首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
If endorphins participate in mental processes and these also activate sperm functions, then it is reasonable to deduce that thoughts biochemically modify sperm and egg genes throughout life, and that this is inherited.  相似文献   

2.
Very few studies have examined parent-offspring interactions from a quantitative genetic perspective. We used a cross-fostering design and measured genetic correlations and components of social selection arising from two parental and two offspring behaviors in the burying beetle Nicrophorus vespilloides. Genetic correlations were assessed by examining behavior of relatives independent of common social influences. We found positive genetic correlations between all pairs of behaviors, including between parent and offspring behaviors. Patterns of selection were assessed by standardized performance and selection gradients. Parental provisioning had positive effects on offspring performance and fitness, while remaining near the larvae without feeding them had negative effects. Begging had positive effects on offspring performance and fitness, while increased competition among siblings had negative effects. Coadaptations between parenting and offspring behavior appear to be maintained by genetic correlations and functional trade-offs; parents that feed their offspring more also spend more time in the area where they can forage for themselves. Families with high levels of begging have high levels of sibling competition. Integrating information from genetics and selection thus provides a general explanation for why variation persists in seemingly beneficial traits expressed in parent-offspring interactions and illustrates why it is important to measure functionally related suites of behaviors.  相似文献   

3.
4.
Maternal inheritance,epigenetics and the evolution of polyandry   总被引:1,自引:1,他引:0  
Zeh JA  Zeh DW 《Genetica》2008,134(1):45-54
Growing evidence indicates that females actively engage in polyandry either to avoid genetic incompatibility or to bias paternity in favor of genetically superior males. Despite empirical support for the intrinsic male quality hypothesis, the maintenance of variation in male fitness remains a conundrum for traditional "good genes" models of sexual selection. Here, we discuss two mechanisms of non-Mendelian inheritance, maternal inheritance of mitochondria and epigenetic regulation of gene expression, which may explain the persistence of variation in male fitness traits important in post-copulatory sexual selection. The inability of males to transmit mitochondria precludes any direct evolutionary response to selection on mitochondrial mutations that reduce or enhance male fitness. Consequently, mitochondrial-based variation in sperm traits is likely to persist, even in the face of intense sperm competition. Indeed, mitochondrial nucleotide substitutions, deletions and insertions are now known to be a primary cause of low sperm count and poor sperm motility in humans. Paradoxically, in the field of sexual selection, female-limited response to selection has been largely overlooked. Similarly, the contribution of epigenetics (e.g., DNA methylation, histone modifications and non-coding RNAs) to heritable variation in male fitness has received little attention from evolutionary theorists. Unlike DNA sequence based variation, epigenetic variation can be strongly influenced by environmental and stochastic effects experienced during the lifetime of an individual. Remarkably, in some cases, acquired epigenetic changes can be stably transmitted to offspring. A recent study indicates that sperm exhibit particularly high levels of epigenetic variation both within and between individuals. We suggest that such epigenetic variation may have important implications for post-copulatory sexual selection and may account for recent findings linking sperm competitive ability to offspring fitness.  相似文献   

5.
6.
The field of epigenetics has grown explosively in the past two decades or so. As currently defined, epigenetics deals with heritable, metastable and usually reversible changes that do not involve alterations in DNA sequence, but alter the way that information encoded in DNA is utilized. The bulk of current research in epigenetics concerns itself with mitotically inherited epigenetic processes underlying development or responses to environmental cues (as well as the role of mis-regulation or dys-regulation of such processes in disease and ageing), i.e., epigenetic changes occurring within individuals. However, a steadily growing body of evidence indicates that epigenetic changes may also sometimes be transmitted from parents to progeny, meiotically in sexually reproducing organisms or mitotically in asexually reproducing ones. Such transgenerational epigenetic inheritance (TEI) raises obvious questions about a possible evolutionary role for epigenetic ‘Lamarckian’ mechanisms in evolution, particularly when epigenetic modifications are induced by environmental cues. In this review I attempt a brief overview of the periodically reviewed and debated ‘classical’ TEI phenomena and their possible implications for evolution. The review then focusses on a less-discussed, unique kind of protein-only epigenetic inheritance mediated by prions. Much remains to be learnt about the mechanisms, persistence and effects of TEI. The jury is still out on their evolutionary significance and how these phenomena should be incorporated into evolutionary theory, but the growing weight of evidence indicates that likely evolutionary roles for these processes need to be seriously explored.  相似文献   

7.
M. Switoński 《Genetica》1985,68(1):65-68
The inheritance of a centric fusion in the blue fox,Alopex lagopus was investigated in 38 litters (258 animals) originated from matings of parents (64 animals) with all possible diploid numbers of chromosomes (2n=50, 49 and 48). In general, the Robertsonian translocation was inherited in accordance with the Mendelian principle. However, in the matings of females with 2n=49 and males with 2n=50 a significantly higher number of animals with 2n=50 was observed in the progeny. Moreover, observations on two litters indicated thede novo occurrence of the centric fusion and fission.  相似文献   

8.
The doubly uniparental inheritance (DUI) of some bivalve mollusks is the major exception to the common maternal inheritance of mitochondria in animals. DUI involves two mitochondrial lineages with paternal and maternal transmission routes, and it appears as a complex phenomenon requiring both nuclear and mitochondrial adaptations. DUI distribution seems to be scattered among the Bivalvia, and there are several clues for its multiple origins. In this paper, we investigate whether the incipient DUI systems had left possible selective signatures on mitochondrial genomes. Alongside the outstanding divergence of amino acid sequences, we confirmed strong purifying selection to act on mitochondrial genes. However, we found evidence that distinct episodes of intense directional pressure are associated with the origins of different DUI systems: We interpret these signals as footprints of the coevolution with the nuclear genome that ought to take place at the base of a DUI clade. Six genes (atp6, cox1, cox2, cox3, nad4L, and nad6) seem to be more commonly linked to the appearance of DUI. We also identified few putative DUI‐specific mutations, thus extending support to the hypothesis of multiple independent origins of this complex phenomenon.  相似文献   

9.
10.
Females differ from males in transmitting not only nuclear genes but also cytoplasmic genetic elements (CGEs), including DNA in mitochondria, chloroplasts and microorganisms that are present in the cell. Until recently, evolutionary research has adopted a nucleocentric approach in which organelles have been viewed as subservient energy suppliers. In this article, we propose that a more equitable view of nuclear genes and organelle genomes will lead to a better understanding of the dynamics of sexual selection and the constraints on male adaptation. Maternal inheritance of CGEs intensifies sexually-antagonistic coevolution and provides a parsimonious explanation for the relatively high frequency in males of such apparently maladaptive traits as infertility, homosexuality and baldness.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
The Saccharomyces cerevisiae [PSI] factor, a cytoplasmic omnipotent nonsense suppressor, is a conformationally changed (prion) form of translation termination factor eRF3 (Sup35p). Induction and maintenance of the [PSI] factor depend on the prionizing peptide located in the N domain of Sup35p. The N domain of Sup35p was fused with phosphoribosylaminoimidazole carboxylase (Ade2p), a purine biosynthesis enzyme, and the hybrid protein (NM-Sup35p::Ade2p) was tested for induction of the [PSI] factor. Transformation with a centromeric plasmid carrying the gene for NM-Sup35p::Ade2p induced a [PSI]-like factor in yeast cells, which was evident from efficient nonsense suppression. The suppressory effect depended on the presence of the prionizing peptide both in the hybrid protein and in Sup35p synthesized from the chromosomal gene, as well as on the presence of the prion-like [PIN] factor in the cell.  相似文献   

19.
20.

Background  

Since S. cerevisiae undergoes closed mitosis, the nuclear envelope of the daughter nucleus is continuous with that of the maternal nucleus at anaphase. Nevertheless, several constitutents of the maternal nucleus are not present in the daughter nucleus. The present study aims to identify proteins which impact the shape of the yeast nucleus and to learn whether modifications of shape are passed on to the next mitotic generation. The Esc1p protein of S. cerevisiae localizes to the periphery of the nucleoplasm, can anchor chromatin, and has been implicated in targeted silencing both at telomeres and at HMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号