首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The encounter of replication forks with DNA lesions may lead to fork arrest and/or the formation of single-stranded gaps. A major strategy to cope with these replication irregularities is translesion DNA replication (TLS), in which specialized error-prone DNA polymerases bypass the blocking lesions. Recent studies suggest that TLS across a particular DNA lesion may involve as many as four different TLS polymerases, acting in two-polymerase reactions in which insertion by a particular polymerase is followed by extension by another polymerase. Insertion determines the accuracy and mutagenic specificity of the TLS reaction, and is carried out by one of several polymerases such as polη, polκ or polι. In contrast, extension is carried out primarily by polζ. In cells from XPV patients, which are deficient in TLS across cyclobutane pyrimidine dimers (CPD) due to a deficiency in polη, TLS is carried out by at least two backup reactions each involving two polymerases: One reaction involves polκ and polζ, and the other polι and polζ. These mechanisms may also assist polη in normal cells under an excessive amount of UV lesions.  相似文献   

2.
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent human carcinogen. Metabolic activation of NNK generates a number of DNA adducts including O2-methylthymidine (O2-Me-dT) and O2-[4-(3-pyridyl)-4-oxobut-1-yl]thymidine (O2-POB-dT). To investigate the biological effects of these O2-alkylthymidines in humans, we have replicated plasmids containing a site-specifically incorporated O2-Me-dT or O2-POB-dT in human embryonic kidney 293T (HEK293T) cells. The bulkier O2-POB-dT exhibited high genotoxicity and only 26% translesion synthesis (TLS) occurred, while O2-Me-dT was less genotoxic and allowed 55% TLS. However, O2-Me-dT was 20% more mutagenic (mutation frequency (MF) 64%) compared to O2-POB-dT (MF 53%) in HEK293T cells. The major type of mutations in each case was targeted T  A transversions (56% and 47%, respectively, for O2-Me-dT and O2-POB-dT). Both lesions induced a much lower frequency of T  G, the dominant mutation in bacteria. siRNA knockdown of the TLS polymerases (pols) indicated that pol η, pol ζ, and Rev1 are involved in the lesion bypass of O2-Me-dT and O2-POB-dT as the TLS efficiency decreased with knockdown of each pol. In contrast, MF of O2-Me-dT was decreased in pol ζ and Rev1 knockdown cells by 24% and 25%, respectively, while for O2-POB-dT, it was decreased by 44% in pol ζ knockdown cells, indicating that these TLS pols are critical for mutagenesis. Additional decrease in both TLS efficiency and MF was observed in cells deficient in pol ζ plus other Y-family pols. This study provided important mechanistic details on how these lesions are bypassed in human cells in both error-free and error-prone manner.  相似文献   

3.
The human POLH gene is responsible for the variant form of xeroderma pigmentosum (XP-V), a genetic disease highly susceptible to cancer on sun-exposed skin areas, and encodes DNA polymerase η (polη), which is specialized for translesion DNA synthesis (TLS) of UV-induced DNA photolesions. We constructed polη-deficient mice transgenic with lacZ mutational reporter genes to study the effect of Polh null mutation (Polh−/−) on mutagenesis in the skin after UVB irradiation. UVB induced lacZ mutations with remarkably higher frequency in the Polh−/− epidermis and dermis than in the wild-type (Polh+/+) and heterozygote. DNA sequences of a hundred lacZ mutants isolated from the epidermis of four UVB-exposed Polh−/− mice were determined and compared with mutant sequences from irradiated Polh+/+ mice. The spectra of the mutations in the two genotypes were both highly UV-specific and dominated by C  T transitions at dipyrimidines, namely UV-signature mutations. However, sequence preferences of the occurrence of UV-signature mutations were quite different between the two genotypes: the mutations occurred at a higher frequency preferentially at the 5′-TCG-3′ sequence context than at the other dipyrimidine contexts in the Polh+/+ epidermis, whereas the mutations were induced remarkably and exclusively at the 3′-cytosine of almost all dipyrimidine contexts with no preference for 5′-TCG-3′ in the Polh−/− epidermis. In addition, in Polh−/− mice, a small but remarkable fraction of G  T transversions was also observed exclusively at the 3′-cytosine of dipyrimidine sites, strongly suggesting that these transversions resulted not from oxidative damage but from UV photolesions. These results would reflect the characteristics of the error-prone TLS functioning in the bypass of UV photolesions in the absence of polη, which would be mediated by mechanisms based on the two-step model of TLS. On the other hand, the deamination model would explain well the mutation spectrum in the Polh+/+ genotype.  相似文献   

4.
Xeroderma pigmentosum variant (XPV) cells lack the damage-specific polymerase eta and undergo a protracted arrest at the S phase checkpoint(s) following UV damage. The S phase checkpoints encompass several qualitatively different processes, and stimulate downstream events that are dependent on the functional state of p53. Primary fibroblasts with wild-type p53 arrest in S, and require a functional polymerase eta (pol eta) to carry out bypass replication, but do not recruit recombination factors for recovery. XPV cells with non-functional p53, as a result of transformation by SV40 or HPV16 (E6/E7), recruit the hMre11/hRad50/Nbs1 complex to arrested replication forks, coincident with PCNA, whereas normal transformed cells preferentially use the pol eta bypass replication pathway. The formation of hMre11 foci implies that arrested replication forks rapidly undergo a collapse involving double strand breakage and rejoining. Apoptosis occurs after UV only in cells transformed by SV40, and not in normal or XPV fibroblasts or HPV16 (E6/E7) transformed cells. Conversely, ultimate cell survival in XPV cells was much less in HPV16 (E6/E7) transformed cells than in SV40 transformed cells, indicating that apoptosis was not a reliable predictor of cell survival. Inhibition of p53 transactivation by pifithrin-alpha or inhibition of protein synthesis by cycloheximide did not induce hMre11 foci or apoptosis in UV damaged fibroblasts. Inhibition of kinase activity with wortmannin did not increase killing by UV, unlike the large increase seen with caffeine. Since HPV16 (E6/E7) transformed XPV cells were highly UV sensitive and not further sensitized by caffeine, it appears likely that caffeine sensitization proceeds through a p53 pathway. The S phase checkpoints are therefore, a complex set of different checkpoints that are coordinated by p53 with the capacity to differentially modulate cell survival, apoptosis, bypass replication and hMre11 recombination.  相似文献   

5.
Xeroderma pigmentosum (XP) is an autosomal recessive photosensitive disorder with an extremely high incidence of skin cancers. Seven complementation groups, corresponding to seven proteins involved in nucleotide excision repair (NER), are associated with this syndrome. However, in XP variant patients, the disorder is caused by defects in DNA polymerase eta; this error prone polymerase, encoded by POLH, is involved in translesion DNA synthesis (TLS) on DNA templates damaged by ultraviolet light (UV). We constructed a recombinant adenovirus carrying the human POLH cDNA linked to the EGFP reporter gene (AdXPV-EGFP) and infected skin fibroblasts from both XPV and XPA patients. Twenty-four hours after infection, the DNA polymerase eta-EGFP fusion protein was detected by Western blot analysis, demonstrating successful transduction by the adenoviral vector. Protein expression was accompanied by reduction in the high sensitivity of XPV cells to UV, as determined by cell survival and apoptosis-induction assays. Moreover, the pronounced UV-induced inhibition of DNA synthesis in XPV cells and their arrest in S phase were attenuated in AdXPV-EGFP infected cells, confirming that the transduced polymerase was functional. However, over-expression of polymerase eta mediated by AdXPV-EGFP infection did not result in enhancement of cell survival, prevention of apoptosis, or higher rate of nascent DNA strand growth in irradiated XPA cells. These results suggest that TLS by DNA polymerase eta is not a limiting factor for recovery from cellular responses induced by UV in excision-repair deficient fibroblasts.  相似文献   

6.
We recently demonstrated that Polζ and Rev1 contribute to alleviate the lethal effects of Me-lex, which selectively generates 3-methyladenine, by error prone lesion bypass. In order to determine the role of Polη in the biological fate of Me-lex induced lesions, the RAD30 (Polη) gene was deleted in the yIG397 parental strain and in its rev3 (Polζ) derivative, and the strains transformed with plasmid DNA damaged in vitro by Me-lex. While deletion of RAD30 increased the toxicity of Me-lex, the impact on mutagenicity varied depending on the concentration of Me-lex induced DNA damage and the overall TLS capacity of the cells. For the first time the Me-lex induced mutation spectrum in rad30 strain was determined and compared with the spectrum previously determined in WT strain. Overall, the two mutation spectra were not significantly different. The effect on mutation frequency and the features of the Me-lex induced mutation spectra were suggestive of error prone (significant decrease of mutation frequency and significant decrease of AT > TA at a mutation hotspot in rad30 vs RAD30) but also error free (significant increase of AT > GC in rad30 vs RAD30) Polη dependent bypass of lesions. In summary, our previous results with Polζ and Rev1 mutants, the present results with Polη, and the known physical and functional interactions among TLS proteins, lead us to propose that the bypass of Me-lex induced lesions is a multi-DNA polymerases process that is mostly effective when all three yeast TLS polymerases are present.  相似文献   

7.
Ultraviolet (UV)-induced DNA damage are removed by nucleotide excision repair (NER) or can be tolerated by specialized translesion synthesis (TLS) polymerases, such as Polη. TLS may act at stalled replication forks or through an S-phase independent gap-filling mechanism. After UVC irradiation, Polη-deficient (XP-V) human cells were arrested in early S-phase and exhibited both single-strand DNA (ssDNA) and prolonged replication fork stalling, as detected by DNA fiber assay. In contrast, NER deficiency in XP-C cells caused no apparent defect in S-phase progression despite the accumulation of ssDNA and a G2-phase arrest. These data indicate that while Polη is essential for DNA synthesis at ongoing damaged replication forks, NER deficiency might unmask the involvement of tolerance pathway through a gap-filling mechanism. ATR knock down by siRNA or caffeine addition provoked increased cell death in both XP-V and XP-C cells exposed to low-dose of UVC, underscoring the involvement of ATR/Chk1 pathway in both DNA damage tolerance mechanisms. We generated a unique human cell line deficient in XPC and Polη proteins, which exhibited both S- and G2-phase arrest after UVC irradiation, consistent with both single deficiencies. In these XP-C/PolηKD cells, UVC-induced replicative intermediates may collapse into double-strand breaks, leading to cell death. In conclusion, both TLS at stalled replication forks and gap-filling are active mechanisms for the tolerance of UVC-induced DNA damage in human cells and the preference for one or another pathway depends on the cellular genotype.  相似文献   

8.
DNA lesions in S phase threaten genome stability. The DNA damage tolerance (DDT) pathways overcome these obstacles and allow completion of DNA synthesis by the use of specialised translesion (TLS) DNA polymerases or through recombination-related processes. However, how these mechanisms coordinate with each other and with bulk replication remains elusive. To address these issues, we monitored the variation of replication intermediate architecture in response to ultraviolet irradiation using transmission electron microscopy. We show that the TLS polymerase η, able to accurately bypass the major UV lesion and mutated in the skin cancer-prone xeroderma pigmentosum variant (XPV) syndrome, acts at the replication fork to resolve uncoupling and prevent post-replicative gap accumulation. Repriming occurs as a compensatory mechanism when this on-the-fly mechanism cannot operate, and is therefore predominant in XPV cells. Interestingly, our data support a recombination-independent function of RAD51 at the replication fork to sustain repriming. Finally, we provide evidence for the post-replicative commitment of recombination in gap repair and for pioneering observations of in vivo recombination intermediates. Altogether, we propose a chronology of UV damage tolerance in human cells that highlights the key role of polη in shaping this response and ensuring the continuity of DNA synthesis.  相似文献   

9.
Iron-dependent oxidative DNA damage in vivo by hydrogen peroxide (H2O2, HP) induces copious single-strand(ss)-breaks and base modifications. HP also causes infrequent double-strand DNA breaks, whose relationship to the cell killing is unclear. Since hydrogen peroxide only fragments chromosomes in growing cells, these double-strand breaks were thought to represent replication forks collapsed at direct or excision ss-breaks and to be fully reparable. We have recently reported that hydrogen peroxide kills Escherichia coli by inducing catastrophic chromosome fragmentation, while cyanide (CN) potentiates both the killing and fragmentation. Remarkably, the extreme density of CN + HP-induced chromosomal double-strand breaks makes involvement of replication forks unlikely. Here we show that this massive fragmentation is further amplified by inactivation of ss-break repair or base-excision repair, suggesting that unrepaired primary DNA lesions are directly converted into double-strand breaks. Indeed, blocking DNA replication lowers CN + HP-induced fragmentation only ∼2-fold, without affecting the survival. Once cyanide is removed, recombinational repair in E. coli can mend several double-strand breaks, but cannot mend ∼100 breaks spread over the entire chromosome. Therefore, double-strand breaks induced by oxidative damage happen at the sites of unrepaired primary one-strand DNA lesions, are independent of replication and are highly lethal, supporting the model of clustered ss-breaks at the sites of stable DNA-iron complexes.  相似文献   

10.
The mutagenicity of an oxidized form of dGTP, 8-hydroxy-2′-deoxyguanosine 5′-triphosphate (8-OH-dGTP), was examined using human 293T cells. Shuttle plasmid DNA containing the supF gene was first transfected into the cells, and then 8-OH-dGTP was introduced by means of osmotic pressure. The DNAs replicated in the cells were recovered and then transfected into Escherichia coli. 8-OH-dGTP induced A:T  C:G substitution mutations in the cells. The knock-downs of DNA polymerases η and ζ, and REV1 by siRNAs reduced the A:T  C:G substitution mutations, suggesting that these DNA polymerases are involved in the misincorporation of 8-OH-dGTP opposite A in human cells. In contrast, the knock-down of DNA polymerase ι did not affect the 8-OH-dGTP-induced mutations. The decrease in the induced mutation frequency was more evident by double knock-downs of DNA pols η plus ζ and REV1 plus DNA pol ζ (but not by that of DNA pol η plus REV1), suggesting that REV1-DNA pol η and DNA pol ζ work in different steps. These results indicate that specialized DNA polymerases are involved in the mutagenesis induced by the oxidized dGTP.  相似文献   

11.
PurposeTranslesion DNA synthesis (TLS) plays an important role in promoting replication through DNA lesions. Genetic polymorphisms in TLS genes may have potential roles in lung cancer development in humans.MethodsWe evaluated the association between genetic variants in six TLS genes and the risk and survival of lung cancer in a case–control study in China. Included in the study are 224 lung cancer patients and 448 healthy controls.ResultsCarriers of the G allele of POLκ rs5744724 had significantly reduced risk of lung cancer (odds ratio (OR) = 0.62, 95% confidence interval (CI): 0.44–0.89), comparing with those carrying the C allele, and the AA genotype of PCNA rs25406 was also associated with significantly decreased cancer risk compared with the major homozygote alleles (OR = 0.47, 95% CI: 0.25–0.86). Haplotype analysis showed that subjects with the POLκ C-G (rs5744533–rs5744724) haplotype had decreased risk of lung cancer (OR = 0.69, 95% CI: 0.49–0.98), comparing with those carrying the C-C haplotype. Besides, the heterozygote of REV1 rs3087386 and rs3792136 were independent prognostic factors for lung cancer survival with hazard radio (HR) 1.54 (95% CI: 1.12–2.12) and 1.44 (95% CI: 1.06–1.97) respectively.ConclusionsOur findings suggested that genetic variants in POLκ and PCNA genes may play roles in the susceptibility of lung cancer, and REV1 gene may have roles in lung cancer survival in Chinese men.  相似文献   

12.
PIDD has been implicated in survival and apoptotic pathways in response to DNA damage, and a role for PIDD was recently identified in non-homologous end-joining (NHEJ) repair induced by γ-irradiation. Here, we present an interaction of PIDD with PCNA, first identified in a proteomics screen. PCNA has essential functions in DNA replication and repair following UV irradiation. Translesion synthesis (TLS) is a process that prevents UV irradiation-induced replication blockage and is characterized by PCNA monoubiquitination and interaction with the TLS polymerase eta (polη). Both of these processes are inhibited by p21. We report that PIDD modulates p21-PCNA dissociation, and promotes PCNA monoubiquitination and interaction with polη in response to UV irradiation. Furthermore, PIDD deficiency leads to a defect in TLS that is associated, both in vitro and in vivo, with cellular sensitization to UV-induced apoptosis. Thus, PIDD performs key functions upon UV irradiation, including TLS, NHEJ, NF-κB activation and cell death.  相似文献   

13.
It has long been appreciated that Cdc7 is an essential protein kinase that phosphorylates Mcm2-7 helicase subunits to promote initiation of DNA replication. In addition to its well-elucidated role in DNA replication, recent studies suggest that DDK is active in genotoxin-treated cells and may mediate aspects of the DNA damage response. However, specific role(s) of DDK and its effector targets in DNA damage signaling have not been defined. A recent study from our laboratories has identified the E3 ubiquitin ligase Rad18 as novel substrate of DDK in vitro and in human cells. Rad18 plays a central role in a post-replication DNA repair pathway termed ‘Trans-Lesion Synthesis’ (TLS) by promoting recruitment of DNA Polymerase eta (Polη) and other TLS polymerases to stalled replication forks. DDK-mediated Rad18 phosphorylation promotes Rad18-Polη complex formation and facilitates Rad18-dependent recruitment of Polη to stalled replication forks. The mechanisms that regulate Rad18-dependent TLS are incompletely understood. Our study provides the first demonstration of Rad18 regulation by direct phosphorylation and defines a novel mechanism for Rad18-dependent recruitment of TLS polymerases to stalled forks. This study also demonstrates a molecular basis for integration of TLS with S-phase progression via the essential Cdc7 kinase. These findings reveal unexpected mechanistic insights to the regulation of the TLS pathway and Polη recruitment.  相似文献   

14.
N,N-dimethyldodecylamine-N-oxide (C12NO) is a surfactant that may exist either in a neutral or cationic protonated form depending on the pH of aqueous solutions. Using small angle X-ray diffraction (SAXD) we observe the rich structural polymorphism of pH responsive complexes prepared due to DNA interaction with C12NO/dioleoylphosphatidylethanolamine (DOPE) vesicles and discuss it in view of utilizing the surfactant for the gene delivery vector of a pH sensitive system. In neutral solutions, the DNA uptake is low, and a lamellar Lα phase formed by C12NO/DOPE is prevailing in the complexes at 0.2  C12NO/DOPE < 0.6 mol/mol. A maximum of ~ 30% of the total DNA volume in the sample is bound in a condensed lamellar phase LαC at C12NO/DOPE = 1 mol/mol and pH 7.2. In acidic conditions, a condensed inverted hexagonal phase HIIC was observed at C12NO/DOPE = 0.2 mol/mol. Commensurate lattice parameters, aHC  dLC, were detected at 0.3  C12NO/DOPE  0.4 mol/mol and pH = 4.9–6.4 suggesting that LαC and HIIC phases were epitaxially related. While at the same composition but pH ~ 7, the mixture forms a cubic phase (Pn3m) when the complexes were heated to 80 °C and cooled down to 20 °C. Finally, a large portion of the surfactant (C12NO/DOPE > 0.5) stabilizes the LαC phase in C12NO/DOPE/DNA complexes and the distance between DNA strands (dDNA) is modulated by the pH value. Both the composition and pH affect the DNA binding in the complexes reaching up to ~ 95% of the DNA total amount at acidic conditions.  相似文献   

15.
Immediate fragmentation of parental DNA by near-ultraviolet irradiation at 313 nm was measured in cultured skin fibroblasts from normal individuals, patients with Xeroderma pigmentosum of complementation group A (XPA) and Xeroderma pigmentosum variants (XPV) by the alkaline elution procedure. For a dose of 2.25 KJm?2 given at Oo fragmentation was comparable in all cell strains. However, fragmentation was strongly increased relative to Oo in XPV but not in normal fibroblasts and the XPA strains when irradiation was carried out at 37o. From our results it appears that a step in the repair of parental DNA is abnormal in XPV.  相似文献   

16.
Accurate monitoring and quantification of the structure and function of semiarid ecosystems is necessary to improve carbon and water flux models that help describe how these systems will respond in the future. The leaf area index (LAI, m2 m−2) is an important indicator of energy, water, and carbon exchange between vegetation and the atmosphere. Remote sensing techniques are frequently used to estimate LAI, and can provide users with scalable measurements of vegetation structure and function. We tested terrestrial laser scanning (TLS) techniques to estimate LAI using structural variables such as height, canopy cover, and volume for 42 Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis Beetle & Young) shrubs across three study sites in the Snake River Plain, Idaho, USA. The TLS-derived variables were regressed against sagebrush LAI estimates calculated using specific leaf area measurements, and compared with point-intercept sampling, a field method of estimating LAI. Canopy cover estimated with the TLS data proved to be a good predictor of LAI (r2 = 0.73). Similarly, a convex hull approach to estimate volume of the shrubs from the TLS data also strongly predicted LAI (r2 = 0.76), and compared favorably to point-intercept sampling (r2 = 0.78), a field-based method used in rangelands. These results, coupled with the relative ease-of-use of TLS, suggest that TLS is a promising tool for measuring LAI at the shrub-level. Further work should examine the structural measures in other similar shrublands that are relevant for upscaling LAI to the plot-level (i.e., hectare) using data from TLS and/or airborne laser scanning and to regional levels using satellite-based remote sensing.  相似文献   

17.
Trans-lesion DNA synthesis (TLS) is a DNA damage-tolerance mechanism that uses low-fidelity DNA polymerases to replicate damaged DNA. The inherited cancer-propensity syndrome xeroderma pigmentosum variant (XPV) results from error-prone TLS of UV-damaged DNA. TLS is initiated when the Rad6/Rad18 complex monoubiquitinates proliferating cell nuclear antigen (PCNA), but the basis for recruitment of Rad18 to PCNA is not completely understood. Here, we show that Rad18 is targeted to PCNA by DNA polymerase eta (Polη), the XPV gene product that is mutated in XPV patients. The C-terminal domain of Polη binds to both Rad18 and PCNA and promotes PCNA monoubiquitination, a function unique to Polη among Y-family TLS polymerases and dissociable from its catalytic activity. Importantly, XPV cells expressing full-length catalytically-inactive Polη exhibit increased recruitment of other error-prone TLS polymerases (Polκ and Polι) after UV irradiation. These results define a novel non-catalytic role for Polη in promoting PCNA monoubiquitination and provide a new potential mechanism for mutagenesis and genome instability in XPV individuals.  相似文献   

18.
The gene encoding Thermococcus guaymasensis DNA polymerase (Tgu DNA polymerase) was cloned and sequenced. The 2328 bp Tgu DNA polymerase gene encoded a 775 amino acid residue protein. Alignment of the entire amino acid sequence revealed a high degree of sequence homology between Tgu DNA polymerase and other archaeal family B DNA polymerases. The Tgu DNA polymerase gene was expressed under the control of the T7lac promoter on pET-22b(+) in Escherichia coli BL21-CodonPlus(DE3)-RIL. The expressed enzyme was then purified by heat treatment followed by two steps of chromatography. The optimum pH and temperature were 7.5 and 80 °C, respectively. The optimal buffer for PCR with Tgu DNA polymerase consisted of 50 mM Tris–HCl (pH 8.2), 4 mM MgCl2, 50 mM KCl, and 0.02% Triton X-100. Tgu DNA polymerase revealed 4-fold higher fidelity (3.17 × 10?6) than Taq DNA polymerase (12.13 × 10?6) and a faster amplification rate than Taq and Pfu DNA polymerases. Tgu DNA polymerase had an extension rate of 30 bases/s and a processivity of 150 nucleotides (nt). Thus, Tgu DNA polymerase has some faster elongation rate and a higher processivity than Pfu DNA polymerase. Use of different ratios of Taq and Tgu DNA polymerases determined that a ratio of 4:1 efficiently facilitated long PCR (approximately 15 kb) and a 3-fold lower error rate (4.44 × 10?6) than Taq DNA polymerase.  相似文献   

19.
DNA polymerase η (polη) belongs to the Y-family of DNA polymerases and facilitates translesion synthesis past UV damage. We show that, after UV irradiation, polη becomes phosphorylated at Ser601 by the ataxia-telangiectasia mutated and Rad3-related (ATR) kinase. DNA damage-induced phosphorylation of polη depends on its physical interaction with Rad18 but is independent of PCNA monoubiquitination. It requires the ubiquitin-binding domain of polη but not its PCNA-interacting motif. ATR-dependent phosphorylation of polη is necessary to restore normal survival and postreplication repair after ultraviolet irradiation in xeroderma pigmentosum variant fibroblasts, and is involved in the checkpoint response to UV damage. Taken together, our results provide evidence for a link between DNA damage-induced checkpoint activation and translesion synthesis in mammalian cells.  相似文献   

20.
Translesion synthesis (TLS) is the mechanism in which DNA polymerases (TLS polymerases) bypass unrepaired template damage with high error rates. DNA polymerase η and ζ (Polη and Polζ) are major TLS polymerases that are conserved from yeast to humans. In this study, we quantified frequencies of base-substitutions by yeast Polη and Polζ on undamaged and abasic templates in vitro. For accurate quantification, we used a next generation sequencing (NGS)-based method where DNA products were directly analyzed by parallel sequencing. On undamaged templates, Polη and Polζ showed distinct base-substitution profiles, and the substitution frequencies were differently influenced by the template sequence. The base-substitution frequencies were influenced mainly by the adjacent bases both upstream and downstream of the substitution sites. Thus we present the base-substitution signatures of these polymerases in a three-base format. On templates containing abasic sites, Polη created deletions at the lesion in more than 50% of the TLS products, but the formation of the deletions was suppressed by the presence of Polζ. Polζ and Polη cooperatively facilitated the TLS reaction over an abasic site in vitro, suggesting that these two polymerases can cooperate in efficient and high fidelity TLS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号