首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
COP1 and COP9 signalosome (CSN) are key regulators of plant light responses and development. Deficiency in either COP1 or CSN causes a constitutive photomorphogenic phenotype. Through coordinated actions of nuclear- and cytoplasmic-localization signals, COP1 can respond to light signals by differentially partitions between nuclear and cytoplasmic compartments. Previous genetic analysis in Arabidopsis indicated that the nuclear localization of COP1 requires CSN, an eight-subunit heteromeric complex. However the mechanism underlying the functional relationship between COP1 and CSN is unknown. We report here that COP1 weakly associates with CSN in vivo . Furthermore, we report on the direct interaction involving the coiled-coil domain of COP1 and the N-terminal domain of the CSN1 subunit. In onion epidermal cells, expression of CSN1 can stimulate nuclear localization of GUS-COP1, and the N-terminal domain of CSN1 is necessary and sufficient for this function. Moreover, CSN1-induced COP1 nuclear localization requires the nuclear-localization sequences of COP1, as well as its coiled-coil domain, which contains both the cytoplasmic localization sequences and the CSN1 interacting domain. We also provide genetic evidence that the CSN1 N-terminal domain is specifically required for COP1 nuclear localization in Arabidopsis hypocotyl cells. This study advances our understanding of COP1 localization, and the molecular interactions between COP1 and CSN.  相似文献   

3.
The COP9 signalosome is a conserved cellular regulator present in diverse organisms. To understand the structural and functional relationship of the COP9 signalosome with its subunits, we expressed in wild-type and mutant Arabidopsis backgrounds two orthologues of subunit 1, rice FUS6 (rFUS6) and human GPS1, and Arabidopsis subunit 8 (COP9). In Arabidopsis, rFUS6 can functionally replace Arabidopsis endogenous FUS6 to form the COP9 signalosome complex and rescue the null fus6-1 mutant phenotype. Moreover, light-grown rFUS6 over-expression seedlings displayed longer hypocotyls and reduced anthocyanin accumulation in comparison to wild-type seedlings, which is opposite to the fus6/cop11 mutant phenotype. The long-hypocotyl phenotype was also observed in transgenic seedlings over-expressing Arabidopsis COP9. This finding indicates that over-expression of a functional subunit 1 or subunit 8 of the COP9 signalosome confers a gain-of-function phenotype relative to the complex. Human GPS1, when expressed in the fus6-1 null mutant of Arabidopsis, can assemble into a chimeric COP9 signalosome at low efficiency, demonstrating the structural conservation of the complexes between human and Arabidopsis. This low-abundancy chimeric complex is insufficient to fully rescue the mutant but is able to attenuate the mutant severity.  相似文献   

4.
Subunit 6 of the COP9 signalosome complex, CSN6, is known to be critical to the regulation of the MDM2-p53 axis for cell proliferation and anti-apoptosis, but its many targets remain unclear. Here we show that p57Kip2 is a target of CSN6, and that CSN6 is a negative regulator of p57Kip2. CSN6 associates with p57Kip2, and its overexpression can decrease the steady-state expression of p57Kip2; accordingly, CSN6 deficiency leads to p57Kip2 stabilization. Mechanistic studies show that CSN6 associates with p57Kip2 and Skp2, a component of the E3 ligase, which, in turn, facilitates Skp2-mediated protein ubiquitination of p57Kip2. Loss of Skp2 compromised CSN6-mediated p57Kip2 destabilization, suggesting collaboration between Skp2 and CSN6 in degradation of p57Kip2. CSN6’s negative impact on p57Kip2 elevation translates into cell growth promotion, cell cycle deregulation and potentiated transformational activity. Significantly, univariate Kaplan-Meier analysis of tumor samples demonstrates that high CSN6 expression or low p57 expression is associated with poor overall survival. These data suggest that CSN6 is an important negative regulator of p57Kip2, and that overexpression of CSN6 in many types of cancer could lead to decreased expression of p57Kip2 and result in promoted cancer cell growth.  相似文献   

5.
Subunit 6 of the COP9 signalosome complex, CSN6, is known to be critical to the regulation of the MDM2-p53 axis for cell proliferation and anti-apoptosis, but its many targets remain unclear. Here we show that p57Kip2 is a target of CSN6, and that CSN6 is a negative regulator of p57Kip2. CSN6 associates with p57Kip2, and its overexpression can decrease the steady-state expression of p57Kip2; accordingly, CSN6 deficiency leads to p57Kip2 stabilization. Mechanistic studies show that CSN6 associates with p57Kip2 and Skp2, a component of the E3 ligase, which, in turn, facilitates Skp2-mediated protein ubiquitination of p57Kip2. Loss of Skp2 compromised CSN6-mediated p57Kip2 destabilization, suggesting collaboration between Skp2 and CSN6 in degradation of p57Kip2. CSN6’s negative impact on p57Kip2 elevation translates into cell growth promotion, cell cycle deregulation and potentiated transformational activity. Significantly, univariate Kaplan-Meier analysis of tumor samples demonstrates that high CSN6 expression or low p57 expression is associated with poor overall survival. These data suggest that CSN6 is an important negative regulator of p57Kip2, and that overexpression of CSN6 in many types of cancer could lead to decreased expression of p57Kip2 and result in promoted cancer cell growth.  相似文献   

6.
The COP9 signalosome(CSN)is a conserved protein complex,typically composed of eight subunits(designated as CSN1 to CSN8)in higher eukaryotes such as plants and animals,but of fewer subunits in some lower eukaryotes such as yeasts.The CSN complex is originally identified in plants from a genetic screen for mutants that mimic light-induced photomorphogenic development when grown in the dark.The CSN complex regulates the activity of cullin-RING ligase(CRL)families of E3 ubiquitin ligase complexes,and play critical roles in regulating gene expression,cell proliferation,and cell cycle.This review aims to summarize the discovery,composition,structure,and function of CSN in the regulation of plant development in response to external(light and temperature)and internal cues(phytohormones).  相似文献   

7.
Jinbao Liu  Huabo Su 《Autophagy》2016,12(3):601-602
We demonstrated for the first time that the COP9 signalosome (COPS) controls the degradation of a surrogate and a bona fide misfolded protein in the cytosol of cardiomyocytes likely via supporting ubiquitination by CUL/cullin-RING ligases, and that Cops8 hypomorphism exacerbates cardiac proteinopathy in mice, in which autophagic impairment appears to be in play. It will be extremely imprtant to investigate cardiac ablation of another Cops gene to decipher whether COPS8 deficiency phenotypes are attributable to the COPS or unique to COPS8.  相似文献   

8.
Several components of translation, e.g. eIF4E and PKR, are implicated in cancer. The e-subunit (p48) of mammalian initiation factor 3 is encoded by the Int6 gene, a common site for integration of the mouse mammary tumor virus genome, leading to the production of a truncated eukaryotic initiation factor-3e (eIF3e). Stable expression of a truncated eIF3e in NIH 3T3 cells causes malignant transformation by four criteria: foci formation; anchorage independent growth; accelerated growth; and lack of contact inhibition. Stable expression of full-length eIF3e does not cause transformation. The truncated eIF3e also inhibits the onset of apoptosis caused by serum starvation.  相似文献   

9.
Studies using lower organisms and cultured mammalian cells have revealed that the COP9 signalosome (CSN) has important roles in multiple cellular processes. Conditional gene targeting was recently used to study CSN function in murine T-cell development and activation. Using the Cre-loxP system, here we have achieved postnatal hepatocyte-restricted knockout of the csn8 gene (HR-Csn8KO) in mice. The protein abundance of other seven CSN subunits was differentially downregulated by HR-Csn8KO and the deneddylation of all cullins examined was significantly impaired. Moreover, HR-Csn8KO-induced massive hepatocyte apoptosis and evoked extensive reparative responses in the liver, including marked intralobular proliferation of biliary lineage cells and trans-differentiation and proliferation of the oval cells. However, division of pre-existing hepatocytes was significantly diminished in HR-Csn8KO livers. These findings indicate that Csn8 is essential to the ability of mature hepatocytes to proliferate effectively in response to hepatic injury. The histopathological examinations revealed striking hepatocytomegaly in Csn8-deficient livers. The hepatocyte nuclei were dramatically enlarged and pleomorphic with hyperchromasia and prominent nucleoli, consistent with dysplasia or preneoplastic cellular alteration in HR-Csn8KO mice at 6 weeks. Pericellular and perisinusoid fibrosis with distorted architecture was also evident at 6 weeks. It is concluded that CSN8/CSN is essential to postnatal hepatocyte survival and effective proliferation.  相似文献   

10.
The COP9 signalosome (CSN) complex controls protein degradation via the ubiquitin (Ub) proteasome system (UPS) in eukaryotes. In mammalian cells, the multimeric CSN is composed of eight subunits (CSN1 - CSN8). It regulates cullin-RING Ub ligases (CRLs), which target essential regulatory proteins for ubiquitination and subsequent degradation. Thereby, the CSN cooperates with the UPS in a variety of essential cellular functions, including DNA repair, cell cycle and differentiation. Although functions of the CSN have been elucidated, mechanisms and regulatory principles of its de novo formation are completely unknown. Here, we show that there is a fundamental mechanism that allows a coordinated expression of all CSN subunits, a prerequisite for CSN assembly. CSN subunit mRNAs are targets of miRNAs of the let-7 family suppressing CSN subunit expression in human cells. Factors that reduce or block let-7 miRNAs induce the coordinated expression of CSN subunits. For instance, over-expression of CSN1 specifically traps let-7a-1 miRNA and elevates CSN subunit levels by two- to fourfold in a coordinated manner. CSN subunit expression is also increased by specific miRNA inhibitors or by interferon (IFN)-mediated induction of STAT1 and c-Myc reducing levels of let-7 miRNAs. Activation of STAT1 by IFNα or IFNγ induces c-Myc, which increases CSN subunit expression via the Lin28B/let-7 regulatory pathway. By contrast, a let-7a-1 mimic reduces CSN subunit expression. Our data show that let-7 miRNAs control the fine-tuning and coordinated expression of subunits for CSN de novo formation, presumably a general regulatory principle for other Zomes complexes as well.  相似文献   

11.
Cullin-RING ligases (CRLs) regulate diverse cellular functions such as cell cycle progression and cytokine signaling by ubiquitinating key regulatory proteins. The activity of CRLs is controlled by Nedd8 modification of the cullin subunits. Recent reports have suggested that CAND1, which specifically binds to unmodified CUL1 but not to neddylated one, is required for the in vivo function of SCFs, the CUL1-containing CRLs. We show here that CAND1 and COP9 signalosome (CSN), the major deneddylase of cullins, bind to unneddylated CUL1 in a mutually exclusive way. The suppression of CAND1 expression by small inhibitory RNA enhanced the interaction between CUL1 and CSN, suggesting that CAND1 inhibited the binding of CSN to CUL1. We found that the binding of CSN to CUL1 required the four helix bundle in CUL1 C-terminal domain, which was wrapped around by CAND1 in the CAND1-CUL1-Rbx1 complex. CAND1 greatly facilitated CSN-mediated deneddylation of CUL1 in vitro, which was dependent on its binding to CUL1. Our data suggest that enhancement of CSN-mediated deneddylation by CAND1 may contribute to its function as a positive regulator of SCFs in vivo.  相似文献   

12.
13.
14.
15.
The Arabidopsis COP9 signalosome is a multisubunit repressor of photomorphogenesis that is conserved among eukaryotes. This complex may have a general role in development. As a step in dissecting the biochemical mode of action of the COP9 signalosome, we determined the sequence of proteins that copurify with this complex. Here we describe the association between components of the COP9 signalosome (CSN1, CSN7, and CSN8) and two subunits of eukaryotic translation initiation factor 3 (eIF3), eIF3e (p48, known also as INT-6) and eIF3c (p105). To obtain a biochemical marker for Arabidopsis eIF3, we cloned the Arabidopsis ortholog of the eIF3 subunit eIF3b (PRT1). eIF3e coimmunoprecipitated with CSN7, and eIF3c coimmunoprecipitated with eIF3e, eIF3b, CSN8, and CSN1. eIF3e directly interacted with CSN7 and eIF3c. However, eIF3e and eIF3b cofractionated by gel filtration chromatography in a complex that was larger than the COP9 signalosome. Whereas eIF3, as detected through eIF3b, localized solely to the cytoplasm, eIF3e, like CSN7, was also found in the nucleus. This suggests that eIF3e and eIF3c are probably components of multiple complexes and that eIF3e and eIF3c associate with subunits of the COP9 signalosome, even though they are not components of the COP9 signalosome core complex. This interaction may allow for translational control by the COP9 signalosome.  相似文献   

16.
Spinocerebellar ataxia type 8 (SCA8) is caused by a bidirectionally transcribed CTG·CAG expansion that results in the in vivo accumulation of CUG RNA foci, an ATG‐initiated polyGln and a polyAla protein expressed by repeat‐associated non‐ATG (RAN) translation. Although RAN proteins have been reported in a growing number of diseases, the mechanisms and role of RAN translation in disease are poorly understood. We report a novel toxic SCA8 polySer protein which accumulates in white matter (WM) regions as aggregates that increase with age and disease severity. WM regions with polySer aggregates show demyelination and axonal degeneration in SCA8 human and mouse brains. Additionally, knockdown of the eukaryotic translation initiation factor eIF3F in cells reduces steady‐state levels of SCA8 polySer and other RAN proteins. Taken together, these data show polySer and WM abnormalities contribute to SCA8 and identify eIF3F as a novel modulator of RAN protein accumulation.  相似文献   

17.
Localisation and regulation of the eIF4E-binding protein 4E-BP3   总被引:3,自引:0,他引:3  
The cap-binding protein eIF4E-binding protein 3 (4E-BP3) was identified some years ago, but its properties have not been investigated in detail. In this report, we investigated the regulation and localisation of 4E-BP3. We show that 4E-BP3 is present in the nucleus as well as in the cytoplasm in primary T cells, HEK293 cells and HeLa cells. 4E-BP3 was associated with eIF4E in both cell compartments. Furthermore, 4E-BP3/eIF4E association in the cytoplasm was regulated by serum or interleukin-2 starvation in the different cell types. Rapamycin did not affect the association of eIF4E with 4E-BP3 in the cytoplasm or in the nucleus.  相似文献   

18.
COP1 is a negative regulator of Arabidopsis light-dependent development. Mutation of the COP1 locus causes constitutive photomorphogenesis in the dark. Here, we report the identification of an isoform of the COP1 protein, named COP1b, which is generated by alternative splicing. COP1b has a 60-amino acid deletion in the WD-40 repeat domain relative to the full-length COP1. This splicing step is light-independent and takes place mostly in mature seeds and in germinating seedlings. Transgenic Arabidopsis plants that overexpress COP1b show a de-etiolated phenotype in the dark, with a short hypocotyl, open and developed cotyledons. The transgenic seedlings are adult-lethal. These phenotypes closely resemble that of severe cop-1 mutants, indicating that COP1b has a dominant negative effect on COP1 function. Received: 28 April 1997 / Accepted: 8 October 1997  相似文献   

19.
Jab1 interacts with a variety of cell cycle and signal transduction regulators to control cell proliferation, differentiation, and tumorigenesis. In this study, we employed a non-denaturing gel electrophoresis method to separate different Jab1-containing complexes, the COP9 signalosome complex and the small Jab1-containing subcomplex. The formation of the small Jab1 complex was dependent on a low cell density and anchorage to a solid support, and enhanced during the early G1 phase of the cell cycle, which was abrogated in ras-transformed cells. The small Jab1-containing subcomplex may be a novel mediator of anchorage and cell-cell contact-dependent signal transduction.  相似文献   

20.
Protein synthesis is very sensitive to NaCl. However, the molecular targets responsible for this sensitivity have not been described. A cDNA library of the halotolerant plant sugar beet was functionally screened in a sodium-sensitive yeast strain. We obtained a cDNA clone (BveIF1A) encoding the eukaryotic translation initiation factor eIF1A. BveIF1A was able to partially complement the yeast eIF1A-deficient strain. Overexpression of the sugar beet eIF1A specifically increased the sodium and lithium salt tolerance of yeast. This phenotype was not accompanied by changes in sodium or potassium homeostasis. Under salt stress conditions, yeast cells expressing BveIF1A presented a higher rate of amino acid incorporation into proteins than control cells. In an in vitro protein synthesis system from wheat germ, the BveIF1A recombinant protein improved translation in the presence of NaCl. Finally, transgenic Arabidopsis plants expressing BveIF1A exhibited increased tolerance to NaCl. These results suggest that the translation initiation factor eIF1A is an important determinant of sodium tolerance in yeast and plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号