling pathway responsive to NO/Ca2+ may play an important role in regulating ER-related cell death in glioma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号