首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zelenchuk  P. A.  Tsybulin  V. G. 《Biophysics》2021,66(3):464-471
Biophysics - The concept of an ideal free distribution (IFD) is analyzed for the predator–prey system in an inhomogeneous ring-shaped habitat. Diffusion–reaction–advection...  相似文献   

2.
The extinction of species is a major threat to the biodiversity. The species exhibiting a strong Allee effect are vulnerable to extinction due to predation. The refuge used by species having a strong Allee effect may affect their predation and hence extinction risk. A mathematical study of such behavioral phenomenon may aid in management of many endangered species. However, a little attention has been paid in this direction. In this paper, we have studied the impact of a constant prey refuge on the dynamics of a ratio-dependent predator–prey system with strong Allee effect in prey growth. The stability analysis of the model has been carried out, and a comprehensive bifurcation analysis is presented. It is found that if prey refuge is less than the Allee threshold, the incorporation of prey refuge increases the threshold values of the predation rate and conversion efficiency at which unconditional extinction occurs. Moreover, if the prey refuge is greater than the Allee threshold, situation of unconditional extinction may not occur. It is found that at a critical value of prey refuge, which is greater than the Allee threshold but less than the carrying capacity of prey population, system undergoes cusp bifurcation and the rich spectrum of dynamics exhibited by the system disappears if the prey refuge is increased further.  相似文献   

3.
Sudeshna Mondal  Samanta  G. P. 《Biophysics》2021,66(3):438-463
Biophysics - It is observed from field experiments on terrestrial vertebrates that direct predation on predator–prey interaction can not only affect the population dynamics but the indirect...  相似文献   

4.
Biswas  S.  Pal  D.  Mahapatra  G. S.  Samanta  G. P. 《Biophysics》2020,65(5):826-835
Biophysics - This paper mainly deals with the prey?predator dynamics where both the prey and predator exhibit herd behavior. Positivity, boundedness, some extinction criteria, stability of...  相似文献   

5.
We present a Bayesian method for functional response parameter estimation starting from time series of field data on predator–prey dynamics. Population dynamics is described by a system of stochastic differential equations in which behavioral stochasticities are represented by noise terms affecting each population as well as their interaction. We focus on the estimation of a behavioral parameter appearing in the functional response of predator to prey abundance when a small number of observations is available. To deal with small sample sizes, latent data are introduced between each pair of field observations and are considered as missing data. The method is applied to both simulated and observational data. The results obtained using different numbers of latent data are compared with those achieved following a frequentist approach. As a case study, we consider an acarine predator–prey system relevant to biological control problems.  相似文献   

6.
Recent field experiments on vertebrates showed that the mere presence of a predator would cause a dramatic change of prey demography. Fear of predators increases the survival probability of prey, but leads to a cost of prey reproduction. Based on the experimental findings, we propose a predator–prey model with the cost of fear and adaptive avoidance of predators. Mathematical analyses show that the fear effect can interplay with maturation delay between juvenile prey and adult prey in determining the long-term population dynamics. A positive equilibrium may lose stability with an intermediate value of delay and regain stability if the delay is large. Numerical simulations show that both strong adaptation of adult prey and the large cost of fear have destabilizing effect while large population of predators has a stabilizing effect on the predator–prey interactions. Numerical simulations also imply that adult prey demonstrates stronger anti-predator behaviors if the population of predators is larger and shows weaker anti-predator behaviors if the cost of fear is larger.  相似文献   

7.
The aim of this work is to develop and analyse a mathematical model for a predator-2 preys system arising in insular environments. We are interested in the evolution of a native prey population without behavioural traits to cope with predation or competition, after the introduction of alien species. Here, we consider a long living bird population with low fertility rate. We point out the effects of the preference of the predator for either juvenile or adult stages. In addition, we study the impact of alien prey introduction in such a model. We use a reaction-diffusion system with a singular logistic right hand side. The aim of this work is to bring interesting dynamics to the fore. As a first example, oscillatory behaviour takes place in the model without alien preys and when predators have an average preference coefficient. Introduction of alien preys can lead to species extinction.  相似文献   

8.
This paper deals with designing a harvesting control strategy for a predator–prey dynamical system, with parametric uncertainties and exogenous disturbances. A feedback control law for the harvesting rate of the predator is formulated such that the population dynamics is asymptotically stabilized at a positive operating point, while maintaining a positive, steady state harvesting rate. The hierarchical block strict feedback structure of the dynamics is exploited in designing a backstepping control law, based on Lyapunov theory. In order to account for unknown parameters, an adaptive control strategy has been proposed in which the control law depends on an adaptive variable which tracks the unknown parameter. Further, a switching component has been incorporated to robustify the control performance against bounded disturbances. Proofs have been provided to show that the proposed adaptive control strategy ensures asymptotic stability of the dynamics at a desired operating point, as well as exact parameter learning in the disturbance-free case and learning with bounded error in the disturbance prone case. The dynamics, with uncertainty in the death rate of the predator, subjected to a bounded disturbance has been simulated with the proposed control strategy.  相似文献   

9.
Invasive species cause enormous problems in ecosystems around the world. Motivated by introduced feral cats that prey on bird populations and threaten to drive them extinct on remote oceanic islands, we formulate and analyze optimal control problems. Their novelty is that they involve both scalar and time-dependent controls. They represent different forms of control, namely the initial release of infected predators on the one hand and culling as well as trapping, infecting, and returning predators on the other hand. Combinations of different control methods have been proposed to complement their respective strengths in reducing predator numbers and thus protecting endangered prey. Here, we formulate and analyze an eco-epidemiological model, provide analytical results on the optimal control problem, and use a forward–backward sweep method for numerical simulations. By taking into account different ecological scenarios, initial conditions, and control durations, our model allows to gain insight how the different methods interact and in which cases they could be effective.  相似文献   

10.
The environmental carrying capacity is usually assumed to be fixed quantity in the classical predator–prey population growth models. However, this assumption is not realistic as the environment generally varies with time. In a bid for greater realism, functional forms of carrying capacities have been widely applied to describe varying environments. Modelling carrying capacity as a state variable serves as another approach to capture the dynamical behavior between population and its environment. The proposed modified predator–prey model is based on the ratio-dependent models that have been utilized in the study of food chains. Using a simple non-linear system, the proposed model can be linked to an intra-guild predation model in which predator and prey share the same resource. Distinct from other models, we formulate the carrying capacity proportional to a biotic resource and both predator and prey species can directly alter the amount of resource available by interacting with it. Bifurcation and numerical analyses are presented to illustrate the system’s dynamical behavior. Taking the enrichment parameter of the resource as the bifurcation parameter, a Hopf bifurcation is found for some parameter ranges, which generate solutions that posses limit cycle behavior.  相似文献   

11.
We present a complete parametric analysis of a predator–prey system influenced by a top predator. We study ecosystems with abundant nutrient supply for the prey where the prey multiplication can be considered as proportional to its density. The main questions we examine are the following: (1) Can the top predator stabilize such a system at low densities of prey? (2) What possible dynamic behaviors can occur? (3) Under which conditions can the top predation result in the system stabilization? We use a system of two nonlinear ordinary differential equations with the density of the top predator as a parameter. The model is investigated with methods of qualitative theory of ODEs and the theory of bifurcations. The existence of 12 qualitatively different types of dynamics and complex structure of the parametric space are demonstrated. Our studies of phase portraits and parametric diagrams show that a top predator can be an important factor leading to stabilization of the predator-prey system with abundant nutrient supply. Although the model here is applied to the plankton communities with fish (or carnivorous zooplankton) as the top trophic level, the general form of the equations allows applications of our results to other ecological systems.  相似文献   

12.
We describe a prey–predator system incorporating constant prey refuge through provision of alternative food to predators. The proposed model deals with a problem of non-selective harvesting of a prey–predator system in which both the prey and the predator species obey logistic law of growth. The long-run sustainability of an exploited system is discussed through provision of alternative food to predators. We have analyzed the variability of the system in presence of constant prey refuge and examined the stabilizing effect on predator–prey system. The steady states of the system are derived and dynamical behavior of the system is extensively analyzed around steady states. The optimal harvesting policy is formulated and solved with the help of Pontryagin’s maximal principle. Our objective is to maximize the monetary social benefit through protecting the predator species from extinction, keeping the ecological balance. Results finally illustrated with the help of numerical examples.  相似文献   

13.
We developed a predator–prey activity with eighth-grade students in which they used wolf spiders (Lycosa carolinensis), house crickets (Acheta domestica), and abiotic factors to address how (1) adaptations in predators and prey shape their interaction and (2) abiotic factors modify the interaction between predators and prey. We tested student understanding with pre- and postquizzes, written observations, and interpretations of graphical results.  相似文献   

14.
15.
This paper explores how predator evolution and the magnitude of predator genetic variation alter the population-level dynamics of predator–prey systems. We do this by analyzing a general eco-evolutionary predator–prey model using four methods: Method 1 identifies how eco-evolutionary feedbacks alter system stability in the fast and slow evolution limits; Method 2 identifies how the amount of standing predator genetic variation alters system stability; Method 3 identifies how the phase lags in predator–prey cycles depend on the amount of genetic variation; and Method 4 determines conditions for different cycle shapes in the fast and slow evolution limits using geometric singular perturbation theory. With these four methods, we identify the conditions under which predator evolution alters system stability and shapes of predator–prey cycles, and how those effect depend on the amount of genetic variation in the predator population. We discuss the advantages and disadvantages of each method and the relations between the four methods. This work shows how the four methods can be used in tandem to make general predictions about eco-evolutionary dynamics and feedbacks.  相似文献   

16.
Understanding of population dynamics in a fragmented habitat is an issue of considerable importance. A natural modelling framework for these systems is spatially discrete. In this paper, we consider a predator–prey system that is discrete both in space and time, and is described by a Coupled Map Lattice (CML). The prey growth is assumed to be affected by a weak Allee effect and the predator dynamics includes intra-specific competition. We first reveal the bifurcation structure of the corresponding non-spatial system. We then obtain the conditions of diffusive instability on the lattice. In order to reveal the properties of the emerging patterns, we perform extensive numerical simulations. We pay a special attention to the system properties in a vicinity of the Turing–Hopf bifurcation, which is widely regarded as a mechanism of pattern formation and spatiotemporal chaos in space-continuous systems. Counter-intuitively, we obtain that the spatial patterns arising in the CML are more typically stationary, even when the local dynamics is oscillatory. We also obtain that, for some parameter values, the system’s dynamics is dominated by long-term transients, so that the asymptotical stationary pattern arises as a sudden transition between two different patterns. Finally, we argue that our findings may have important ecological implications.  相似文献   

17.
The main concern of this paper is to study the dynamic of a predator–prey system with diffusion. It incorporates the Holling-type-II and a modified Leslie–Gower functional responses under Robin boundary conditions. More concretely, we study the dissipativeness of the system by using the comparison principle, and we derive a criteria for permanence and for predator extinction.  相似文献   

18.
19.
Understanding the interactions between predators and prey is essential for predicting the effects of disturbances to ecosystems. Motorways produce changes in the surrounding biotic and abiotic environment and hence have multiple impacts on wildlife. Some species are known to change their activity patterns in the proximity of motorways but the implications for the structure of food webs are unknown. This study analyzes the activity patterns of both mammalian predators and their prey species near nine motorways in attempt to clarify how motorways affect the mammalian community. Habitat structural variables were also sampled to control the effects of microhabitat on relative prey abundance. Our results revealed different activity patterns of both predators and prey near motorways that are independent of structural differences in microhabitat. Both the red fox and small mammals were found to use the zone close to the motorways more frequently, whereas lagomorphs and mustelids were less active there. These differences suggest that motorways favor the population of the predator that is most tolerant of human activity, the red fox, whose activity could have both direct and indirect effects on that of other members of the predator and prey community. On the one hand, the red fox seems to act as “top predator” and mustelids to follow a “safety match” strategy avoiding the area close to the motorway where fox is more active. On the other hand, abundances of prey species are negatively associated with the activity of their most frequent predators. This study is the first to assess how the proximity to motorways affects the activity of mammals in two levels of the food web and opens the field for research to understand the processes driving the detected patterns. Moreover, such effects at the community scale should be taken into account when evaluating the impacts of motorways on the surrounding ecosystems.  相似文献   

20.
This study assessed the dynamics of predation by Bdellovibrio bacteriovorus HD 100. Predation tests with two different bioluminescent strains of Escherichia coli, one expressing a heat-labile bacterial luciferase and the other a heat-stable form, showed near identical losses from both, indicating that protein expression and stability are not responsible for the “shutting-off” of the prey bioluminescence (BL). Furthermore, it was found that the loss in the prey BL was not proportional with the predator-to-prey ratio (PPR), with significantly greater losses seen as this value was increased. This suggests that other factors also play a role in lowering the prey BL. The loss in BL, however, was very consistent within nine independent experiments to the point that we were able to reliably estimate the predator numbers within only 1 h when present at a PPR of 6 or higher, Using a fluorescent prey, we found that premature lysis of the prey occurs at a significant level and was more prominent as the PPR ratio increased. Based upon the supernatant fluorescent signal, even a relatively low PPR of 10–20 led to approximately 5 % of the prey population being prematurely lysed within 1 h, while a PPR of 90 led to nearly 15 % lysis. Consequently, we developed a modified Lotka–Volterra predator–prey model that accounted for this lysis and is able to reliably estimate the prey and bdelloplast populations for a wide range of PPRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号