首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial fusion and fission are important for a great variety of cellular functions, including energy metabolism, development, aging and cell death. Many of the core components mediating mitochondrial dynamics in human cells have been first identified and mechanistically analyzed in model organisms, such as Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster. In particular, the functions of FZO/mitofusin and Mgm1/EAT-3/OPA1 in fusion and Dnm1/DRP1 in fission have been remarkably well conserved in yeasts, worms, flies and mammals. On the other hand, mechanisms to coordinate and regulate the activity of these molecular machines appear to be more diverse in different organisms. Here, I will discuss how S. cerevisiae, C. elegans and Drosophila have contributed to our current understanding of the cellular machineries mediating the dynamic behaviour of mitochondria.  相似文献   

2.
The maintenance of cellular identity requires continuous adaptation to environmental changes. This process is particularly critical for stem cells, which need to preserve their differentiation potential over time. Among the mechanisms responsible for regulating cellular homeostatic responses, mitochondria are emerging as key players. Given their dynamic and multifaceted role in energy metabolism, redox, and calcium balance, as well as cell death, mitochondria appear at the interface between environmental cues and the control of epigenetic identity. In this review, we describe how mitochondria have been implicated in the processes of acquisition and loss of stemness, with a specific focus on pluripotency. Dissecting the biological functions of mitochondria in stem cell homeostasis and differentiation will provide essential knowledge to understand the dynamics of cell fate modulation, and to establish improved stem cell‐based medical applications.  相似文献   

3.
Many essential functions of mitochondrial metabolism have been studied in the past three decades in considerable depth: oxidative phosphorylation, catabolism of fatty acids, role in nitrogen metabolism, and amino acid metabolism. More recently, other aspects attracted much attention like protein translocation into mitochondria, inheritance of mitochondrial DNA, movement of mitochondria, their fusion and fission, and their involvement in apoptosis, ageing, cancer and other cellular processes. Together with these new views on the function of mitochondria, new ideas on the structure of mitochondria emerged. Here we will discuss the current knowledge about how the membranes of mitochondria are organized and how they interact. Interactions between components of the inner and the outer membrane are necessary for a number of central mitochondrial functions such as the channeling of metabolites, coordinated fusion and fission of mitochondria, and protein transport. Some of these interactions appear stable such as the so-called morphological contact sites; others are quite dynamic. Direct evidence that a certain protein is part of morphologically defined contact sites is lacking. Nevertheless, protein translocase complexes of the outer and the inner membrane exhibit stable interactions between the two membranes when precursor proteins are arrested during import into mitochondria. Finally, we discuss possible roles of cristae junctions, another morphologically defined membrane structure in mitochondria.  相似文献   

4.
Neurons are highly specialized cells with polarized cellular processes and subcellular domains. As vital organelles for neuronal functions, mitochondria are distributed by microtubule-based transport systems. Although the essential components of mitochondrial transport including motors and cargo adaptors are identified, it is less clear how mitochondrial distribution among somato-dendritic and axonal compartment is regulated. Here, we systematically study mitochondrial motors, including four kinesins, KIF5, KIF17, KIF1, KLP-6, and dynein, and transport regulators in C. elegans PVD neurons. Among all these motors, we found that mitochondrial export from soma to neurites is mainly mediated by KIF5/UNC-116. Interestingly, UNC-116 is especially important for axonal mitochondria, while dynein removes mitochondria from all plus-end dendrites and the axon. We surprisingly found one mitochondrial transport regulator for minus-end dendritic compartment, TRAK-1, and two mitochondrial transport regulators for axonal compartment, CRMP/UNC-33 and JIP3/UNC-16. While JIP3/UNC-16 suppresses axonal mitochondria, CRMP/UNC-33 is critical for axonal mitochondria; nearly no axonal mitochondria present in unc-33 mutants. We showed that UNC-33 is essential for organizing the population of UNC-116-associated microtubule bundles, which are tracks for mitochondrial trafficking. Disarrangement of these tracks impedes mitochondrial transport to the axon. In summary, we identified a compartment-specific transport regulation of mitochondria by UNC-33 through organizing microtubule tracks for different kinesin motors other than microtubule polarity.  相似文献   

5.
6.
Mitochondria and lysosomes have long been studied in the context of their classic functions: energy factory and recycle bin, respectively. In the last twenty years, it became evident that these organelles are much more than simple industrial units, and are indeed in charge of many of cellular processes. Both mitochondria and lysosomes are now recognized as far-reaching signaling platforms, regulating many key aspects of cell and tissue physiology. It has furthermore become clear that mitochondria and lysosomes impact each other. The mechanisms underlying the cross-talk between these organelles are only now starting to be addressed. In this review, we briefly summarize how mitochondria, lysosomes and the lysosome-related process of autophagy affect each other in physiology and pathology.  相似文献   

7.
Amino acids are essential for cell growth and proliferation for they can serve as precursors of protein synthesis, be remodelled for nucleotide and fat biosynthesis, or be burnt as fuel. Mitochondria are energy producing organelles that additionally play a central role in amino acid homeostasis. One might expect mitochondrial metabolism to be geared towards the production and preservation of amino acids when cells are deprived of an exogenous supply. On the contrary, we find that human cells respond to amino acid starvation by upregulating the amino acid-consuming processes of respiration, protein synthesis, and amino acid catabolism in the mitochondria. The increased utilization of these nutrients in the organelle is not driven primarily by energy demand, as it occurs when glucose is plentiful. Instead it is proposed that the changes in the mitochondrial metabolism complement the repression of cytosolic protein synthesis to restrict cell growth and proliferation when amino acids are limiting. Therefore, stimulating mitochondrial function might offer a means of inhibiting nutrient-demanding anabolism that drives cellular proliferation.  相似文献   

8.
The electrical polarization of the inner mitochondrial membrane largely determines the electrochemical potential of hydrogen ifons, being thereby a significant factor in the energy transformation during oxidation of respiratory substrates and its accumulation in the form of newly synthesized ATP. However, the gradient of the electric potential on the inner mitochondrial membrane (ΔΨm) performs a number of functions not related to energy production. Even under hypoxic conditions, precluding the formation of ATP in mitochondria through oxidative phosphorylation, mitochondria maintain their ΔΨm at the expense of the hydrolysis of cellular ATP, which indicates the exceptional importance of ΔΨm for non-energetic functions of mitochondria. Among these functions, the mitochondrial inward transport of metal cations and proteins carrying a positively charged amino acid sequence and export of anions including nucleic acids possibly providing retrograde signaling, seem very important and essential for maintaining mitochondrial structure and metabolism. ΔΨm is a powerful regulator of mitochondrial generation of reactive oxygen species that perform physiological and pathological functions. And finally, ΔΨm is a critical element in the mechanism of disposal of dysfunctional mitochondria, the so-called quality control machinery of mitochondria. The disturbance of this mechanism leads to increase of heterogeneity in the population of mitochondria in the cell, and the degree of heterogeneity can be considered as an indicator of the pathological cellular phenotype. Correlation between Ψm and cell functions is difficult to identify without adequate quantitative estimates of the magnitude of ΔΨm, which are complicated due to several cellular and mitochondrial processes that affect the experimentally obtained values. Recommendations for assessing the contribution of these processes and avoiding artifacts in the measurements of ΔΨm by standard methods are given.  相似文献   

9.
Mitochondria are one of the most complex of subcellular organelles and play key roles in many cellular functions including energy production, fatty acid metabolism, pyrimidine biosynthesis, calcium homeostasis, and cell signaling. In recent years, we and other groups have attempted to identify the complete set of proteins that are localized to human mitochondria as a way to better understand its cellular functions and how it communicates with other cell compartment in complex signaling pathways such as oxidative stress and apoptosis. Indeed, there is an increasing interest in understanding the molecular details of oxidative stress and the mitochondrial role in this process, as well as assessing how mitochondrial proteins become damaged or posttranslationally modified as a consequence of a major change in a cell's redox status. In this review, we report on the current status of the human mitochondrial proteome with an emphasis towards understanding how mitochondrial proteins, especially the proteins that make up the respiratory chain or oxidative phosphorylation (OXPHOS) enzymes, are modified in various models of age-related diseases such as cancer and Parkinson's disease (PD).  相似文献   

10.
Two fatty acid binding proteins, MvFABPa and MvFABPb were identified in the parasite Mesocestoides vogae (Platyhelmithes, Cestoda). Fatty acid binding proteins are small intracellular proteins whose members exhibit great diversity. Proteins of this family have been identified in many organisms, of which Platyhelminthes are among the most primitive. These proteins have particular relevance in flatworms since de novo synthesis of fatty acids is absent. Fatty acids should be captured from the media needing an efficient transport system to uptake and distribute these molecules. While HLBPs could be involved in the shuttle of fatty acids to the surrounding host tissues and convey them into the parasite, FABPs could be responsible for the intracellular trafficking. In an effort to understand the role of MvFABPs in fatty acid transport of M. vogae larvae, we analysed the intracellular localization of both MvFABPs and the co-localization with in vivo uptake of fatty acid analogue BODIPY FL C16. Immunohistochemical studies on larvae sections using specific antibodies, showed a diffuse cytoplasmic distribution of each protein with some expression in nuclei and mitochondria. MvFABPs distribution was confirmed by mass spectrometry identification from 2D-electrophoresis of larvae subcellular fractions. This work is the first report showing intracellular distribution of MvFABPs as well as the co-localization of these proteins with the BODIPY FL C16 incorporated from the media. Our results suggest that fatty acid binding proteins could target fatty acids to cellular compartments including nuclei. In this sense, M. vogae FABPs could participate in several cellular processes fulfilling most of the functions attributed to vertebrate’s counterparts.  相似文献   

11.
12.
Many aerobic organisms encounter oxygen-deprived environments and thus must have adaptive mechanisms to survive such stress. It is important to understand how mitochondria respond to oxygen deprivation given the critical role they play in using oxygen to generate cellular energy. Here we examine mitochondrial stress response in C. elegans, which adapt to extreme oxygen deprivation (anoxia, less than 0.1% oxygen) by entering into a reversible suspended animation state of locomotory arrest. We show that neuronal mitochondria undergo DRP-1-dependent fission in response to anoxia and undergo refusion upon reoxygenation. The hypoxia response pathway, including EGL-9 and HIF-1, is not required for anoxia-induced fission, but does regulate mitochondrial reconstitution during reoxygenation. Mutants for egl-9 exhibit a rapid refusion of mitochondria and a rapid behavioral recovery from suspended animation during reoxygenation; both phenotypes require HIF-1. Mitochondria are significantly larger in egl-9 mutants after reoxygenation, a phenotype similar to stress-induced mitochondria hyperfusion (SIMH). Anoxia results in mitochondrial oxidative stress, and the oxidative response factor SKN-1/Nrf is required for both rapid mitochondrial refusion and rapid behavioral recovery during reoxygenation. In response to anoxia, SKN-1 promotes the expression of the mitochondrial resident protein Stomatin-like 1 (STL-1), which helps facilitate mitochondrial dynamics following anoxia. Our results suggest the existence of a conserved anoxic stress response involving changes in mitochondrial fission and fusion.  相似文献   

13.
Both transfer RNA (tRNA) and cytochrome c are essential to cellular function: tRNA mediates protein synthesis while cytochrome c is required for oxidative phosphorylation and apoptosis induction. tRNA has recently been implicated as a direct regulator of the well-conserved apoptotic role of cytochrome c. Interaction between these molecules could potentially coordinate biosynthesis, energy production and apoptosis. Here we review the diversity and dynamics of tRNA and how this class of non-coding RNAs may regulate the role of cytochrome c in apoptosis. We comment on unanswered questions in the cell biology of this interaction and how answers may influence our understanding of disease.Key words: tRNA, cytochrome c, apoptosis, caspase, mitochondria, protein synthesis, cancer  相似文献   

14.
We previously demonstrated that uncoupling protein 1 activity, as measured in isolated brown adipose tissue mitochondria (and as a native protein reconstituted into liposome membranes), was not activated by the non-flippable modified saturated fatty acid, glucose-O-ω-palmitate, whereas activity was stimulated by palmitate alone (40 nM free final concentration). In this study, we investigated whether fatty acid chain length had any bearing on the ability of glucose-O-ω-fatty acids to activate uncoupling protein 1. Glucose-O-ω-saturated fatty acids of various chain lengths were synthesized and tested for their potential to activate GDP-inhibited uncoupling protein 1-dependent oxygen consumption in brown adipose tissue mitochondria, and the results were compared with equivalent non-modified fatty acid controls. Here we demonstrate that laurate (12C), palmitate (16C) and stearate (18C) could activate GDP-inhibited uncoupling protein 1-dependent oxygen consumption in brown adipose tissue mitochondria, whereas there was no activation with glucose-O-ω-laurate (12C), glucose-O-ω-palmitate (16C), glucose-O-ω-stearate (18C), glucose-O-ω-arachidate (20C) or arachidate alone. We conclude that non-flippable fatty acids cannot activate uncoupling protein 1 irrespective of chain length. Our data further undermine the cofactor activation model of uncoupling protein 1 function but are compatible with the model that uncoupling protein 1 functions by flipping long-chain fatty acid anions.  相似文献   

15.
The identification of causative mutations in the (pro)granulin gene (GRN) has been a major breakthrough in the research on frontotemporal dementia (FTD). So far, all FTD-associated GRN mutations are leading to neurodegeneration through a “loss-of-function” mechanism, encouraging researchers to develop a growing number of cellular and animal models for GRN deficiency. GRN is a multifunctional secreted growth factor, and loss of its function can affect different cellular processes. Besides loss-of-function (i.e., mostly premature termination codons) mutations, which cause GRN haploinsufficiency through reduction of GRN expression, FTD-associated GRN missense mutations have also been identified. Several of these missense mutations are predicted to increase the risk of developing neurodegenerative diseases through altering various key biological properties of GRN-like protein secretion, proteolytic processing, and neurite outgrowth. With the use of cellular and animal models for GRN deficiency, the portfolio of GRN functions has recently been extended to include functions in important biological processes like energy and protein homeostasis, inflammation as well as neuronal survival, neurite outgrowth, and branching. Furthermore, GRN-deficient animal models have been established and they are believed to be promising disease models as they show accelerated aging and recapitulate at least some neuropathological features of FTD. In this review, we summarize the current knowledge on the molecular mechanisms leading to GRN deficiency and the lessons we learned from the established cellular and animal models. Furthermore, we discuss how these insights might help in developing therapeutic strategies for GRN-associated FTD.  相似文献   

16.
Normal cellular function is dependent on a number of highly regulated homeostatic mechanisms, which act in concert to maintain conditions suitable for life. During periods of nutritional deficit, cells initiate a number of recycling programs which break down complex intracellular structures, thus allowing them to utilize the energy stored within. These recycling systems, broadly named “autophagy”, enable the cell to maintain the flow of nutritional substrates until they can be replenished from external sources. Recent research has shown that a number of regulatory components of the autophagy program are controlled by lysine acetylation. Lysine acetylation is a reversible post-translational modification that can alter the activity of enzymes in a number of cellular compartments. Strikingly, the main substrate for this modification is a product of cellular energy metabolism: acetyl-CoA. This suggests a direct and intricate link between fuel metabolites and the systems which regulate nutritional homeostasis. In this review, we examine how acetylation regulates the systems that control cellular autophagy, and how global protein acetylation status may act as a trigger for recycling of cellular components in a nutrient-dependent fashion. In particular, we focus on how acetylation may control the degradation and turnover of mitochondria, the major source of fuel-derived acetyl-CoA.  相似文献   

17.
Mitophagy, the autophagic removal of mitochondria, occurs through a highly selective mechanism. In the yeast Saccharomyces cerevisiae, the mitochondrial outer membrane protein Atg32 confers selectivity for mitochondria sequestration as a cargo by the autophagic machinery through its interaction with Atg11, a scaffold protein for selective types of autophagy. The activity of mitophagy in vivo must be tightly regulated considering that mitochondria are essential organelles that produce most of the cellular energy, but also generate reactive oxygen species that can be harmful to cell physiology. We found that Atg32 was proteolytically processed at its C terminus upon mitophagy induction. Adding an epitope tag to the C terminus of Atg32 interfered with its processing and caused a mitophagy defect, suggesting the processing is required for efficient mitophagy. Furthermore, we determined that the mitochondrial i-AAA protease Yme1 mediated Atg32 processing and was required for mitophagy. Finally, we found that the interaction between Atg32 and Atg11 was significantly weakened in yme1∆ cells. We propose that the processing of Atg32 by Yme1 acts as an important regulatory mechanism of cellular mitophagy activity.  相似文献   

18.
Mitochondria have long been studied as the main energy source and one of the most important generators of reactive oxygen species in the eukaryotic cell. Yet, new data suggest mitochondria serve as a powerful cellular regulator, pathway trigger, and signal hub. Some of these crucial mitochondrial functions appear to be associated with RNP-granules. Deep and versatile involvement of mitochondria in general cellular regulation may be the legacy of parasitic behavior of the ancestors of mitochondria in the host cells. In this regard, we also discuss here the perspectives of using mitochondria-targeted compounds for systemic correction of phenoptotic shifts.  相似文献   

19.
The mitochondrial phospholipid cardiolipin (CL) has been implicated with mitochondrial morphology, function and, more recently, with cellular proliferation. Tafazzin, an acyltransferase with key functions in CL remodeling determining actual CL composition, affects mitochondrial oxidative phosphorylation. Here, we show that the CRISPR-Cas9 mediated knock-out of tafazzin (Taz) is associated with substantial alterations of various mitochondrial and cellular characteristics in C6 glioma cells. The knock-out of tafazzin substantially changed the profile of fatty acids incorporated in CL and the distribution of molecular CL species. Taz knock-out was further associated with decreased capacity of oxidative phosphorylation that mainly originates from impaired complex I associated energy metabolism in C6 glioma cells. The lack of tafazzin switched energy metabolism from oxidative phosphorylation to glycolysis indicated by lower respiration rates, membrane potential and higher levels of mitochondria-derived reactive oxygen species but keeping the cellular ATP content unchanged. The impact of tafazzin on mitochondria was also indicated by altered morphology and arrangement in tafazzin deficient C6 glioma cells. In the cells we observed tafazzin-dependent changes in the distribution of cellular fatty acids as an indication of altered lipid metabolism as well as in stability/morphology. Most impressive is the dramatic reduction in cell proliferation in tafazzin deficient C6 glioma cells that is not mediated by reactive oxygen species. Our data clearly indicate that defects in CL phospholipid remodeling trigger a cascade of events including modifications in CL linked to subsequent alterations in mitochondrial and cellular functions.  相似文献   

20.
This last decade, many efforts were undertaken to understand how coenzymes, including vitamins, are synthesized in plants. Surprisingly, these metabolic pathways were often “quartered” between different compartments of the plant cell. Among these compartments, mitochondria often appear to have a key role, catalyzing one or several steps in these pathways. In the present review we will illustrate these new and important biosynthetic functions found in plant mitochondria by describing the most recent findings about the synthesis of two vitamins (folate and biotin) and one non-vitamin coenzyme (lipoate). The complexity of these metabolic routes raise intriguing questions, such as how the intermediate metabolites and the end-product coenzymes are exchanged between the various cellular territories, or what are the physiological reasons, if any, for such compartmentalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号