首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Moment arms are important for understanding muscular behavior and for calculating internal muscle forces in musculoskeletal simulations. Biarticular muscles cross two joints and have moment arms that depend on the angle of both joints the muscles cross. The tendon excursion method was used to measure the joint angle-dependence of hamstring (biceps femoris, semimembranosus and semitendinosus) moment arm magnitudes of the feline hindlimb at the knee and hip joints. Knee angle influenced hamstring moment arm magnitudes at the hip joint; compared to a flexed knee joint, the moment arm for semimembranosus posterior at the hip was at most 7.4 mm (25%) larger when the knee was extended. On average, hamstring moment arms at the hip increased by 4.9 mm when the knee was more extended. In contrast, moment arm magnitudes at the knee varied by less than 2.8 mm (mean=1.6 mm) for all hamstring muscles at the two hip joint angles tested. Thus, hamstring moment arms at the hip were dependent on knee position, while hamstring moment arms at the knee were not as strongly associated with relative hip position. Additionally, the feline hamstring muscle group had a larger mechanical advantage at the hip than at the knee joint.  相似文献   

2.
As a first step towards developing a dynamic model of the rat hindlimb, we measured muscle attachment and joint center coordinates relative to bony landmarks using stereophotogrammetry. Using these measurements, we analyzed muscle moment arms as functions of joint angle for most hindlimb muscles, and tested the hypothesis that postural change alone is sufficient to alter the function of selected muscles of the leg. We described muscle attachment sites as second-order curves. The length of the fit parabola and residual errors in the orthogonal directions give an estimate of muscle attachment sizes, which are consistent with observations made during dissection. We modeled each joint as a moving point dependent on joint angle; relative endpoint errors less than 7% indicate this method as accurate. Most muscles have moment arms with a large range across the physiological domain of joint angles, but their moment arms peak and vary little within the locomotion domain. The small variation in moment arms during locomotion potentially simplifies the neural control requirements during this phase. The moment arms of a number of muscles cross zero as angle varies within the quadrupedal locomotion domain, indicating they are intrinsically stabilizing. However, in the bipedal locomotion domain, the moment arms of these muscles do not cross zero and thus are no longer intrinsically stabilizing. We found that muscle function is largely determined by the change in moment arm with joint angle, particularly the transition from quadrupedal to bipedal posture, which may alter an intrinsically stabilizing arrangement or change the control burden.  相似文献   

3.
Rotator cuff tears cause morphologic changes to cuff tendons and muscles, which can alter muscle architecture and moment arm. The effects of these alterations on shoulder mechanical performance in terms of muscle force and joint strength are not well understood. The purpose of this study was to develop a three-dimensional explicit finite element model for investigating morphological changes to rotator cuff tendons following cuff tear. The subsequent objectives were to validate the model by comparing model-predicted moment arms to empirical data, and to use the model to investigate the hypothesis that rotator cuff muscle moment arms are reduced when tendons are divided along the force-bearing direction of the tendon. The model was constructed by extracting tendon, cartilage, and bone geometry from the male Visible Human data set. Infraspinatus and teres minor muscle and tendon paths were identified relative to the humerus and scapula. Kinetic and kinematic boundary conditions in the model replicated experimental protocols, which rotated the humerus from 45 degrees internal to 45 degrees external rotation with constant loads on the tendons. External rotation moment arms were calculated for two conditions of the cuff tendons: intact normal and divided tendon. Predicted moment arms were within the 1-99% confidence intervals of experimental data for nearly all joint angles and tendon sub-regions. In agreement with the experimental findings, when compared to the intact condition, predicted moment arms were reduced for the divided tendon condition. The results of this study provide evidence that one potential mechanism for the reduction in strength observed with cuff tear is reduction of muscle moment arms. The model provides a platform for future studies addressing mechanisms responsible for reduced muscle force and joint strength including changes to muscle length-tension operating range due to altered muscle and tendon excursions, and the effects of cuff tear size and location on moment arms and muscle forces.  相似文献   

4.
Abstract

Biomechanical investigations examining shoulder function commonly observe a high degree of inter-individual variability in muscle activity and kinematic patterns during static and dynamic upper extremity exertions. Substantial differences in musculoskeletal geometry between individuals can alter muscle moment arms and lines of action that, theoretically, alter muscle activity and shoulder kinematics. The purposes of this research were to: (i) quantify model-predicted functional roles (moment arms, lines of action) of the scapulohumeral muscles, (ii) compare model predictions to experimental data in the literature, and (iii) evaluate sensitivity of muscle functional roles due to changes in muscle attachment locations using probabilistic modeling. Monte Carlo simulations were performed to iteratively adjust muscle attachment locations at the clavicle, scapula, and humerus of the Delft Shoulder and Elbow Model in OpenSim. Muscle moment arms and lines of action were quantified throughout arm elevation in the scapular plane. In general, model-predicted moment arms agreed well with the reviewed literature; however, notable inconsistencies were observed when comparing lines of action. Variability in moment arms and lines of action were muscle-specific, with 2 standard deviations in moment arm and line of actions as high as 25.8?mm and 18.8° for some muscles, respectively. Moment arms were particularly sensitive to changes in attachment site closest to the joint centre. Variations in muscle functional roles due to differences in musculoskeletal geometry are expected to require different muscle activity and movement patterns for upper extremity exertions.  相似文献   

5.
Excessive flexion and internal rotation of the hip is a common gait abnormality among individuals with cerebral palsy. The purpose of this study was to examine the influence of hip flexion on the rotational moment arms of the hip muscles. We hypothesized that flexion of the hip would increase internal rotation moment arms and decrease external rotation moment arms of the primary hip rotators. To test this hypothesis we measured rotational moment arms of the gluteus maximus (six compartments), gluteus medius (four compartments), gluteus minimus (three compartments) iliopsoas, piriformis, quadratus femoris, obturator internus, and obturator externus. Moment arms were measured at hip flexion angles of 0, 20, 45, 60, and 90 degrees in four cadavers. A three-dimensional computer model of the hip muscles was developed and compared to the experimental measurements. The experimental results and the computer model showed that the internal rotation moment arms of some muscles increase with flexion; the external rotation moment arms of other muscles decrease, and some muscles switch from external rotation to internal rotation as the hip is flexed. This trend toward internal rotation with hip flexion was apparent in 15 of the 18 muscle compartments we examined, suggesting that excessive hip flexion may exacerbate internal rotation of the hip. The gluteus maximus was found to have a large capacity for external rotation. Enhancing the activation of the gluteus maximus, a muscle that is frequently underactive in persons with cerebral palsy, may help correct excessive flexion and internal rotation of the hip.  相似文献   

6.
This study investigates the morphological basis of differences between humans and chimpanzees in the kinematical and dynamical parameters of the musculature of the thumb. It is partly intended to test an hypothesis that human thumb muscles can exert significantly greater torques, due to larger muscle cross-sectional areas or to longer tendon moment arms or to both. We focus on the estimation of the potentials of thumb muscles to exert torques about joint axes in a sample of eight chimpanzee cadaver hands. The potential torque of a muscle is estimated by taking the product of a muscle's physiological cross-sectional area (an estimator of force) with its dynamical moment arm (derived from the slope of tendon excursion versus joint angular displacement, obtained during passive movements of cadaver thumb joints). Comparison of our results with similar data obtained for humans at the same Mayo Clinic laboratory shows significant differences between humans and chimpanzees in potential torque of most thumb muscles, those of humans generally exhibiting larger values. The primary reason for the larger torques in humans is that their average moment arms are significantly longer, permitting greater torque for a given muscle size. An additional finding is that chimpanzees and humans differ in the direction of secondary thumb metacarpal movements elicited by contraction of some muscles, as shown by differences in moment arm signs for a given movement in the same muscle. The differences appear to be related to differences in the musculo-skeletal structures of the trapeziometacarpal joint.  相似文献   

7.
A biomechanical model of a thumb would be useful for exploring the mechanical loadings in the musculoskeletal system, which cannot be measured in vivo. The purpose of the current study is to develop a practical kinematic thumb model using the commercial software Anybody (Anybody Technology, Aalborg, Denmark), which includes real CT-scans of the bony sections and realistic tendon/muscle attachments on the bones. The thumb model consists of a trapezium, a metacarpal bone, a proximal and a distal phalanx. These four bony sections are linked via three joints, i.e., IP (interphalangeal), MP (metacarpophalangeal) and CMC (carpometacarpal) joints. Nine muscles were included in the proposed model. The theoretically calculated moment arms of the tendons are compared with the corresponding experimental data by Smutz et al. [1998. Mechanical advantage of the thumb muscles. J. Biomech. 31(6), 565–570]. The predicted muscle moment arms of the majority of the muscle/tendon units agree well with the experimental data in the entire range of motion. Close to the end of the motion range, the predicted moment arms of several muscles (i.e., ADPt and ADPo (transverse and oblique heads of the adductor pollicis, respectively) muscles for CMC abduction/adduction and ADPt and FPB (flexor pollicis brevis) muscle for MP extension/flexion) deviate from the experimental data. The predicted moment potentials for all muscles are consistent with the experimental data. The findings thus suggest that, in a biomechanical model of the thumb, the mechanical functions of muscle–tendon units with small physiological cross-sectional areas (PCSAs) can be well represented using single strings, while those with large PCSAs (flat-wide attachments, e.g., ADPt and ADPo) can be represented by the averaged excursions of two strings. Our results show that the tendons with large PCSAs can be well represented biomechanically using the proposed approach in the major range of motion.  相似文献   

8.
Skeletal reconstruction of a child Neandertal unearthed at Dederiyeh Cave, Syria in 1993, is undertaken and the acquired stature discussed. Although the skeletal remains were well preserved, the reconstruction required several assumptions to be made because of the immature status of the specimen. The assumptions were mainly concerned with distances between bones in the inter-vertebral spaces and in the joints of the hip, knee, and ankle. These were estimated from X-ray films of modern children and data from previous studies. Stature was directly measured on the reconstruction, and found to be 79.2 cm. After corrections for soft tissue thickness and shrinkage of the casts, the stature became 81.7 cm. This estimate is consistent with estimates based on regression equations of long bone lengths, especially from those of the lower extremity. In comparison with longitudinal data for white American boys, the assessment of stature for Dederiyeh varied according to the estimated age. For a younger estimated age, the stature falls in the lower half of the white American range of variation, but with an older estimated age, it falls below the lower limit of the range of variation. Other immature Neandertals including two European specimens, Roc de Marsal and La Ferrassie 6, fall below the lower limit of the 5th to 95th percentile range based on the estimated statures from their long bone lengths. More comprehensive age assessment covering both fossil and modern humans is required before accurate conclusions in relation to Neandertal growth can be drawn.  相似文献   

9.
10.
11.
12.
Hill-type muscle models are commonly used in musculoskeletal models to estimate muscle forces during human movement. However, the sensitivity of model predictions of muscle function to changes in muscle moment arms and muscle-tendon properties is not well understood. In the present study, a three-dimensional muscle-actuated model of the body was used to evaluate the sensitivity of the function of the major lower limb muscles in accelerating the whole-body center of mass during gait. Monte-Carlo analyses were used to quantify the effects of entire distributions of perturbations in the moment arms and architectural properties of muscles. In most cases, varying the moment arm and architectural properties of a muscle affected the torque generated by that muscle about the joint(s) it spanned as well as the torques generated by adjacent muscles. Muscle function was most sensitive to changes in tendon slack length and least sensitive to changes in muscle moment arm. However, the sensitivity of muscle function to changes in moment arms and architectural properties was highly muscle-specific; muscle function was most sensitive in the cases of gastrocnemius and rectus femoris and insensitive in the cases of hamstrings and the medial sub-region of gluteus maximus. The sensitivity of a muscle's function was influenced by the magnitude of the muscle's force as well as the operating region of the muscle on its force-length curve. These findings have implications for the development of subject-specific models of the human musculoskeletal system.  相似文献   

13.
It is often assumed that moment arms scale with size and can be normalized by body segment lengths or limb circumferences. However, quantitative scaling relationships between moment arms and anthropometric dimensions are generally not available. We hypothesized that peak moment arms of the elbow flexor and extensor muscles scale with the shorter distance (D(s)) between the elbow flexion axis and a muscle's origin and insertion. To test this hypothesis, we estimated moment arms of six muscles that cross the elbow, digitized muscle attachment sites and bone surface geometry, and estimated the location of the elbow flexion axis in 10 upper extremity cadaveric specimens which ranged in size from a 5'0" female to a 6'4" male. D(s) accurately reflected the differences in peak moment arms across different muscles, explaining 93-99% of the variation in peaks between muscles in the same specimen. D(s) also explained between 55% and 88% of the interspecimen variation in peak moment arms for brachioradialis, biceps, and ECRL. Triceps peak moment arm was significantly correlated to the anterior-posterior dimension of the ulna measured at the olecranon (r(2)=0.61, p=0.008). Radius length provides a good measure of the interspecimen variation in peaks for brachioradialis, biceps, and ECRL. However, bone lengths were not significantly correlated to triceps moment arm or anterior-posterior bone dimensions. This work advances our understanding of the variability and scaling dimensions for elbow muscle moment arms across subjects of different sizes.  相似文献   

14.
This study investigated changes in muscle activity when subjects are asked to maintain a constant cadence during an unloaded condition. Eleven subjects pedaled for five loaded conditions (220 W, 190 W, 160 W, 130 W, 100 W) and one unloaded condition at 80 rpm. Electromyographic (EMG) activity of six lower limb muscles, pedal forces and oxygen consumption were calculated for every condition. Muscle activity was defined by timing (EMG onset and offset) and level (integrated values of EMGrms calculated between EMG onset and EMG offset) of activation, while horizontal and vertical impulses were computed to characterize pedal forces. Muscle activity, pedal forces and oxygen consumption variables measured during the unloaded condition were compared with those extrapolated to 0 W from the loaded conditions, assuming a linear relationship. The muscle activity was changed during unloaded condition: EMG onset and/or offset of rectus femoris, biceps femoris, vastus medialis, and gluteus maximus muscles were delayed (p < 0.05); iEMGrms values of rectus femoris, biceps femoris, gastrocnemius medialis and tibialis anterior muscles were higher than those extrapolated to 0 W (p < 0.05). Vertical impulse over the extension phase was lower (p < 0.05) while backward horizontal impulse was higher (p < 0.05) during unloaded condition than those extrapolated to 0 W. Oxygen consumptions were higher during unloaded condition than extrapolated to 0W (750 ± 147 vs. 529 ± 297 mLO2.min?1; p < 0.05). Timing of activation of rectus femoris and biceps femoris was dramatically modified to optimize pedal forces and maintain a constant cadence, while systematic changes in the activation level of the bi-articular muscles induced a relative increase in metabolic expenditure when pedaling during an unloaded condition.  相似文献   

15.
Angiosome territories of the nerves of the lower limbs   总被引:1,自引:0,他引:1  
This anatomical study involved the meticulous dissection of three fresh cadaveric specimens to characterize the vascular supply of the nerves of the lower limb. The findings demonstrated that the nerves were supplied segmentally by source vessels, which were color-coded to match the corresponding angiosomes. The segments were then classified into five categories according to whether the nerves and source vessels were branched or unbranched, which has clinical relevance for harvesting of nerves for vascularized nerve transfers.  相似文献   

16.
17.
Early vascularized soft-tissue closure has long been recognized to be essential in achieving eventual infection-free union. The question of whether muscle or fasciocutaneous tissue is superior in terms of promoting fracture healing remains unresolved. In this article, the authors review the experimental and clinical evidence for the different tissue types and advocate that the biological role of flaps should be included as a key consideration during flap selection.  相似文献   

18.
19.
The specific markers of platelet activation, e.g. platelet aggregation induced with ADP, AA and PAF as well as the levels of Beta-TG, TXB2, 6-keto-PGF1 alpha and cyclic AMP in the patients suffering from obliterative arteriosclerosis of the lower limbs were measured. It was found that these patients revealed hyperfunction of blood platelets expressed in increased sensitivity of platelets to ADP and PAF, increased levels of Beta-TG and TXB2 as well as decreased levels of 6-keto-PGF1 alpha and cyclic AMP. Obtained results support the concept that atherosclerosis consists of a wide-spread functional alteration of various types of cells.  相似文献   

20.
Marker-based dynamic functional or regression methods are used to compute joint centre locations that can be used to improve linear scaling of the pelvis in musculoskeletal models, although large errors have been reported using these methods. This study aimed to investigate if statistical shape models could improve prediction of the hip joint centre (HJC) location. The inclusion of complete pelvis imaging data from computed tomography (CT) was also explored to determine if free-form deformation techniques could further improve HJC estimates. Mean Euclidean distance errors were calculated between HJC from CT and estimates from shape modelling methods, and functional- and regression-based linear scaling approaches. The HJC of a generic musculoskeletal model was also perturbed to compute the root-mean squared error (RMSE) of the hip muscle moment arms between the reference HJC obtained from CT and the different scaling methods. Shape modelling without medical imaging data significantly reduced HJC location error estimates (11.4 ± 3.3 mm) compared to functional (36.9 ± 17.5 mm, p = <0.001) and regression (31.2 ± 15 mm, p = <0.001) methods. The addition of complete pelvis imaging data to the shape modelling workflow further reduced HJC error estimates compared to no imaging (6.6 ± 3.1 mm, p = 0.002). Average RMSE were greatest for the hip flexor and extensor muscle groups using the functional (16.71 mm and 8.87 mm respectively) and regression methods (16.15 mm and 9.97 mm respectively). The effects on moment-arms were less substantial for the shape modelling methods, ranging from 0.05 to 3.2 mm. Shape modelling methods improved HJC location and muscle moment-arm estimates compared to linear scaling of musculoskeletal models in patients with hip osteoarthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号