首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have characterized a serine/threonine protein kinase from Xenopus metaphase-II-blocked oocytes, which phosphorylates in vitro the microtubule-associated protein 2 (MAP2). The MAP2 kinase activity, undetectable in prophase oocytes, is activated during the progesterone-induced meiotic maturation (G2-M transition of the cell cycle). p-Nitrophenyl phosphate, a phosphatase inhibitor, is required to prevent spontaneous deactivation of the MAP2 kinase in crude preparations; conversely, the partially purified enzyme can be in vitro deactivated by the low-Mr polycation-stimulated (PCSL) phosphatase (also termed protein phosphatase 2A2), working as a phosphoserine/phosphothreonine-specific phosphatase and not as a phosphotyrosyl phosphatase indicating that phosphorylation of serine/threonine is necessary for its activity. S6 kinase, a protein kinase activated during oocyte maturation which phosphorylates in vitro ribosomal protein S6 and lamin C, can be deactivated in vitro by PCSL phosphatase. S6 kinase from prophase oocytes can also be activated in vitro in fractions known to contain all the factors necessary to convert pre-M-phase-promoting factor (pre-MPF) to MPF. Active MAP2 kinase can activate in vitro the inactive S6 kinase present in prophase oocytes or reactivate S6 kinase previously inactivated in vitro by PCSL phosphatase. These data are consistent with the hypothesis that the MAP2 kinase is a link of the meiosis signalling pathway and is activated by a serine/threonine kinase. This will lead to the regulation of further steps in the cell cycle, such as microtubular reorganisation and S6 kinase activation.  相似文献   

2.
Xenopus MAP kinase activator, a 45 kDa protein, has been shown to function as a direct upstream factor sufficient for full activation and both tyrosine and serine/threonine phosphorylation of inactive MAP kinase. We have now shown by using an anti-MAP kinase activator antiserum that MAP kinase activator is ubiquitous in tissues and is regulated post-translationally. Activation of MAP kinase activator is correlated precisely with its threonine phosphorylation during the oocyte maturation process. It is a key question whether MAP kinase activator is a kinase or not. We have shown that Xenopus MAP kinase activator purified from mature oocytes is capable of undergoing autophosphorylation on serine, threonine and tyrosine residues. Dephosphorylation of purified activator by protein phosphatase 2A treatment inactivates its autophosphorylation activity as well as its activator activity. Thus, Xenopus MAP kinase activator is a protein kinase with specificity for both serine/threonine and tyrosine. Partial protein sequencing of purified activator indicates that it contains a sequence homologous to kinase subdomains VI and VII of two yeast protein kinases, STE7 and byrl.  相似文献   

3.
MAP kinase is thought to play a pivotal role not only in the growth factor-stimulated signalling pathway but also in the M phase phosphorylation cascade downstream of MPF. MAP kinase is fully active only when both tyrosine and threonine/serine residues are phosphorylated. We have now identified and purified a Xenopus MAP kinase activator from mature oocytes that is able to induce activation and phosphorylation on tyrosine and threonine/serine residues of an inactive form of Xenopus MAP kinase. The Xenopus MAP kinase activator itself is a 45 kDa phosphoprotein and is inactivated by protein phosphatase 2A treatment in vitro. Microinjection of the purified activator into immature oocytes results in immediate activation of MAP kinase. Further experiments using microinjection as well as cell free extracts have shown that Xenopus MAP kinase activator is an intermediate between MPF and MAP kinase. Thus, MAP kinase activator plays a key role in the phosphorylation cascade.  相似文献   

4.
5.
Pawlowski M  Ragab A  Rosa JP  Bryckaert M 《FEBS letters》2002,521(1-3):145-151
Thrombin-induced extracellular signal-regulated kinase 2 (ERK2) activation is negatively regulated in conditions of all bP3 integrin engagement and platelet aggregation. Here we show by Western blotting with antibodies against mono- and biphosphorylated forms of ERK2 that the dephosphorylation of ERK2 by alpha llb beta 3 engagement affects threonine183 and not tyrosine185. Addition of a potent serine/threonine phosphatase inhibitor, okadaic acid (OA), restored thrombin-induced threonine phosphorylation of ERK2 in conditions of platelet aggregation, whereas OA had no effect in the absence of alpha llb beta 3 engagement. These observations are consistent with alpha llb beta 3 engagement acting via at least one serine/threonine phosphatase,which dephosphorylates the phosphothreonine183 residue of ERK2. Moreover, a small amount (14%) of ERK2 was translocated to the alpha llb beta 3-dependent cytoskeleton, mostly ina monophosphorylated (i.e. inactive) form, suggesting that cytoskeleton-associated ERK2 plays only a minor role, if any. Finally, we show that negative regulation (i.e. dephosphorylation)occurs primarily or totally in the cytosol and that the alpha llb beta 3-dependent ERK2 Thr183-specific phosphatase is different from phosphatase 1 (PP1) or PP2A. We conclude that all alpha llb beta 3 engagement down-regulates ERK2 through selective dephosphorylation of the phosphothreonine183 residue by a cytosolic serine/threonine phosphatase different from known platelet phosphatases.  相似文献   

6.
Collagenase-1 (matrix metalloproteinase-1, MMP-1) is expressed by several types of cells, including fibroblasts, and apparently plays an important role in the remodeling of collagenous extracellular matrix in various physiologic and pathologic situations. Here, we have examined the molecular mechanisms of the activation of fibroblast MMP-1 gene expression by a naturally occurring non-phorbol ester type tumor promoter okadaic acid (OA), a potent inhibitor of serine/threonine protein phosphatase 2A. We show that in fibroblasts OA activates three distinct subgroups of mitogen activated protein kinases (MAPKs): extracellular signal-regulated kinase 1,2 (ERK 1,2), c-Jun N-terminal-kinase/stress-activated protein kinase (JNK/SAPK) and p38. Activation of MMP-1 promoter by OA is entirely blocked by overexpression of dual-specificity MAPK phosphatase CL100. In addition, expression of kinase-deficient forms of ERK 1,2, SAPKβ, p38, or JNK/SAPK kinase SEK1 strongly inhibited OA-elicited activation of MMP-1 promoter. OA-elicited enhancement of MMP-1 mRNA abundance was also strongly prevented by two chemical MAPK inhibitors: PD 98059, a specific inhibitor of the activation of ERK1,2 kinases MEK1,2; and SB 203580, a selective inhibitor of p38 activity. Results of this study show that MMP-1 gene expression in fibroblasts is coordinately regulated by ERK1,2, JNK/SAPK, and p38 MAPKs and suggest an important role for the stress-activated MAPKs JNK/SAPK and p38 in the activation of MMP-1 gene expression. Based on these observations, it is conceivable that specific inhibition of stress-activated MAPK pathways may serve as a novel therapeutic target for inhibiting degradation of collagenous extracellular matrix.  相似文献   

7.
Apoptosis signal-regulating kinase 1 (ASK1) is a MAP kinase kinase kinase (MAPKKK) that activates the JNK and p38 MAP kinase cascades and is activated in response to oxidative stress such as hydrogen peroxide (H(2)O(2)). A yeast two-hybrid screening identified a serine/threonine protein phosphatase 5 (PP5) as a binding partner of ASK1. PP5 directly dephosphorylated an essential phospho-threonine residue within the kinase domain of ASK1 and thereby inactivated ASK1 activity in vitro and in vivo. The interaction between PP5 and ASK1 was induced by H(2)O(2) treatment and was followed by the decrease in ASK1 activity. PP5 inhibited not only H(2)O(2)-induced sustained activation of ASK1 but also ASK1-dependent apoptosis. Thus, PP5 appears to act as a physiological inhibitor of ASK1-JNK/p38 pathways by negative feedback.  相似文献   

8.
Yamagata H  Saka K  Tanaka T  Aizono Y 《FEBS letters》2001,494(1-2):24-29
Light induced rapid and transient activation of a 46-kDa protein kinase in soybean photomixotrophic cell culture. This kinase was designated as LAP kinase (light signal-activated protein kinase). Activation of LAP kinase in response to light was associated with tyrosine phosphorylation of the kinase, and treatment of the kinase with protein tyrosine phosphatase abolished its activity. The LAP kinase efficiently phosphorylated myelin basic protein and histone, but did not phosphorylate casein. Phospho-amino acid analysis indicated that the LAP kinase was a serine/threonine protein kinase. These results indicated that the LAP kinase is related to the MAP kinase family of protein kinases.  相似文献   

9.
It is now established that a family of dual-specificity protein phosphatases are able to interact with mitogen and stress-activated protein kinases in a highly specific manner to differentially regulate these enzymes in mammalian cells. A role for these proteins in negative feedback regulation of MAP kinase activity is also supported by genetic and biochemical studies in yeasts and Drosophila. More recently it has become clear that other classes of protein phosphatase also play key roles in the regulated dephosphorylation of MAP kinases, including tyrosine-specific protein phosphatases and serine/threonine protein phosphatases. It is likely that a complex balance between upstream activators and these different classes of MAP kinase specific phosphatase are responsible for determining, at least in part, the magnitude and duration of MAP kinase activation and hence the physiological outcome of signalling.  相似文献   

10.
Treatment of PC12 cells with either nerve growth factor (NGF), a differentiating factor, or epidermal growth factor (EGF), a mitogen, resulted in 7-15-fold activation of a protein kinase activity in cell extracts that phosphorylated microtubule-associated protein (MAP) 2 on serine and threonine residues in vitro. Both the NGF-activated kinase and the EGF-activated kinase could be partially purified by sequential chromatography on DEAE-cellulose, phenyl-Sepharose and hydroxylapatite, and were identical with each other in their chromatographic behavior, apparent molecular mass (approximately 40 kDa) on gel filtration, substrate specificity, and phosphopeptide-mapping pattern of MAP2 phosphorylated by each kinase. Moreover, both kinases were found to be indistinguishable from a mitogen-activated MAP kinase previously described in growth-factor-stimulated or phorbol-ester-stimulated fibroblastic cells, based on the same criteria. Kinase assays in gels after SDS/polyacrylamide gel electrophoresis revealed further that the NGF- or EGF-activated MAP kinase in PC12 cells, as well as the EGF-activated MAP kinase in fibroblastic 3Y1 cells resided in two closely spaced polypeptides with an apparent molecular mass of approximately 40 kDa. In addition, these MAP kinases were inactivated by either acid phosphatase treatment or protein phosphatase 2A treatment. These results indicate that MAP kinase may be activated through phosphorylation by a differentiating factor as well as by a mitogen. MAP kinase activation by EGF was protein kinase C independent; it reached an almost maximal level 1 min after EGF treatment and subsided rapidly within 30-60 min. On the other hand, NGF-induced activation of MAP kinase was partly protein kinase C dependent and continued for at least 2-3 h.  相似文献   

11.
The growth hormone receptor (GHR), a cytokine receptor superfamily member, requires the JAK2 tyrosine kinase for signaling. We now examine functional interactions between growth hormone (GH) and epidermal growth factor (EGF) in 3T3-F442A fibroblasts. Although EGF enhanced ErbB-2 tyrosine phosphorylation, GH, while causing retardation of its migration on SDS-polyacrylamide gel electrophoresis, decreased ErbB-2's tyrosine phosphorylation. GH-induced retardation was reversed by treatment of anti-ErbB-2 precipitates with both alkaline phosphatase and protein phosphatase 2A, suggesting that GH induced serine/threonine phosphorylation of ErbB-2. Both GH-induced shift in ErbB-2 migration and GH-induced MAP kinase activation were unaffected by a protein kinase C inhibitor but were blocked by the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1 (MEK1) inhibitor, PD98059. Notably, leukemia inhibitory factor, but not interferon-gamma, also promoted ErbB-2 shift and mitogen-activated protein kinase activation. Cotreatment with EGF and GH versus EGF alone resulted in a 35% decline in acute ErbB-2 tyrosine 1248 autophosphorylation, a marked decline (approximately 50%) in DNA synthesis, and substantially decreased cyclin D1 expression. We conclude that in 3T3-F442A cells, 1) the GH-induced decrease in ErbB-2 tyrosine phosphorylation correlates with MEK1/mitogen-activated protein kinase activity and 2) GH antagonizes EGF-induced DNA synthesis and cyclin D1 expression in a pattern consistent with its alteration in ErbB-2 phosphorylation status.  相似文献   

12.
Okadaic acid is a powerful inhibitor of serine/threonine protein phosphatases 1 and 2A. Although it is known as a potent tumour promoter, the intracellular mechanism by which okadaic acid mediates its mitogenic effect remains to be clarified. We investigated the effect of okadaic acid on the activation of mitogenesis in Rat1 fibroblasts overexpressing insulin receptors. As previously reported, insulin induced Shc phosphorylation, Shc-Grb2 association, MAP kinase activation, and BrdU incorporation. Okadaic acid also stimulated tyrosine phosphorylation of Shc and its subsequent association with Grb2 in a time- and dose-dependent manner without affecting tyrosine phosphorylation of insulin receptor beta-subunit and IRS. However, to a lesser extent, okadaic acid stimulated MAP kinase activity and BrdU incorporation. Interestingly, preincubation of okadaic acid potentiated insulin stimulation of tyrosine phosphorylation of Shc (213% of control), Shc-Grb2 association (150%), MAP kinase activity (152%), and BrdU incorporation (148%). These results further confirmed the important role of Shc, but not IRS, in cell cycle progression in Rat1 fibroblasts. Furthermore, serine/ threonine phosphorylation appears to be involved in the regulation of Shc tyrosine phosphorylation leading to mitogenesis by mechanisms independent of insulin signalling.  相似文献   

13.
M Nomura  J T Stull  K E Kamm  M C Mumby 《Biochemistry》1992,31(47):11915-11920
Smooth muscle myosin light chain kinase is phosphorylated at two sites (A and B) by different protein kinases. Phosphorylation at site A increases the concentration of Ca2+/calmodulin required for kinase activation. Diphosphorylated myosin light chain kinase was used to determine the site-specificity of several forms of protein serine/threonine phosphatase. These phosphatases readily dephosphorylated myosin light chain kinase in vitro and displayed differing specificities for the two phosphorylation sites. Type 2A protein phosphatase specifically dephosphorylated site A, and binding of Ca2+/calmodulin to the kinase had no effect on dephosphorylation. The purified catalytic subunit of type 1 protein phosphatase dephosphorylated both sites in the absence of Ca2+/calmodulin but only dephosphorylated site A in the presence of Ca2+/calmodulin. A protein phosphatase fraction was prepared from smooth muscle actomyosin by extraction with 80 mM MgCl2. On the basis of sensitivity to okadaic acid and inhibitor 2, this activity was composed of multiple protein phosphatases including type 1 activity. This phosphatase fraction dephosphorylated both sites in the absence of Ca2+/calmodulin. However, dephosphorylation of both sites A and B was completely blocked in the presence of Ca2+/calmodulin. These results indicate that two phosphorylation sites of myosin light chain kinase are dephosphorylated by multiple protein serine/threonine phosphatases with unique catalytic specificities.  相似文献   

14.
Cisplatin (cis-dichlorodiammineplatinum II), a potent antitumour compound, stimulates immune responses by activating monocytes/macrophages and other cells of the immune system. However, the exact mechanism by which cisplatin activates these cells is poorly characterized and attempts are being made to understand this mechanism. Previous studies from this laboratory have shown that Lyn, a protein tyrosine kinase of the src family, and nuclear factor (NF)-kappaB are involved in cisplatin-induced macrophage activation. Recent studies suggest that the RAS and mitogen-activated protein (MAP) kinases function as a connecting link between activated lyn and NF-kB, which raises the possibility of their involvement in cisplatin-induced macrophage activation. Therefore, this study was undertaken to investigate the effect of cisplatin treatment on the expression/activation of RAS (a low molecular weight GTP-binding protein) and MAP kinases in murine peritoneal macrophages. The underlying mechanism of expression/activation of RAS and MAP kinases in cisplatin-treated macrophages was also investigated. Immunoblotting and immune-complex kinase assays revealed that cisplatin treatment of macrophages leads to increased expression/activation of RAS and MAP kinases, with optimal expression/activation at 15 min of treatment. Using a battery of specific inhibitor/modulators of different signalling molecules, this study shows that expression and activation of MAP kinases are two unrelated processes. It was also observed that kinase (protein tyrosine and protein kinase C) inhibitor and Ca2+/calmodulin antagonist inhibit expression/activation of RAS/MAP kinases in macrophages, whereas phosphatases (protein tyrosine and serine/threonine) inhibitor up-regulate these kinases.  相似文献   

15.
Activity of Na+-K+-2Cl- co-transport (NKCC1) in epithelia is thought to be highly regulated through phosphorylation and dephosphorylation of the transporter. Previous functional studies from this laboratory suggested a role for protein phosphatase 2A (PP2A) as a serine/threonine protein phosphatase involved in the regulation of mammalian tracheal epithelial NKCC1. We expand on these studies to characterize serine/threonine protein phosphatase(s) necessary for regulation of NKCC1 function and the interaction of the phosphatase(s) with proteins associated with NKCC1. NKCC1 activity was measured as bumetanide-sensitive 86Rb uptake or basolateral to apical 86Rb flux in primary cultures of human tracheal epithelial cells or in Calu-3 airway epithelial cells grown on Transwell filter inserts. Preincubation with 0.1 nm okadaic acid, a PP2A > phosphatase 1 (PP1) inhibitor, increased NKCC1 activity 3.5-fold in human tracheal epithelial cells and 4.1-fold in Calu-3 cells. Calyculin, a PP1 > PP2A inhibitor, did not alter NKCC1 activity or percent bumetanide-sensitive flux. The effect of OA was dose-dependent with an IC50 of 0.4 nm. The alpha1-adrenergic agonist methoxamine increased NKCC1 activity and transiently increased PP2A activity 3.8-fold but did not alter PP1 activity. OA augmented methoxamine-dependent stimulation of NKCC1 activity. PP1, PP2A, and PP2C but not PP2B were detected in lysates from Calu-3 cells by immunoblot analysis. PP1 was not detected in immunoprecipitates of NKCC1 and vice versa. PP2A co-immunoprecipitated with NKCC1 and protein kinase C-delta (PKC-delta) and was pulled down by a recombinant N terminus of NKCC1 consisting of amino acids 1-286. One novel finding is co-precipitation of STE20-related proline-alanine-rich kinase, a regulatory kinase for NKCC1, with PP2A and PKC-delta. The results suggest a model of actin serving as a scaffold for binding and association of PKC-delta, PP2A, and STE20-related proline-alanine-rich kinase. The role of the complex of serine/threonine protein kinases and a protein phosphatase is probably the maintenance of optimal phosphorylation of NKCC1 coincident with its physiological function in epithelial absorption and secretion.  相似文献   

16.
Okadaic acid is a specific inhibitor of serine/threonine protein phosphatase 1 (PP-1) and 2A (PP-2A). The phosphorylation and dephosphorylation at the serine/threonine residues on proteins play important roles in regulating gene expression, cell cycle progression, and apoptosis. In this study, phosphatase inhibitor okadaic acid induces apoptosis in U937 cells via a mechanism that appears to involve caspase 3 activation, but not modulation of Bcl-2, Bax, and Bcl-X(L) expression levels. Treatment with 20 or 40 nM okadaic acid for 24 h produced DNA fragmentation in U937 cells. This was associated with caspase 3 activation and PLC-gamma1 degradation. Okadaic acid-induced caspase 3 activation and PLC-gamma1 degradation and apoptosis were dose-dependent with a maximal effect at a concentration of 40 nM. Moreover, PMA (phorbol myristate acetate), PKC (protein kinase C) activator, protected U937 cells from okadaic acid-induced apoptosis, abrogated okadaic acid-induced caspase 3 activation, and specifically inhibited downregulation of XIAP (X-linked inhibitor of apoptosis) by okadaic acid. PMA cotreated U937 cells exhibited less cytochrome c release and sustained expression levels of the IAP (inhibitor of apoptosis) proteins during okadaic acid-induced apoptosis. In addition, these findings indicate that PMA inhibits okadaic acid-induced apoptosis by a mechanism that interferes with cytochrome c release and activity of caspase 3 that is involved in the execution of apoptosis.  相似文献   

17.
Monoclonal antibodies against phosphoserine and phosphothreonine were used in the present study to investigate the changes in serine and threonine phosphorylation respectectively during capacitation of hamster spermatozoa. Immunoblot analysis of hamster spermatozoa capacitated in TALP, a medium that supports capacitation, showed that a set of four proteins of molecular weight 56, 63, 66, and 100 kDa was phosphorylated both at the serine and threonine residues. In addition, five other proteins of molecular weight 32, 39, 45, 53, and 61 kDa were phosphorylated specifically at the threonine residues. Of these nine proteins, the 100 kDa protein showed a time dependent or capacitation-dependent decrease in intensity which coincided with the percentage acrosome-reacted spermatozoa. In contrast, the 49 and 63 kDa threonine phosphorylated proteins showed increased phosphorylation coinciding with capacitation. H8 (a serine and threonine kinase inhibitor) had a transient effect on the phosphorylation of these two phosphothreonine proteins but inhibited acrosome reaction substantially all through the treatment period. Okadaic acid (OA) (a serine and threonine protein phosphatase inhibitor) inhibited hyperactivation but had no effect on acrosome reaction. In fact, OA stimulated acrosome reaction. Finally the immunofluorescence studies indicated localization of the serine phosphorylated proteins in tail as well as in head of the capacitated hamster spermatozoa whereas the threonine phosphorylated proteins were localized mostly in the tail of the spermatozoa. The findings of the present study suggest that serine/threonine phosphorylation and the enzymes responsible for regulating the level of phosphorylation play an important role in capacitation and capacitation-associated events namely hyperactivation and acrosome reaction. However, further studies are needed in order to establish the exact role of these proteins in capacitation of spermatozoa.  相似文献   

18.
The mitogen activated protein (MAP) kinase cascade represents one of the major regulator of cell growth by hormones and growth factors. However, although the activation of this intracellular pathway has been often regarded as mediator of cell proliferation, in many cell types the increase in MAP kinase (also called extra-cellular signal regulated kinase: ERK) activity may result in cell growth arrest, depending on the length or the intensity of the stimulation. In this review we examine recent data concerning the effects of somatostatin on the MAP kinase cascade through one of its major receptor subtype, the somatostatin receptor 1 (SSTR1), stably expressed in CHO-K1 cells. Somatostatin inhibits the proliferative effects of basic FGF (bFGF) in CHO-SSTR1 cell line. However, in these cells, somatostatin robustly activates the MAP kinase and augments bFGF-induced stimulation of ERK. We show that the activation of ERK via SSTR1 is mediated by the betagamma subunit of a pertussis toxin-sensitive G-protein and requires both the small G protein Ras and the serine/threonine kinase Raf-1. Moreover the phosphatidyl inositol-3kinase and the cytosolic tyrosine kinase c-src participate in the signal transduction regulated by SSTRI to activate ERK, as well as it is involved the protein tyrosine phosphatase (PTP) SHP-2. Previous studies have suggested that somatostatin-stimulated PTP activity mediates the growth inhibitory actions of somatostatin, in CHO-SSTR1 cells. Thus, the activation of SHP-2 by SSTR1 may mediate the antiproliferative activity of somatostatin. SHP-2 may. in turn, regulate the activity of kinases upstream of ERK that require tyrosine dephosphorylation to be activated, such as c-src. Finally, the synergism between somatostatin and bFGF in the activation of ERK results in an increased expression of the cyclin-dependent kinase inhibitor p21cip/WAF1 as molecular effector of the antiproliferative activity of somatostatin.  相似文献   

19.
Salicylic acid activates a 48-kD MAP kinase in tobacco.   总被引:16,自引:0,他引:16       下载免费PDF全文
The involvement of phosphorylation/dephosphorylation in the salicylic acid (SA) signal transduction pathway leading to pathogenesis-related gene induction has previously been demonstrated using kinase and phosphatase inhibitors. Here, we show that in tobacco suspension cells, SA induced a rapid and transient activation of a 48-kD kinase that uses myelin basic protein as a substrate. This kinase is called the p48 SIP kinase (for SA-Induced Protein kinase). Biologically active analogs of SA, which induce pathogenesis-related genes and enhanced resistance, also activated this kinase, whereas inactive analogs did not. Phosphorylation of a tyrosine residue(s) in the SIP kinase was associated with its activation. The SIP kinase was purified to homogeneity from SA-treated tobacco suspension culture cells. The purified SIP kinase is strongly phosphorylated on a tyrosine residue(s), and treatment with either protein tyrosine or serine/threonine phosphatases abolished its activity. Using primers corresponding to the sequences of internal tryptic peptides, we cloned the SIP kinase gene. Analysis of the SIP kinase sequence indicates that it belongs to the MAP kinase family and that it is distinct from the other plant MAP kinases previously implicated in stress responses, suggesting that different members of the MAP kinase family are activated by different stresses.  相似文献   

20.
Serine/threonine phosphatase regulation of phosphorylation-mediated intracellular signaling controls a number of important processes in mammalian cells. In this study, we show that constitutively active protein phosphatase 2A (PP2A), which is a serine/threonine phosphatase, is essential for T leukemia cell survival. Jurkat and CCRF-CEM T leukemia cells treated with the PP2A-selective inhibitor okadaic acid (OA) showed a dose- and time-dependent induction of apoptosis, as indicated by loss of mitochondrial transmembrane potential (delta psi(m)), cleavage-induced activation of caspase-3, -8, and -9, and DNA fragmentation. In addition, caspase-8 or caspase-9 inhibition with z-IETD-fmk or z-LEHD-fmk, respectively, largely prevented OA-induced apoptosis. Although OA treatment did not affect constitutive Bcl-2 expression, overexpression of Bcl-2 prevented both OA-induced DNA fragmentation and dissipation of delta psi(m). Furthermore, inhibition of caspase-3, -8, or -9 partially protected against OA-induced loss of delta psi(m). In addition, caspase-9 and caspase-3 inhibition largely prevented procaspase-3 and procaspase-8 cleavage, respectively, while caspase-8 inhibition partially interfered with procaspase-9 cleavage in OA-treated T leukemia cells. Thus, PP2A inhibition triggered the intrinsic pathway of apoptosis, which was enhanced by a mitochondrial feedback amplification loop. PP2A has also been implicated in the regulation of p38 mitogen-activated protein kinase (MAPK). Co-immunoprecipitation analysis revealed a physical association between the catalytic subunit of PP2A and p38 MAPK in T leukemia cells. Moreover, OA treatment caused p38 MAPK to be phosphorylated in a dose- and time-dependent fashion, indicating that PP2A prevented p38 MAPK activation. Although p38 MAPK activation usually promotes apoptosis, pharmacologic inhibition of p38 MAPK exacerbated OA-induced DNA fragmentation and loss of delta psi(m) in T leukemia cells, suggesting that, in this instance, the p38 MAPK signaling pathway promoted cell survival. Collectively, these findings indicate that PP2A and p38 MAPK have coordinate effects on signaling pathways that regulate the survival of T leukemia cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号