首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Fly》2013,7(4):337-339
Mutations and most transgenes that induce ectopic cell death in Drosophila will produce an inhibitory effect on RNA interference (RNAi) in adjacent cells. When extensive cell death is sporadically induced using a heat shock promoted-head involution defective (hs-hid) transgene, molecular attributes of this inhibition can be studied. For a Green Fluorescent Protein (GFP) RNAi construct, cell death causes a greater accumulation of the mature mRNA and the double stranded RNA with an accompanying reduction in the homologous siRNAs. Endogenous transposable element expression is increased and there is an overall reduction in their corresponding siRNAs. The implications of this finding for the conduct of RNAi and potential reasons for its existence are discussed.  相似文献   

2.
RNA interference (RNAi)-based sequence-specific gene silencing is applied to identify gene function and also possesses great potential for inhibiting virus replication both in animals and plants. Small interfering RNA (siRNA) molecules are the inducers of gene silencing in the RNAi pathway but may also display immunostimulatory activities and promote apoptosis. Canonical siRNAs are 21 nucleotides (nt) in length and are loaded to the RNA Induced Silencing Complex when introduced into the cells, while longer siRNA molecules are first processed by endogenous Dicer and thus termed Dicer-substrate siRNA (DsiRNA). We have applied RNA polymerases from bacteriophages T7 and phi6 to make high-quality double-stranded RNA molecules that are specific for the UL29 gene of herpes simplex virus (HSV). The 653 nt long double-stranded RNA molecules were converted to siRNA and DsiRNA pools using Dicer enzymes originating from human or Giardia intestinalis, producing siRNAs of approximately 21 and 27 nt in length, respectively. Chemically synthesised 21 and 27 nt single-site siRNA targeting the UL29 were used as references. The impact of these siRNAs on cell viability, inflammatory responses, gene silencing, and anti-HSV activity were assayed in cells derived from human nervous system and skin. Both pools and the canonical single-site siRNAs displayed substantial antiviral activity resulting in four orders of magnitude reduction in virus titer. Notably, the pool of DsiRNAs caused lower immunostimulation than the pool of canonical siRNAs, whereas the immunostimulation effect was in relation to the length with the single-site siRNAs. Our results also propose differences in the processivity of the two Dicers.  相似文献   

3.
In various organisms, an efficient RNAi response can be triggered by feeding cells with bacteria producing double-stranded RNA (dsRNA) against an endogenous gene. However, the detailed mechanisms and natural functions of this pathway are not well understood in most cases. Here, we studied siRNA biogenesis from exogenous RNA and its genetic overlap with endogenous RNAi in the ciliate Paramecium tetraurelia by high-throughput sequencing. Using wild-type and mutant strains deficient for dsRNA feeding we found that high levels of primary siRNAs of both strands are processed from the ingested dsRNA trigger by the Dicer Dcr1, the RNA-dependent RNA polymerases Rdr1 and Rdr2 and other factors. We further show that this induces the synthesis of secondary siRNAs spreading along the entire endogenous mRNA, demonstrating the occurrence of both 3′-to-5′ and 5′-to-3′ transitivity for the first time in the SAR clade of eukaryotes (Stramenopiles, Alveolates, Rhizaria). Secondary siRNAs depend on Rdr2 and show a strong antisense bias; they are produced at much lower levels than primary siRNAs and hardly contribute to RNAi efficiency. We further provide evidence that the Paramecium RNAi machinery also processes single-stranded RNAs from its bacterial food, broadening the possible natural functions of exogenously induced RNAi in this organism.  相似文献   

4.
In vivo gene silencing in Plasmodium berghei--a mouse malaria model   总被引:3,自引:0,他引:3  
RNA interference (RNAi) has emerged as a specific and efficient tool to silence gene expression in a variety of organisms and cell lines. An important prospect for RNAi technology is its possible application in the treatment of diseases using short interfering RNAs (siRNAs). However, the effect of siRNAs in adult animals and their potential to treat or prevent diseases are yet to be fully investigated. The main goal of the present study is to find out whether it was possible to carry out RNAi on circulating malaria parasite in vivo. To trigger RNAi in mouse malaria parasite, we used siRNAs corresponding to cysteine protease genes of Plasmodium berghei (berghepain-1 & 2). Intravenous injections of berghepains' siRNAs in infected animal resulted in characteristic enlargement of food vacuole in circulating parasites. Protein analysis of these treated parasites showed substantial accumulation of hemoglobin, which is reminiscent of the effect observed upon treating Plasmodium falciparum with different cysteine protease inhibitors. Parasites treated with berghepain 1 & 2 siRNAs showed marked reduction in the levels of their cognate mRNAs, thereby suggesting specific inhibition of berghepains' gene expression in vivo. We also observed the generation of approximately 25 nt RNA species from berghepains' mRNAs in the treated parasites, which is a characteristic of an RNAi phenomenon. These results thus provide evidence that beyond its value for validation of gene functions, RNAi may provide a new approach for disease therapy.  相似文献   

5.
RNA interference (RNAi) is a RNA-mediated sequence-specific gene silencing mechanism. Recently, this mechanism has been used to down-regulate protein expression in mammalian cells by applying synthetic- or vector-generated small interfering RNAs (siRNAs). However, for the evaluation of this new knockdown technology, it is crucial to demonstrate biological consequences beyond protein level reduction. Here, we demonstrate that this new siRNA-based technology is suitable to analyse protein functions using the phosphatidylinositol (PI) 3-kinase signal transduction pathway as a model system. We demonstrate stable and transient siRNA-mediated knockdown of one of the PI 3-kinase catalytic subunits, p110β, which leads to inhibition of invasive cell growth in vitro as well as in a tumour model system. Importantly, this result is consistent with loss-of-function phenotypes induced by conventional RNase H-dependent antisense molecules or treatment with the PI 3-kinase inhibitor LY294002. RNAi knockdown of the downstream kinases Akt1 and Akt2 does not reduce cell growth on extracellular matrix. Our data show that synthetic siRNAs, as well as vector-based expression of siRNAs, are a powerful new tool to interfere with signal transduction processes for the elucidation of gene function in mammalian cells.  相似文献   

6.
Invertebrate RNA viruses are targets of the host RNA interference (RNAi) pathway, which limits virus infection by degrading viral RNA substrates. Several insect RNA viruses encode suppressor proteins to counteract this antiviral response. We recently demonstrated that the dsDNA virus Invertebrate iridescent virus 6 (IIV-6) induces an RNAi response in Drosophila. Here, we show that RNAi is suppressed in IIV-6-infected cells and we mapped RNAi suppressor activity to the viral protein 340R. Using biochemical assays, we reveal that 340R binds long dsRNA and prevents Dicer-2-mediated processing of long dsRNA into small interfering RNAs (siRNAs). We demonstrate that 340R additionally binds siRNAs and inhibits siRNA loading into the RNA-induced silencing complex. Finally, we show that 340R is able to rescue a Flock House virus replicon that lacks its viral suppressor of RNAi. Together, our findings indicate that, in analogy to RNA viruses, DNA viruses antagonize the antiviral RNAi response.  相似文献   

7.
RNA interference (RNAi) is a natural endogenous process by which double-stranded RNA molecules trigger potent and specific gene silencing in eukaryotic cells and is characterized by target RNA cleavage. In mammals, small interfering RNAs (siRNAs) are the trigger molecules of choice and constitute a new class of RNA-based antiviral agents. In an efficient RNAi response, the antisense strand of siRNAs must enter the RNA-induced silencing complex (RISC) in a process mediated by thermodynamic features. In this report, we hypothesize that silent mutations capable of inverting thermodynamic properties can promote resistance to siRNAs. Extensive computational analyses were used to assess whether continuous selective pressure that promotes such mutations could lead to the emergence of viral strains completely resistant to RNAi (i.e., prone to transfer only the sense strands to RISC). Based on our findings, we propose that, although synonymous mutations may produce functional resistance, this strategy cannot be systematically adopted by viruses since the longest RNAi-refractory sequence is only 10 nt long. This finding also suggests that all mRNAs display fluctuating thermodynamic landscapes and that, in terms of thermodynamic features, RNAi is a very efficient antiviral system since there will always be sites susceptible to siRNAs.  相似文献   

8.
RNA interference (RNAi) is one of the processes in the cell that regulates mRNA expression levels. RNAi can be exploited to experimentally knockdown the expression of one or more genes in cell lines or even in cells in vivo and also became an interesting tool to develop new therapeutic approaches. One of the major challenges of using RNAi is selecting effective shRNAs or siRNAs that sufficiently down-regulate the expression of the target gene. Here, we describe a system to select functional shRNAs or siRNAs that makes use of the leukemia cell line Ba/F3 that is dependent on the expression of a mutant form of the PDGFRα kinase for its proliferation and survival. The basis of this system is the generation of an expression construct, where part of the open reading frame of the gene of interest is linked to the mutant PDGFRα. Thus, shRNAs or siRNAs that effectively target the gene of interest also result in a reduction of the expression of the mutant PDGFRα protein, which can be detected by a reduction of the proliferation of the cells. We demonstrate that this validation system can be used for the selection of effective siRNAs as well as shRNAs. Unlike other systems, the system described here is not dependent on obtaining high-transduction efficiencies, and nonspecific effects of the siRNAs or shRNAs can be detected by comparing the effects in the presence or absence of the growth factor interleukin-3.  相似文献   

9.
10.
Replication of RNA viruses in insect cells triggers an antiviral defense that is mediated by RNA interference (RNAi) which generates viral-derived small interfering RNAs (siRNAs). However, it is not known whether an antiviral RNAi response is also induced in insects by reoviruses, whose double-stranded RNA genome replication is thought to occur within core particles. Deep sequencing of small RNAs showed that when the small brown planthopper (Laodelphax striatellus) was infected by Rice black-streaked dwarf virus (RBSDV) (Reoviridae; Fijivirus), more viral-derived siRNAs accumulated than when the vector insect was infected by Rice stripe virus (RSV), a negative single-stranded RNA virus. RBSDV siRNAs were predominantly 21 and 22 nucleotides long and there were almost equal numbers of positive and negative sense. RBSDV siRNAs were frequently generated from hotspots in the 5′- and 3′-terminal regions of viral genome segments but these hotspots were not associated with any predicted RNA secondary structures. Under laboratory condition, L. striatellus can be infected simultaneously with RBSDV and RSV. Double infection enhanced the accumulation of particular genome segments but not viral coat protein of RBSDV and correlated with an increase in the abundance of siRNAs derived from RBSDV. The results of this study suggest that reovirus replication in its insect vector potentially induces an RNAi-mediated antiviral response.  相似文献   

11.
A number of studies have shown that both innate and adaptive immune defense mechanisms greatly influence the course of human dengue virus (DENV) infections, but little is known about the innate immune response of the mosquito vector Aedes aegypti to arbovirus infection. We present evidence here that a major component of the mosquito innate immune response, RNA interference (RNAi), is an important modulator of mosquito infections. The RNAi response is triggered by double-stranded RNA (dsRNA), which occurs in the cytoplasm as a result of positive-sense RNA virus infection, leading to production of small interfering RNAs (siRNAs). These siRNAs are instrumental in degradation of viral mRNA with sequence homology to the dsRNA trigger and thereby inhibition of virus replication. We show that although dengue virus type 2 (DENV2) infection of Ae. aegypti cultured cells and oral infection of adult mosquitoes generated dsRNA and production of DENV2-specific siRNAs, virus replication and release of infectious virus persisted, suggesting viral circumvention of RNAi. We also show that DENV2 does not completely evade RNAi, since impairing the pathway by silencing expression of dcr2, r2d2, or ago2, genes encoding important sensor and effector proteins in the RNAi pathway, increased virus replication in the vector and decreased the extrinsic incubation period required for virus transmission. Our findings indicate a major role for RNAi as a determinant of DENV transmission by Ae. aegypti.  相似文献   

12.
13.
RNA interference (RNAi) is a process in which double-strand RNA (dsRNA) directs the specific degradation of a corresponding target mRNA. The mediators of this process are small dsRNAs, of ~21 bp in length, called small interfering RNAs (siRNAs). siRNAs, which can be prepared in vitro in a number of ways and then transfected into cells, can direct the degradation of corresponding mRNAs inside these cells. Hence, siRNAs represent a powerful tool for studying gene functions, as well as having the potential of being highly specific pharmaceutical agents. Some limitations in using this technology exist because the preparation of siRNA in vitro and screening for siRNAs efficient in RNAi can be expensive and time-consuming processes. Here, we demonstrate that custom oligonucleotide arrays can be efficiently used for the preparation of defined mixtures of siRNAs for the silencing of exogenous and endogenous genes. The method is fast, inexpensive, does not require siRNA optimization and has a number of advantages over methods utilizing enzymatic preparation of siRNAs by digestion of longer dsRNAs, as well as methods based on chemical synthesis of individual siRNAs or their DNA templates.  相似文献   

14.
Short interference RNA (siRNA) is a powerful tool for suppressing gene expression in mammalian cells. In this study, we focused on the development of siRNAs conjugated with aromatic compounds in order to improve the potency of RNAi and thus to overcome several problems with siRNAs, such as cellular delivery and nuclease stability. The siRNAs conjugated with phenyl, hydroxyphenyl, naphthyl, and pyrenyl derivatives showed strong resistance to nuclease degradation, and were thermodynamically stable compared with unmodified siRNA. A high level of membrane permeability in HeLa cells was also observed. Moreover, these siRNAs exhibited enhanced RNAi efficacy, which exceeded that of locked nucleic acid (LNA)-modified siRNAs, against exogenous Renilla luciferase in HeLa cells. In particular, abundant cytoplasmic localization and strong gene-silencing efficacy were found in the siRNAs conjugated with phenyl and hydroxyphenyl derivatives. The novel siRNAs conjugated with aromatic compounds are promising candidates for a new generation of modified siRNAs that can solve many of the problems associated with RNAi technology.  相似文献   

15.
16.
C. elegans Dicer requires an accessory double-stranded RNA binding protein, RDE-4, to enact the first step of RNA interference, the cleavage of dsRNA to produce siRNA. While RDE-4 is typically essential for RNAi, we report that in the presence of high concentrations of trigger dsRNA, rde-4 deficient animals are capable of silencing a transgene. By multiple criteria the silencing occurs by the canonical RNAi pathway. For example, silencing is RDE-1 dependent and exhibits a decrease in the targeted mRNA in response to an increase in siRNA. We also find that high concentrations of dsRNA trigger lead to increased accumulation of primary siRNAs, consistent with the existence of a rate-limiting step during the conversion of primary to secondary siRNAs. Our studies also revealed that transgene silencing occurs at low levels in the soma, even in the presence of ADARs, and that at least some siRNAs accumulate in a temperature-dependent manner. We conclude that an RNAi response varies with different conditions, and this may allow an organism to tailor a response to specific environmental signals.  相似文献   

17.
Small interfering RNA-mediated gene silencing in T lymphocytes   总被引:32,自引:0,他引:32  
Introduction of small interfering RNAs (siRNAs) into a cell can cause a specific interference of gene expression known as RNA interference (RNAi). However, RNAi activity in lymphocytes and in normal primary mammalian cells has not been thoroughly demonstrated. In this report, we show that siRNAs complementary to CD4 and CD8alpha specifically reduce surface expression of these coreceptors and their respective mRNA in a thymoma cell line model. We show that RNAi activity is only caused by a subset of siRNAs complementary to the mRNA target and that ineffective siRNAs can compete with effective siRNAs. Using primary differentiated T lymphocytes, we provide the first evidence of siRNA-mediated RNAi gene silencing in normal nontransformed somatic mammalian lymphocytes.  相似文献   

18.
In most eukaryotes, small RNA-mediated gene silencing pathways form complex interacting networks. In the ciliate Paramecium tetraurelia, at least two RNA interference (RNAi) mechanisms coexist, involving distinct but overlapping sets of protein factors and producing different types of short interfering RNAs (siRNAs). One is specifically triggered by high-copy transgenes, and the other by feeding cells with double-stranded RNA (dsRNA)-producing bacteria. In this study, we designed a forward genetic screen for mutants deficient in dsRNA-induced silencing, and a powerful method to identify the relevant mutations by whole-genome sequencing. We present a set of 47 mutant alleles for five genes, revealing two previously unknown RNAi factors: a novel Paramecium-specific protein (Pds1) and a Cid1-like nucleotidyl transferase. Analyses of allelic diversity distinguish non-essential and essential genes and suggest that the screen is saturated for non-essential, single-copy genes. We show that non-essential genes are specifically involved in dsRNA-induced RNAi while essential ones are also involved in transgene-induced RNAi. One of the latter, the RNA-dependent RNA polymerase RDR2, is further shown to be required for all known types of siRNAs, as well as for sexual reproduction. These results open the way for the dissection of the genetic complexity, interconnection, mechanisms and natural functions of RNAi pathways in P. tetraurelia.  相似文献   

19.
20.
Small interfering RNAs (siRNAs) processed from double-stranded RNA (dsRNA) of virus origins mediate potent antiviral defense through a process referred to as RNA interference (RNAi) or RNA silencing in diverse organisms. In the simple invertebrate Caenorhabditis elegans, the RNAi process is initiated by a single Dicer, which partners with the dsRNA binding protein RDE-4 to process dsRNA into viral siRNAs (viRNAs). Notably, in C. elegans this RNA-directed viral immunity (RDVI) also requires a number of worm-specific genes for its full antiviral potential. One such gene is rsd-2 (RNAi spreading defective 2), which was implicated in RDVI in our previous studies. In the current study, we first established an antiviral role by showing that rsd-2 null mutants permitted higher levels of viral RNA accumulation, and that this enhanced viral susceptibility was reversed by ectopic expression of RSD-2. We then examined the relationship of rsd-2 with other known components of RNAi pathways and established that rsd-2 functions in a novel pathway that is independent of rde-4 but likely requires the RNA-dependent RNA polymerase RRF-1, suggesting a critical role for RSD-2 in secondary viRNA biogenesis, likely through coordinated action with RRF-1. Together, these results suggest that RDVI in the single-Dicer organism C. elegans depends on the collective actions of both RDE-4-dependent and RDE-4-independent mechanisms to produce RNAi-inducing viRNAs. Our study reveals, for the first time, a novel siRNA-producing mechanism in C. elegans that bypasses the need for a dsRNA-binding protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号