首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Tyrosine nitration is a covalent posttranslational protein modification that has been detected under several pathological conditions. This study reports that nitrated proteins are degraded by chymotrypsin and that protein nitration enhances susceptibility to degradation by the proteasome. Chymotrypsin cleaved the peptide bond between nitrated-tyrosine 108 and serine 109 in bovine Cu,Zn superoxide dismutase. However, the rate of chymotryptic cleavage of nitrated peptides was considerably slower than control. In contrast, nitrated bovine Cu,Zn superoxide dismutase was degraded at a rate 1. 8-fold faster than that of control by a gradient-purified 20S/26S proteasome fraction from bovine retina. Exposure of PC12 cells to a nitrating agent resulted in the nitration of tyrosine hydroxylase and a 58 +/- 12.5% decline in the steady-state levels of the protein 4 h after nitration. The steady-state levels of tyrosine hydroxylase were restored by selective inhibition of the proteasome activity with lactacystin. These data indicate that nitration of tyrosine residue(s) in proteins is sufficient to induce an accelerated degradation of the modified proteins by the proteasome and that the proteasome may be critical for the removal of nitrated proteins in vivo.  相似文献   

2.
Invited review: manganese superoxide dismutase in disease   总被引:20,自引:0,他引:20  
Manganese superoxide dismutase (MnSOD) is essential for life as dramatically illustrated by the neonatal lethality of mice that are deficient in MnSOD. In addition, mice expressing only 50% of the normal compliment of MnSOD demonstrate increased susceptibility to oxidative stress and severe mitochondrial dysfunction resulting from elevation of reactive oxygen species. Thus, it is important to know the status of both MnSOD protein levels and activity in order to assess its role as an important regulator of cell biology.

Numerous studies have shown that MnSOD can be induced to protect against pro-oxidant insults resulting from cytokine treatment, ultraviolet light, irradiation, certain tumors, amyotrophic lateral sclerosis, and ischemia/reperfusion. In addition, overexpression of MnSOD has been shown to protect against pro-apoptotic stimuli as well as ischemic damage. Conversely, several studies have reported declines in MnSOD activity during diseases including cancer, aging, progeria, asthma, and transplant rejection. The precise biochemical/molecular mechanisms involved with this loss in activity are not well understood. Certainly, MnSOD gene expression or other defects could play a role in such inactivation. However, based on recent findings regarding the susceptibility of MnSOD to oxidative inactivation, it is equally likely that post-translational modification of MnSOD may account for the loss of activity. Our laboratory has recently demonstrated that MnSOD is tyrosine nitrated and inactivated during human kidney allograft rejection and human pancreatic ductal adenocarcinoma. We have determined that peroxynitrite (ONOO-) is the only known biological oxidant competent to inactivate enzymatic activity, to nitrate critical tyrosine residues, and to induce dityrosine formation in MnSOD. Tyrosine nitration and inactivation of MnSOD would lead to increased levels of superoxide and concomitant increases in ONOO- within the mitochondria which, could lead to tyrosine nitration/oxidation of key mitochondrial proteins and ultimately mitochondrial dysfunction and cell death. This article assesses the important role of MnSOD activity in various pathological states in light of this potentially lethal positive feedback cycle involving oxidative inactivation.  相似文献   

3.
Manganese superoxide dismutase (MnSOD) is essential for life as dramatically illustrated by the neonatal lethality of mice that are deficient in MnSOD. In addition, mice expressing only 50% of the normal compliment of MnSOD demonstrate increased susceptibility to oxidative stress and severe mitochondrial dysfunction resulting from elevation of reactive oxygen species. Thus, it is important to know the status of both MnSOD protein levels and activity in order to assess its role as an important regulator of cell biology.

Numerous studies have shown that MnSOD can be induced to protect against pro-oxidant insults resulting from cytokine treatment, ultraviolet light, irradiation, certain tumors, amyotrophic lateral sclerosis, and ischemia/reperfusion. In addition, overexpression of MnSOD has been shown to protect against pro-apoptotic stimuli as well as ischemic damage. Conversely, several studies have reported declines in MnSOD activity during diseases including cancer, aging, progeria, asthma, and transplant rejection. The precise biochemical/molecular mechanisms involved with this loss in activity are not well understood. Certainly, MnSOD gene expression or other defects could play a role in such inactivation. However, based on recent findings regarding the susceptibility of MnSOD to oxidative inactivation, it is equally likely that post-translational modification of MnSOD may account for the loss of activity. Our laboratory has recently demonstrated that MnSOD is tyrosine nitrated and inactivated during human kidney allograft rejection and human pancreatic ductal adenocarcinoma. We have determined that peroxynitrite (ONOO-) is the only known biological oxidant competent to inactivate enzymatic activity, to nitrate critical tyrosine residues, and to induce dityrosine formation in MnSOD. Tyrosine nitration and inactivation of MnSOD would lead to increased levels of superoxide and concomitant increases in ONOO- within the mitochondria which, could lead to tyrosine nitration/oxidation of key mitochondrial proteins and ultimately mitochondrial dysfunction and cell death. This article assesses the important role of MnSOD activity in various pathological states in light of this potentially lethal positive feedback cycle involving oxidative inactivation.  相似文献   

4.
Shi WQ  Cai H  Xu DD  Su XY  Lei P  Zhao YF  Li YM 《Regulatory peptides》2007,144(1-3):1-5
Proteins are targets of reactive nitrogen species such as peroxynitrite and nitrogen dioxide. Among the various amino acids in proteins, tyrosine and tryptophan residues are especially susceptible to attack by reactive nitrogen species. On the other hand, protein tyrosine phosphorylation has gained much attention in respect to cellular regulatory events and signal transduction. Peroxynitrite-mediated nitration of peptide YPPPPPW and phosphopeptide pYPPPPPW were studied at pH 7.4. The predominant nitrated products were separated and identified by reverse phase high performance liquid chromatography coupled with electrospray ionization mass spectrometry (LC-MS). The nitration sites were established by tandem electrospray ionization-mass spectrometry (LC-MS/MS). A regulatory effect of tyrosine phosphorylation/dephosphorylation on peptide nitration was observed. YPPPPPW was predominantly nitrated at tyrosine residue while pYPPPPPW was nitrated at tryptophan one. Our results can help in understanding the biochemical significance of the relationship of tyrosine phosphorylation and nitration in proteins.  相似文献   

5.
Aggregation of Cu,Zn superoxide dismutase (SOD1) is implicated in amyotrophic lateral sclerosis. Glutathionylation and phosphorylation of SOD1 is omnipresent in the human body, even in healthy individuals, and has been shown to increase SOD1 dimer dissociation, which is the first step on the pathway toward SOD1 aggregation. We found that post-translational modification of SOD1, especially glutathionylation, promotes dimer dissociation. We discovered an intermediate state in the pathway to dissociation, a conformational change that involves a “loosening” of the β-barrels and a loss or shift of dimer interface interactions. In modified SOD1, this intermediate state is stabilized as compared to unmodified SOD1. The presence of post-translational modifications could explain the environmental factors involved in the speed of disease progression. Because post-translational modifications such as glutathionylation are often induced by oxidative stress, post-translational modification of SOD1 could be a factor in the occurrence of sporadic cases of amyotrophic lateral sclerosis, which represent 90% of all cases of the disease.  相似文献   

6.
Manganese superoxide dismutase (MnSOD) provides the first line of defense against superoxide generated in mitochondria. SOD competes with nitric oxide for reaction with superoxide and prevents generation of peroxynitrite, a potent oxidant that can modify proteins to form 3-nitrotyrosine. Thus, sufficient amounts of catalytically competent MnSOD are required to prevent mitochondrial damage. Increased nitrotyrosine immunoreactivity has been reported after traumatic brain injury (TBI); however, the specific protein targets containing modified tyrosine residues and functional consequence of this modification have not been identified. In this study, we show that MnSOD is a target of tyrosine nitration that is associated with a decrease in its enzymatic activity after TBI in mice. Similar findings were obtained in temporal lobe cortical samples obtained from TBI cases versus control patients who died of causes not related to CNS trauma. Increased nitrotyrosine immunoreactivity was detected at 2 h and 24 h versus 72 h after experimental TBI and co-localized with the neuronal marker NeuN. Inhibition and/or genetic deficiency of neuronal nitric oxide synthase (nNOS) but not endothelial nitric oxide synthase (eNOS) attenuated MnSOD nitration after TBI. At 24 h after TBI, there was predominantly polymorphonuclear leukocytes accumulation in mouse brain whereas macrophages were the predominant inflammatory cell type at 72 h after injury. However, a selective inhibitor or genetic deficiency of inducible nitric oxide synthase (iNOS) failed to affect MnSOD nitration. Nitration of MnSOD is a likely consequence of peroxynitrite within the intracellular milieu of neurons after TBI. Nitration and inactivation of MnSOD could lead to self-amplification of oxidative stress in the brain progressively enhancing peroxynitrite production and secondary damage.  相似文献   

7.
Mitochondrial tyrosine nitration precedes chronic allograft nephropathy   总被引:1,自引:0,他引:1  
Endogenous tyrosine nitration and inactivation of manganese superoxide dismutase (MnSOD) has previously been reported to occur during end-stage human renal allograft rejection. In order to determine whether nitration and inactivation of this critical mitochondrial protein might play a contributory role in the onset of transplant rejection, we employed a rodent model of Chronic Allograft Nephropathy (or CAN). Using this model we followed kidney function from 2–52 weeks post-transplant and correlated graft function with levels of nitration in the renal allograft. Tyrosine nitration of both glomerular and tubular structures occurred at 2 weeks post-transplant. At later times (16 weeks) post-transplant, tyrosine nitration appeared to be confined to tubular structures; however glomerular nitration returned at 52 weeks post-transplant. Interestingly, nitration and inactivation of MnSOD occurs prior to the onset of renal dysfunction in this rat model of chronic allograft nephropathy (2 weeks versus 16 weeks post-transplant). Furthermore, we have identified an additional mitochondrial protein, cytochrome c, as being endogenously nitrated during chronic rejection. The kinetics of cytochrome c nitration lagged behind MnSOD nitration and inactivation (4 weeks compared to 2 weeks); suggesting that loss of MnSOD activity likely contributes to elevation of the nitrating species and further nitration of other targets.  相似文献   

8.
In animal cells, nitric oxide and NO-derived molecules have been shown to mediate post-translational modifications such as S-nitrosylation and protein tyrosine nitration which are associated with cell signalling and pathological processes, respectively. In plant cells, knowledge of the function of these post-translational modifications under physiological and stress conditions is still very rudimentary. In this addendum, we briefly examine how reactive nitrogen species (RNS) can exert important effects on proteins that could mediate signalling processes in plants.Key words: nitrosative stress, nitric oxide synthase, S-nitrosoglutathione, nitro-tyrosine, post-translational modifications, S-nitrosylation  相似文献   

9.
Mitochondria are primary loci for the intracellular formation and reactions of reactive oxygen and nitrogen species including superoxide (O???), hydrogen peroxide (H?O?) and peroxynitrite (ONOO?). Depending on formation rates and steady-state levels, the mitochondrial-derived short-lived reactive species contribute to signalling events and/or mitochondrial dysfunction through oxidation reactions. Among relevant oxidative modifications in mitochondria, the nitration of the amino acid tyrosine to 3-nitrotyrosine has been recognized in vitro and in vivo. This post-translational modification in mitochondria is promoted by peroxynitrite and other nitrating species and can disturb organelle homeostasis. This study assesses the biochemical mechanisms of protein tyrosine nitration within mitochondria, the main nitration protein targets and the impact of 3-nitrotyrosine formation in the structure, function and fate of modified mitochondrial proteins. Finally, the inhibition of mitochondrial protein tyrosine nitration by endogenous and mitochondrial-targeted antioxidants and their physiological or pharmacological relevance to preserve mitochondrial functions is analysed.  相似文献   

10.
Aslan M  Dogan S 《Journal of Proteomics》2011,74(11):2274-2288
Increased levels of reactive oxygen and nitrogen species are linked to many human diseases and can be formed as an indirect result of the disease process. The accumulation of specific nitroproteins which correlate with pathological processes suggests that nitration of protein tyrosine represents a dynamic and selective process, rather than a random event. Indeed, in numerous clinical disorders associated with an upregulation in oxidative stress, tyrosine nitration has been limited to certain cell types and to selective sites of injury. Additionally, proteomic studies show that only certain proteins are nitrated in selective tissue extracts. A growing list of nitrated proteins link the negative effects of protein nitration with their accumulation in a wide variety of diseases related to oxidation. Nitration of tyrosine has been demonstrated in diverse proteins such as cytochrome c, actin, histone, superoxide dismutase, α-synuclein, albumin, and angiotensin II. In vitro and in vivo aspects of redox-proteomics of specific nitroproteins that could be relevant to biomarker analysis and understanding of cardiovascular disease mechanism will be discussed within this review.  相似文献   

11.
In this review, we focus on understanding the structure–function relationships of numerous manganese superoxide dismutase (MnSOD) mutants to investigate the role that various amino acids play to maintain enzyme quaternary structure or the active site structure, catalytic potential and metal homeostasis in MnSOD, which is essential to maintain enzyme activity. We also observe how polymorphisms of MnSOD are linked to pathologies and how post-translational modifications affect the antioxidant properties of MnSOD. Understanding how modified forms of MnSOD may act as tumor promoters or suppressors by altering the redox status in the body, ultimately aid in generating novel therapies that exploit the therapeutic potential of mutant MnSODs or pave the way for the development of synthetic SOD mimics.  相似文献   

12.
Peroxiredoxins (Prx) are efficient thiol-dependent peroxidases and key players in the mechanism of H2O2-induced redox signaling. Any structural change that could affect their redox state, oligomeric structure, and/or interaction with other proteins could have a significant impact on the cascade of signaling events. Several post-translational modifications have been reported to modulate Prx activity. One of these, overoxidation of the peroxidatic cysteine to the sulfinic derivative, inactivates the enzyme and has been proposed as a mechanism of H2O2 accumulation in redox signaling (the floodgate hypothesis). Nitration of Prx has been reported in vitro as well as in vivo; in particular, nitrated Prx2 was identified in brains of Alzheimer disease patients. In this work we characterize Prx2 tyrosine nitration, a post-translational modification on a noncatalytic residue that increases its peroxidase activity and its resistance to overoxidation. Mass spectrometry analysis revealed that treatment of disulfide-oxidized Prx2 with excess peroxynitrite renders mainly mononitrated and dinitrated species. Tyrosine 193 of the YF motif at the C terminus, associated with the susceptibility toward overoxidation of eukaryotic Prx, was identified as nitrated and is most likely responsible for the protection of the peroxidatic cysteine against oxidative inactivation. Kinetic analyses suggest that tyrosine nitration facilitates the intermolecular disulfide formation, transforming a sensitive Prx into a robust one. Thus, tyrosine nitration appears as another mechanism to modulate these enzymes in the complex network of redox signaling.  相似文献   

13.
超氧化物歧化酶(superoxide dismutase,SOD)是生物体内存在的一种抗氧化金属酶,它能够催化超氧阴离子自由基歧化生成氧(O2)和过氧化氢(H2O2),在机体氧化与抗氧化平衡中起到至关重要的作用,且与很多疾病的发生、发展密不可分。对SOD的活性调节一直是研究热点,大多数研究都集中在转录水平(基因表达)和翻译水平(酶蛋白合成)两个方面。随着研究的深入,发现蛋白质翻译后修饰(PTM)对SOD的酶活性有重要影响。近年来,研究蛋白质翻译后修饰对SOD的酶活性的影响越来越受到重视。总结了硝基化、磷酸化、S-谷胱甘肽化、糖基化、乙酰化、次磺酸化、亚磺酸化、SUMO化等几种SOD翻译后的修饰方式,讨论了修饰后对SOD酶活性的影响和生理意义,并对SOD翻译后修饰的发展及面临的挑战进行了展望,为相关疾病的研究、治疗及靶向药物的研制提供了理论基础。  相似文献   

14.
A cellular consequence of the reaction of superoxide and nitric oxide is enhanced peroxynitrite levels. Reaction of peroxynitrite with manganese superoxide dismutase (MnSOD) causes nitration of the active-site residue Tyr34 and nearly complete inhibition of catalysis. We report the crystal structures at 2.4 A resolution of human MnSOD nitrated by peroxynitrite and the unmodified MnSOD. A comparison of these structures showed no significant conformational changes of active-site residues or solvent displacement. The side chain of 3-nitrotyrosine 34 had a single conformation that extended toward the manganese with O1 of the nitro group within hydrogen-bonding distance (3.1 A) of Nepsilon2 of the second-shell ligand Gln143. Also, nitration of Tyr34 caused a weakening, as evidenced by the lengthening, of a hydrogen bond between its phenolic OH and Gln143, part of an extensive hydrogen-bond network in the active site. Inhibition of catalysis can be attributed to a steric effect of 3-nitrotyrosine 34 that impedes substrate access and binding, and alteration of the hydrogen-bond network that supports proton transfer in catalysis. It is also possible that an electrostatic effect of the nitro group has altered the finely tuned redox potential necessary for efficient catalysis, although the redox potential of nitrated MnSOD has not been measured.  相似文献   

15.
Webster RP  Macha S  Brockman D  Myatt L 《Proteomics》2006,6(17):4838-4844
Protein tyrosine nitration is a post-translational modification occurring under conditions of oxidative stress in a number of diseases. The causative agent of tyrosine nitration is the potent prooxidant peroxynitrite that results from the interaction of nitric oxide and superoxide. We have previously demonstrated existence of nitrotyrosine in placenta from pregnancies complicated by preeclampsia, which suggested the possibility of the existence of nitrated proteins. Nitration of various proteins has been demonstrated to more commonly result in loss of protein function. Potential nitration of p38 MAPK, a critical signaling molecule has been suggested and also tentatively identified in certain in vivo systems. In this study we demonstrate for the first time nitration of recombinant p38 MAPK in vitro and an associated loss of its catalytic activity. LC-MS data identified tyrosine residues Y132, Y245 and Y258 to be nitrated. Nitration of these specific residues was deduced from the 45.0-Da change in mass that these residues exhibited that was consistent with the loss of a proton and addition of the nitro group.  相似文献   

16.
A number of environmental stresses can lead to enhanced production of superoxide within plant tissues, and plants are believed to rely on the enzyme superoxide dismutase (SOD) to detoxify this reactive oxygen species. We have identified seven cDNAs and genes for SOD in Arabidopsis. These consist of three CuZnSODs (CSD1, CSD2, and CSD3), three FeSODs (FSD1, FSD2, and FSD3), and one MnSOD (MSD1). The chromosomal location of these seven SOD genes has been established. To study this enzyme family, antibodies were generated against five proteins: CSD1, CSD2, CSD3, FSD1, and MSD1. Using these antisera and nondenaturing-polyacrylamide gel electrophoresis enzyme assays, we identified protein and activity for two CuZnSODs and for FeSOD and MnSOD in Arabidopsis rosette tissue. Additionally, subcellular fractionation studies revealed the presence of CSD2 and FeSOD protein within Arabidopsis chloroplasts. The seven SOD mRNAs and the four proteins identified were differentially regulated in response to various light regimes, ozone fumigation, and ultraviolet-B irradiation. To our knowledge, this is the first report of a large-scale analysis of the regulation of multiple SOD proteins in a plant species.  相似文献   

17.
The heterocystous nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC7120 displayed two superoxide dismutase (SOD) activities, namely FeSOD and MnSOD. Prolonged exposure of Anabaena PCC7120 cells to methyl viologen mediated oxidative stress resulted in loss of both SOD activities and induced cell lysis. The two SOD proteins were individually overexpressed constitutively in Anabaena PCC7120, by genetic manipulation. Under nitrogen-fixing conditions, overexpression of MnSOD (sodA) enhanced oxidative stress tolerance, while FeSOD (sodB) overexpression was detrimental. Under nitrogen supplemented conditions, overexpression of either SOD protein, especially FeSOD, conferred significant tolerance against oxidative stress. The results demonstrate a nitrogen status-dependent protective role of individual superoxide dismutases in Anabaena PCC7120 during oxidative stress.  相似文献   

18.
《Free radical research》2013,47(1):16-28
Abstract

The mitochondrial outer membrane surrounds the entire organelle. It is composed of a phospholipid bilayer with proteins either embedded into or anchored to the bilayer and mediates the interactions between mitochondria and the rest of the cell. Most of the proteins present in the mitochondrial outer membrane are highly hydrophobic with one or more transmembrane segments. These proteins in conjunction with proteins localized in the inner membrane catalyse energy exchange reactions, the flux of small molecules such as ions, the activation and uptake of long chain fatty acids, import of proteins into the mitochondria, and elimination of biogenic amines among others. In addition, some outer membrane proteins serve as docking sites for non-resident enzymes such as hexokinase and other kinases of signal transduction. All these processes require an intact outer membrane and are highly regulated. One level of regulation with physiological/pathophysiological relevance involves post-translational modification of outer membrane proteins, either by phosphorylation, acetylation or other type of reversible covalent modification. Post-translational modification such as nitration and carbonylation becomes significant under disease states that are associated with increased oxidative stress, i.e. inflammation and ischemia. This review examines the different post-translational modifications of mitochondrial outer membrane proteins and discusses the physiological relevance of these modifications.  相似文献   

19.
BACKGROUND: Massive neurofilament conglomeration in motor neurons has been described to occur in the early stages of both familial and sporadic amyotrophic lateral sclerosis (ALS). Previously, neurofilament conglomerates were immunolabeled for both superoxide dismutase (SOD1) and nitrotyrosine, suggesting the potential for oxidative nitration damage to neurofilament protein by peroxynitrite. Long-lived neurofilaments may also undergo modification by advanced glycation endproducts (AGEs) with concomitant generation of free radicals, including superoxide. This radical species may then react with nitric oxide to form the potent oxidant, peroxynitrite, which in turn can nitrate neurofilament protein. Such a glycated and nitrated neurofilament protein may become resistant to proteolytic systems, forming high-molecular-weight protein complexes and cytotoxic, neuronal inclusions. MATERIALS AND METHODS: Paraffin sections containing both neurofilament conglomerates and neuronal inclusions were obtained from patients with sporadic (n = 5) and familial (n = 2) ALS and were probed with specific antibodies directed against the AGEs cypentodine/piperidine-enolone, arginine-lysine imidazole, pentosidine, and pyrraline. RESULTS: Neurofilament conglomerates, but not neuronal inclusions, were intensely immunolabeled with each of the anti-AGE antibodies tested. The immunoreactivity was selective for neurofilament conglomerates and suggested that AGEs may form inter- or intramolecular cross-links in neurofilament proteins. CONCLUSIONS: These data support the hypothesis that AGE formation affects neurofilament proteins in vivo and is associated with the concomitant induction of SODI and protein nitration in neurofilament conglomerates. AGE formation in neurofilament protein may not only cause covalent cross-linking but also generate superoxide and block nitric oxide-mediated responses, thereby perpetuating neuronal toxicity in patients with ALS.  相似文献   

20.
The mitochondrial outer membrane surrounds the entire organelle. It is composed of a phospholipid bilayer with proteins either embedded into or anchored to the bilayer and mediates the interactions between mitochondria and the rest of the cell. Most of the proteins present in the mitochondrial outer membrane are highly hydrophobic with one or more transmembrane segments. These proteins in conjunction with proteins localized in the inner membrane catalyse energy exchange reactions, the flux of small molecules such as ions, the activation and uptake of long chain fatty acids, import of proteins into the mitochondria, and elimination of biogenic amines among others. In addition, some outer membrane proteins serve as docking sites for non-resident enzymes such as hexokinase and other kinases of signal transduction. All these processes require an intact outer membrane and are highly regulated. One level of regulation with physiological/pathophysiological relevance involves post-translational modification of outer membrane proteins, either by phosphorylation, acetylation or other type of reversible covalent modification. Post-translational modification such as nitration and carbonylation becomes significant under disease states that are associated with increased oxidative stress, i.e. inflammation and ischemia. This review examines the different post-translational modifications of mitochondrial outer membrane proteins and discusses the physiological relevance of these modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号