首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipocalin 11 (Lcn11), a recently identified member of the lipocalin family, potentially plays crucial physiological roles in male reproduction. In this present work, we cloned, expressed and purified the rat Lcn11 (rLcn11) protein in Escherichia coli. A C59A/C156A substitution was introduced to ameliorate the misfolding and aggregation problem associated with the wild-type protein. From circular dichroism and non-reducing SDS–PAGE, we characterized the conformational properties of rLcn11 as a typical lipocalin scaffold with the conserved disulfide bridge. The results obtained from size-exclusion chromatography, cross-linking experiment and dynamic light scattering analysis indicate that the recombinant rLcn11 protein forms dimer in neutral solution. By using fluorescent probe 8-anilino-1-naphtahlene sulfonic acid (ANS), we found rLcn11 might contain multiple hydrophobic binding sites for ligand binding. Similarly to the odorant-binding protein, rLcn11 processes a moderate affinity for binding 1-aminoanthracene (AMA), implying that Lcn11 might work as a dimeric chemoreception protein in male reproductive system.  相似文献   

2.
Nasal colonization by both gram-positive and gram-negative pathogens induces expression of the innate immune protein lipocalin 2 (Lcn2). Lcn2 binds and sequesters the iron-scavenging siderophore enterobactin (Ent), preventing bacterial iron acquisition. In addition, Lcn2 bound to Ent induces release of IL-8 from cultured respiratory cells. As a countermeasure, pathogens of the Enterobacteriaceae family such as Klebsiella pneumoniae produce additional siderophores such as yersiniabactin (Ybt) and contain the iroA locus encoding an Ent glycosylase that prevents Lcn2 binding. Whereas the ability of Lcn2 to sequester iron is well described, the ability of Lcn2 to induce inflammation during infection is unknown. To study each potential effect of Lcn2 on colonization, we exploited K. pneumoniae mutants that are predicted to be susceptible to Lcn2-mediated iron sequestration (iroA ybtS mutant) or inflammation (iroA mutant), or to not interact with Lcn2 (entB mutant). During murine nasal colonization, the iroA ybtS double mutant was inhibited in an Lcn2-dependent manner, indicating that the iroA locus protects against Lcn2-mediated growth inhibition. Since the iroA single mutant was not inhibited, production of Ybt circumvents the iron sequestration effect of Lcn2 binding to Ent. However, colonization with the iroA mutant induced an increased influx of neutrophils compared to the entB mutant. This enhanced neutrophil response to Ent-producing K. pneumoniae was Lcn2-dependent. These findings suggest that Lcn2 has both pro-inflammatory and iron-sequestering effects along the respiratory mucosa in response to bacterial Ent. Therefore, Lcn2 may represent a novel mechanism of sensing microbial metabolism to modulate the host response appropriately.  相似文献   

3.
ATP:co(I)rrinoid adenosyltransferase (ACAT) enzymes convert vitamin B12 to coenzyme B12. EutT is the least understood ACAT. We report the purification of EutT to homogeneity and show that, in vitro, free dihydroflavins drive the adenosylation of cob(II)alamin bound to EutT. Results of chromatography analyses indicate that EutT is dimeric in solution, and unlike other ACATs, EutT catalyzes the reaction with sigmoidal kinetics indicative of positive cooperativity for cob(II)alamin. Maximal EutT activity was obtained after metalation with ferrous ions. EutT/Fe(II) protein lost all activity upon exposure to air and H2O2, consistent with previously reported results indicating that EutT was an oxygen-labile metalloprotein containing a redox-active metal. Results of in vivo and in vitro analyses of single-amino-acid variants affecting a HX11CCXXC83 motif conserved in EutT proteins showed that residues His67, Cys80, and Cys83 were required for EutT function in vivo, while Cys79 was not. Unlike that of other variants, the activity of the EutTC80A variant was undetectable in vitro, suggesting that Cys80 was critical to EutT function. Results of circular dichroism studies indicate that the presence or absence of a metal ion does not affect protein folding. EutT can now be purified in the presence of oxygen and reactivated with ferrous ions for maximal activity.  相似文献   

4.
5.
Lipocalin 2 (Lcn2) is a bacteriostatic factor produced during the innate immune response to bacterial infection. Whether Lcn2 has a function in viral infection is unknown. We investigated the regulation and function of Lcn2 in the central nervous system (CNS) of mice during West Nile virus (WNV) encephalitis. Lcn2 mRNA and protein were induced in the brain by day 5, and this induction increased further by day 7 postinfection but was delayed compared with the induction of the toll-like receptor 3 (TLR3) gene, retinoic acid-inducible gene 1 (RIG-I), and melanoma differentiation-associated protein 5 (MDA5) gene. The Lcn2 mRNA and protein were both found at high levels in the choroid plexus, vascular endothelium, macrophage/microglia, and astrocytes. However, some neuronal subsets contained Lcn2 protein but no detectable mRNA. In Lcn2 knockout (KO) mice, with the exception of CXC motif chemokine 5 (CXCL5), which was significantly more downregulated than in wild-type (WT) mice, expression levels of a number of other host response genes were similar in the two genotypes. The brain from Lcn2 and WT mice with WNV encephalitis contained similar numbers of infiltrating macrophages, granulocytes, and T cells. Lcn2 KO and WT mice had no significant difference in tissue viral loads or survival after infection with different doses of WNV. We conclude that Lcn2 gene expression is induced to high levels in a time-dependent fashion in a variety of cells and regions of the CNS of mice with WNV encephalitis. The function of Lcn2 in the host response to WNV infection remains largely unknown, but our data indicate that it is dispensable as an antiviral or immunoregulatory factor in WNV encephalitis.  相似文献   

6.
7.
8.
Hydrophobins are a large group of low-molecular weight proteins. These proteins are highly surface-active and can form amphipathic membranes by self-assembling at hydrophobic–hydrophilic interfaces. Based on physical properties and hydropathy profiles, hydrophobins are divided into two classes. Upon the analysis of amino acid sequences and higher structures, some models suggest that the Cys3–Cys4 loop regions in class I and II hydrophobins can exhibit remarkable difference in their alignment and conformation, and have a critical role in the rodlets structure formation. To examine the requirement for the Cys3–Cys4 loop in class I hydrophobins, we used protein fusion technology to obtain a mutant protein HGFI-AR by replacing the amino acids between Cys3 and Cys4 of the class I hydrophobin HGFI from Grifola frondosa with those ones between Cys3 and Cys4 of the class II hydrophobin HFBI from Trichoderma reesei. The gene of the mutant protein HGFI-AR was successfully expressed in Pichia pastoris. Water contact angle (WCA) and X-ray photoelectron spectroscopy (XPS) measurements demonstrated that the purified HGFI-AR could form amphipathic membranes by self-assembling at mica and hydrophobic polystyrene surfaces. This property enabled them to alter the surface wettabilities of polystyrene and mica and change the elemental composition of siliconized glass. In comparison to recombinant class I hydrophobin HGFI (rHGFI), the membranes formed on hydrophobic surfaces by HGFI-AR were not robust enough to resist 1 % hot SDS washing. Atomic force microscopy (AFM) measurements indicated that unlike rHGFI, no rodlet structure was observed on the mutant protein HGFI-AR coated mica surface. In addition, when compared to rHGFI, no secondary structural change was detected by Circular Dichroism (CD) spectroscopy after HGFI-AR self-assembled at the water–air interface. HGFI-AR could not either be deemed responsible for the fluorescence intensity increase of Thioflavin T (THT) and the Congo Red (CR) absorption spectra shift (after the THT(CR)/HGFI-AR mixed aqueous solution was drastically vortexed). Remarkably, replacement of the Cys3–Cys4 loop could impair the rodlet formation of the class I hydrophobin HGFI. So, it could be speculated that the Cys3–Cys4 loop plays an important role in conformation and functionality, when the class I hydrophobin HGFI self-assembles at hydrophobic–hydrophilic interfaces.  相似文献   

9.
Lactococcin 972 (Lcn972) is a nonlantibiotic bacteriocin that inhibits septum biosynthesis in Lactococcus lactis rather than forming pores in the cytoplasmic membrane. In this study, a deeper analysis of the molecular basis of the mode of action of Lcn972 was performed. Of several lipid cell wall precursors, only lipid II antagonized Lcn972 inhibitory activity in vivo. Likewise, Lcn972 only coprecipitated with lipid II micelles. This bacteriocin inhibited the in vitro polymerization of lipid II by the recombinant S. aureus PBP2 and the addition to lipid II of the first glycine catalyzed by FemX. These experiments demonstrate that Lcn972 specifically interacts with lipid II, the substrate of both enzymes. In the presence of Lcn972, nisin pore formation was partially hindered in whole cells. However, binding of Lcn972 to lipid II could not compete with nisin in lipid II-doped 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes, possibly indicating a distinct binding site. The existence of a putative cotarget for Lcn972 activity is discussed in the context of its narrow inhibitory spectrum and the localized action at the division septum. To our knowledge, this is the first unmodified bacteriocin that binds to the cell wall precursor lipid II.  相似文献   

10.
When the 100,000 X g supernatant fractions of several rat organs are incubated with all-trans-[3H]retinoic acid, a binding component for retinoic acid with a sedimentation coefficient of 2 S can be detected by sucrose gradient centrifugation. This tissue binding protein for retinoic acid is distinct from the tissue binding protein for retinol which has been previously described. The tissue retinoic acid-binding protein has been partially purified from rat testis and this partially purified protein would appear to have a molecular weight of 14,500 as determined by gel filtration and high binding specificity for all-trans-retinoic acid. Binding of [3H]retinoic acid is not diminished by a 200-fold molar excess of retinal, retinol, or oleic acid but is reduced by a 200-fold excess of unlabeled retinoic acid. Tissue retinoic acid-binding protein can be detected in extracts of brain, eye, ovary, testis, and uterus but is apparently absent in heart muscle, small intestine, kidney, liver, lung, gastrocnemious muscle, serum, and spleen. This distribution is different than that observed for the tissue retinol-binding protein. Tissue retinol-binding protein was also purified extensively from rat testis. The partially purified protein has an apparent molecular weight of 14,000 and high binding specificity for all-trans-[3H]retinol as only unlabeled all-trans-retinol but not retinal, retinoic acid, retinyl acetate, retinyl palmitate, or oleic acid could diminish binding of the 3H ligand under the conditions employed. The partially purified protein has a fluorescence excitation spectrum with lambda max at 350 nm. In contrast, the retinol-binding protein isolated from rat serum and described by others has a fluorescence excitation spectrum with lambda max at 334 nm and an apparent molecular weight of 19,000. When partially purified tissue retinol-binding protein is extracted with heptane, the heptane extract has a fluorescence excitation spectrum similar to that of all-trans-retinol.  相似文献   

11.
12.
Cellular retinoic acid-binding protein has been purified to homogeneity from rat testes. The procedures utilized in the purification included acid precipitation, gel filtration, and chromatography on DEAE-cellulose. The binding protein was purified approximately 12,000-fold, based on total soluble testicular protein. The protein is a single polypeptide chain with a molecular weight of 14,600, determined by information from gel filtration and sodium dodecyl sulfate-polyacrylamide electrophoresis. The protein binds retinoic acid with high affinity; the apparent dissociation constant was determined by fluorometric titration to be 4.2 X 10(-9) M.  相似文献   

13.
Obesity is associated with increased breast cancer (BrCA) incidence. Considering that inactivation of estrogen receptor (ER)α promotes obesity and metabolic dysfunction in women and female mice, understanding the mechanisms and tissue-specific sites of ERα action to combat metabolic-related disease, including BrCA, is of clinical importance. To study the role of ERα in adipose tissue we generated fat-specific ERα knock-out (FERKO) mice. Herein we show that ERα deletion increased adipocyte size, fat pad weight, and tissue expression and circulating levels of the secreted glycoprotein, lipocalin 2 (Lcn2), an adipokine previously associated with BrCA development. Chromatin immunoprecipitation and luciferase reporter studies showed that ERα binds the Lcn2 promoter to repress its expression. Because adipocytes constitute an important cell type of the breast microenvironment, we examined the impact of adipocyte ERα deletion on cancer cell behavior. Conditioned medium from ERα-null adipocytes and medium containing pure Lcn2 increased proliferation and migration of a subset of BrCA cells in culture. The proliferative and promigratory effects of ERα-deficient adipocyte-conditioned medium on BrCA cells was reversed by Lcn2 deletion. BrCA cell responsiveness to exogenous Lcn2 was heightened in cell types where endogenous Lcn2 expression was minimal, but components of the Lcn2 signaling pathway were enriched, i.e. SLC22A17 and 3-hydroxybutyrate dehydrogenase (BDH2). In breast tumor biopsies from women diagnosed with BrCA we found that BDH2 expression was positively associated with adiposity and circulating Lcn2 levels. Collectively these data suggest that reduction of ERα expression in adipose tissue promotes adiposity and is linked with the progression and severity of BrCA via increased adipocyte-specific Lcn2 production and enhanced tumor cell Lcn2 sensitivity.  相似文献   

14.
A trypsin was purified from the hepatopancreas of snakehead (Channa argus) by ammonium sulfate fractionation and a series of column chromatographies including DEAE-Sepharose, Sephacryl S-200 HR and Hi-Trap Capto-Q. The molecular mass of the purified trypsin was about 22 kDa, as estimated by SDS-PAGE. The optimum pH and temperature of the purified trypsin were 9.0 and 40 °C, respectively. The trypsin was stable in the pH range of 7.5-9.5 and below 45 °C. The enzymatic activity was strongly inhibited by serine proteinase inhibitors, such as MBTI, Pefabloc SC, PMSF, LBTI and benzamidine. Peptide mass fingerprinting (PMF) of the purified protein obtained 2 peptide fragments with 25 amino acid residues and were 100% identical to the trypsinogen from pufferfish (Takifugu rubripes). The activation energy (Ea) of this enzyme was 24.65 kJ·M− 1. Apparent Km was 1.02 μM and kcat was 148 S− 1 for fluorogenic substrate Boc-Phe-Ser-Arg-MCA. A trypsinogen gene encoding 247 amino acid residues was further cloned on the basis of the sequence obtained from PMF and the conserved site peptide of trypsinogen together with 5′-RACE and 3′-RACE. The deduced amino acid sequence contains a signal peptide of 15 residues and an activation peptide of 9 amino acid residues with a mature protein of 223 residues. The catalytic triad His-64, Asp-107, Ser-201 and 12 Cys residues which may form 6 disulfide bonds were conserved. Compared with the PMF data, only 2 amino acid residues difference were identified, suggesting the cloned trypsinogen is quite possibly the precursor of the purified trypsin.  相似文献   

15.
Binding proteins for retinoic acid and retinol were separated from a supernatant prepared from bovine retina. Fraction IV from DEAE-cellulose chromatography bound exogenous [3H] retinoic acid which could not be effectively displayed by retinol, retinal, retinyl acetate or palmitate, but which was readily displaced with excess retinoic acid. [3H] Retinol was bound by fraction V from DEAE-cellulose chromatography and was not displaced by retinal, retinoic acid, retinyl acetate or retinyl palmitate, but was readily displaced by excess retinol. Unlike bovine serum retinol-binding protein, neither intracellular binding protein formed a complex with purified human serum prealbumin. The supernatant from bovine retinas was estimated to contain five times more retinoic acid binding than retinol binder.  相似文献   

16.
In this study, we report that lipocalin 2 (Lcn2), a recently characterized adipokine/cytokine, is a novel regulator of brown adipose tissue (BAT) activation by modulating the adrenergic independent p38 MAPK-PGC-1α-UCP1 pathway. Global Lcn2 knock-out (Lcn2−/−) mice have defective BAT thermogenic activation caused by cold stimulation and decreased BAT activity under high fat diet-induced obesity. Nevertheless, Lcn2−/− mice maintain normal sympathetic nervous system activation as evidenced by normal catecholamine release and lipolytic activity in response to cold stimulation. Further studies showed that Lcn2 deficiency impairs peroxisomal and mitochondrial oxidation of lipids and attenuates cold-induced Pgc1a and Ucp1 expression and p38 MAPK phosphorylation in BAT. Moreover, in vitro studies showed that Lcn2 deficiency reduces the thermogenic activity of brown adipocytes. Lcn2−/− differentiated brown adipocytes have significantly decreased expression levels of brown fat markers, decreased p38 MAPK phosphorylation, and decreased mitochondrial oxidation capacity. However, Lcn2−/− brown adipocytes have normal norepinephrine-stimulated p38 MAPK and hormone-sensitive lipase phosphorylation and Pgc1a and Ucp1 expression, suggesting an intact β-adrenergic signaling activation. More intriguingly, recombinant Lcn2 was able to significantly stimulate p38 MAPK phosphorylation in brown adipocytes. Activating peroxisome proliferator-activated receptor γ, a downstream effector of PGC-1α, by thiazolidinedione administration fully reverses the BAT function of Lcn2−/− mice. Our findings provide evidence for the novel role Lcn2 plays in oxidative metabolism and BAT activation via an adrenergic independent mechanism.  相似文献   

17.
Iron is an essential transition metal ion for virtually all aerobic organisms, yet its dysregulation (iron overload or anemia) is a harbinger of many pathologic conditions. Hence, iron homeostasis is tightly regulated to prevent the generation of catalytic iron (CI) which can damage cellular biomolecules. In this study, we investigated the role of iron-binding/trafficking innate immune protein, lipocalin 2 (Lcn2, aka siderocalin) on iron and CI homeostasis using Lcn2 knockout (KO) mice and their WT littermates. Administration of iron either systemically or via dietary intake strikingly upregulated Lcn2 in the serum, urine, feces, and liver of WT mice. However, similarly-treated Lcn2KO mice displayed elevated CI, augmented lipid peroxidation and other indices of organ damage markers, implicating that Lcn2 responses may be protective against iron-induced toxicity. Herein, we also show a negative association between serum Lcn2 and CI in the murine model of dextran sodium sulfate (DSS)-induced colitis. The inability of DSS-treated Lcn2KO mice to elicit hypoferremic response to acute colitis, implicates the involvement of Lcn2 in iron homeostasis during inflammation. Using bone marrow chimeras, we further show that Lcn2 derived from both immune and non-immune cells participates in CI regulation. Remarkably, exogenous rec-Lcn2 supplementation suppressed CI levels in Lcn2KO serum and urine. Collectively, our results suggest that Lcn2 may facilitate hypoferremia, suppress CI generation and prevent iron-mediated adverse effects.  相似文献   

18.
A new heparin binding protein regulated by retinoic acid from chick embryo   总被引:3,自引:0,他引:3  
A 19 KDa heparin binding protein was previously purified from chicken embryos. Essentially localized within basement membranes in early embryonic tissues, this protein is very rich in basic and cystein residues. Its N-terminal fragment is similar to corresponding fragment of two other proteins expressed during embryogenesis and postnatal period. Its synthesis and secretion are induced by retinoic acid in chicken myoblasts and fibroblasts. This new retinoic acid induced heparin binding protein (RI-HB) does stimulate neurite outgrowth and proliferation on PC12 cells. These results suggest that retinoic acid could regulate some aspect of differentiation and development by inducing the synthesis of a new family of growth and neurotrophic factors.  相似文献   

19.
Mouse ADH4 (purified, recombinant) has a low catalytic efficiency for ethanol and acetaldehyde, but very high activity with longer chain alcohols and aldehydes, at pH 7.3 and temperature 37°C. The observed turnover numbers and catalytic efficiencies for the oxidation of all-trans-retinol and the reduction of all-trans-retinal and 9-cis-retinal are low relative to other substrates; 9-cis-retinal is more reactive than all-trans-retinal. The reduction of all-trans- or 9-cis-retinals coupled to the oxidation of ethanol by NAD+ is as efficient as the reduction with NADH. However, the Michaelis constant for ethanol is about 100 mM, which indicates that the activity would be lower at physiologically relevant concentrations of ethanol. Simulations of the oxidation of retinol to retinoic acid with mouse ADH4 and human aldehyde dehydrogenase (ALDH1), using rate constants estimated for all steps in the mechanism, suggest that ethanol (50 mM) would modestly decrease production of retinoic acid. However, if the Km for ethanol were smaller, as for human ADH4, the rate of retinol oxidation and formation of retinoic acid would be significantly decreased during metabolism of 50 mM ethanol. These studies begin to describe quantitatively the roles of enzymes involved in the metabolism of alcohols and carbonyl compounds.  相似文献   

20.
Exposure of F9 cells to all-trans-retinoic acid over a period of 6 days resulted in 4-fold induction of cell surface N-acetylglucosaminide β(1→4)galactosyltransferase (GT) activity. The retinoic acid-induced GT activity was further enhanced by treatment of the cells with 8-bromo cyclic AMP. The ability of retinoic acid alone, or retinoic acid in combination with 8-bromo cyclic AMP, to induce GT activity was inhibited by both actinomycin D and cycloheximide. These findings indicate that the induction of galactosyltransferase activity noted with differentiation of F9 cells involves de novo synthesis of new enzyme protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号